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Appendix

We now provide the proofs of our lemmas.

Impact on optimization speed

To prove Lemma 1, we first need to prove an additional
lemma.

Lemma 4 (Set of Cramér extensions). The set C of
symmetric matrices M such that (p− q)>M(p− q) =
(p− q)>CC>(p− q) for all normalized distributions
p and q is the set

C =
{
CC> + ae> + ea>|a ∈ Rk

}
.

Proof. Let M = CC> + ae> + ea>. Since p and q are
normalized, we have (p− q)>e = 0. Hence,

(p− q)>M(p− q) =

(p− q)>CC>(p− q)

+ (p− q)>ae>(p− q) + (p− q)>ea>(p− q)

= (p− q)>CC>(p− q) .

Conversely, let a symmetric matrix M be such that (p−
q)>M(p−q) = (p−q)>CC>(p−q) for all normalized
p and q. Then (p− q)>(M − CC>)(p− q) = 0. For
this to be true, (M − CC>)(p − q) must be colinear
to e. Thus, denoting M − CC> = ea> +N where e is
not in the span of N , we must have N(p− q) = 0 for
all normalized p and q, i.e. N = be>. The symmetry
constraint leads to a = b. This concludes the proof.

Lemma 1 (Condition number). Let C be the set of
symmetric matrices M for which (p− q)>M(p− q) =
(p−q)>CC>(p−q) for all proper distributions p and
q. Let κmin(C) the lowest condition number attained
by matrices M in C. Then all the matrices of the form
Cλ with λ ∈ [λk−1(C0), λ1(C0)], where λk−1(C0) and
λ1(C0) are the second smallest and largest eigenvalues
of C0, respectively, have condition number κmin(C).

Proof. Let vL be the vector associated with the maxi-
mum eigenvalue L of C0 and a be an arbitrary vector.
Because C0 is a symmetric matrix whose only zero
eigenvalue corresponds to e, its eigenvectors are or-
thogonal to e and in particular v>L e = 0. Thus, we
have

L = v>LC0vL

= v>LΠe⊥CC
>Πe⊥vL

= v>LCC
>vL

= v>LCC
>vL + v>L ae

>vL + v>L ea
>vL

for any vector a since e>vL = 0. Denoting Ra =
CC> + ae> + ea>, we get

L = v>LRavL

≤ max
v

v>Rav
‖v‖2 ,

which is the largest eigenvalue of Ra. Since this is true
for every a, C0 has the lowest top eigenvalue from all
the matrices in C.
Similarly, let us denote vµ be the vector associated
with the second-smallest eigenvalue µ 1. As e is the
eigenvector associated with the eigenvalue 0, we have
that v>µ e = 0 and

µ = v>µ C0vµ

= v>µ CC
>vµ

= v>µ CC
>vµ + v>µ ae

>vµ + v>µ ea
>vµ

= v>µRavµ

≥ min
v

v>Rav
‖v‖2 .

Thus, for all a, the second smallest eigenvalue of C0 is
larger than the smallest eigenvalue of Ra.

This means that, for Cλ to have the smallest condition
number of all the matrices in C, it is sufficient to require
that the eigenvalue associated with e be between µ and
L, i.e. that µ ≤ λ ≤ L. This concludes the proof.

Preservation of the expectation

To prove Lemma 2, we will need the following proposi-
tion:

Proposition 1. Let z be defined as in Section 3, i.e.
z is the vector of evenly spaced returns between −k−1

2

and k−1
2 with mean 0. Let b = [−1, 0, 0, . . . , 0, 0, 1]>.

Then C−1
λ z = b for all values of λ > 0.

Proof. We will prove that Cλb = z for all values of λ.
First, we note that e>b = 0 and Cλb = Πe⊥CC

>b.

Since Cij = 1i≥j , we have, denoting c = C>b,

cj =
∑

i

Cijbi

=

{
0 if j = 1
1 otherwise

.

Multiplying by C to get d = Cc, we get

di =
∑

j

Cij(C
>b)j

= i− 1 .

1The smallest being 0.
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We now need to compute r = Πe⊥d. Since e>d =
(k−1)

√
k

2 , we have

ri = di − V

= i− 1− k − 1

2

=
2i− 1− k

2
= zi .

This concludes the proof.

Lemma 2 (Expectation preserving). Let p be an
arbitrary distribution over a discrete support. Let
ΠA,b(p) the projection of p onto the linear subset
SA,b = {q|Aq = b}. Then, if the first and the last
columns of A are equal, i.e. A1 = Ak, then p and
ΠA,b(p) have the same expectation.

Proof. By definition,

ΠA,b(p) =
arg minq (p− q)>Cλ(p− q)

subject to Aq = b .

Writing ν the Lagrange multipliers, this is a quadratic
program whose solution is given by

[
ΠA,b(p)

ν

]
=

[
Cλ A>

A 0

]−1 [
Cλp
b

]
.

Inverting the block diagonal matrix yields

[
Cλ A>

A 0

]−1

=

[
M11 M12

M21 M22

]

with

M11 = C−1
λ − C−1

λ A>(AC−1
λ A>)−1AC−1

λ

M12 = C−1
λ A>(AC−1

λ A>)−1

M21 = (AC−1
λ A>)−1AC−1

λ

M21 = −(AC−1
λ A>)−1 .

Hence,

ΠA,b(p) = M11Cλp +M12b

= p− C−1
λ A>s

for some s. Thus, the expected Q-value with respect
to the projected distribution is equal to

z>ΠA,b(p) = z>p− z>C−1
λ A>s

and the two expectations will be equal if z>C−1
λ A>s =

0. Using Proposition 1, we know that C−1
λ z = b. Thus,

if it sufficient to have Ab = 0 for the two expectations
to match. Since only the first and the last components
of b are nonzeros and they are opposite of each other,
we have Ab = 0⇔ A1 = Ak when denoting Aj the j-th
column of A. This concludes the proof.

Convergence to a fixed point

This result requires additional definitions. A value
distribution P maps states x ∈ X to distributions
on R; we extend this to vectors defined by a linear
combination of features:

P(x) = Θ>φ(x) ,

where φ(x) ∈ Rm is the feature vector at state x and
Θ ∈ Rm×k is the parameter matrix we try to estimate.

Concatening all feature vectors into a feature ma-
trix Φ ∈ Rn×m, our linear approximation is PΘ :=
ΦΘ ∈ Rn×k. We assume that the vector PΘ(x) ∈ Rk
approximates a distribution over the support z :=
{z1, z2, . . . , zk}, but it may have negative components
and is not necessarily normalized.

We are given a distribution ξ on X and we shall use a
Cramér distance between distributions over z:

l2λ(p,q) := ‖p− q‖2Cλ .

We transform the matrix Cλ into an operator over
continuous distributions, where with some abuse of
notation we view p as a distribution over a finite set
of Diracs: p(y) =

∑
i piδzi=y. Then

Πe⊥p(x) = p(x) −
∫ zk

y=z1

p(y) dy

Πe⊥q(x) = q(x) −
∫ zk

y=z1

q(y) dy

l2λ(p,q) =

∫ zk

x=z1

(∫ x

y=z1

[Πe⊥p(y) − Πe⊥q(y)] dx

)2

dy

+ λ

(∫ zk

y=z1

[p(y) − q(y)] dx

)2

. (10)

The first term on the right-hand side of Eq. (10) penal-
izes the difference in cdf of p and q while the second
term penalizes the difference in mass. When applied
to two distributions p and q over z, this is equivalent
to (p−q)>Cλ(p−q). We define the weighted Cramér
distance over value distributions by

l2ξ,λ(P,Q) :=
∑

x∈X
ξ(x)l2λ(P(x),Q(x)).

In what follows we identify three spaces of distributions
or distribution-like objects. First, P is the space of
distributions with support the interval [z1, zk). D is
the space of distributions over z. Finally, P is the
vector space spanned by the features Φ ∈ Rn×m, that
is: P = {ΦΘ : Θ ∈ Rm×k}.
While our value distribution will only output distribu-
tions over the support z, the distributional Bellman
operator T π transforms distributions over z into distri-
butions from P. We thus need to consider the projection
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Πλ,P which projects P onto D:

Πλ,Dp = arg min
q∈D

l2λ(p,q) .

Lemma 3 from Rowland et al. (2018) states that, for
any distribution p ∈ D, we have

l2λ(p,q) = l2λ(p,Πλ,Dp) + l2λ(Πλ,Dp,q). (11)

We now move from the projection of distributions to the
projection of value distributions. We define a projection
in l2ξ,λ of a value distribution Q onto the subspace V
by

Definition 1. The ξ-weighted projection onto V is

Πξ,λ,VP := arg min
Q∈V

l2ξ,λ(P,Q) ,

where both the projection and the distance are in bold
to distinguish them from projection and distances in
distribution space.

In particular, two projections are of interest. First, we
consider the set of all value distributions from X to
distributions supported by z. The projection onto this
set is

[Πξ,λ,DP](x) = Πλ,DP(x) ,

We are also interested in the ξ-weighted projection onto
Φ, the set of linear value distributions:

Πξ,λ,ΦP := arg min
ΦΘ,Θ∈Rm×k

l2ξ,λ(P,ΘΦ),

The projection Πξ,λ,Φ of the true value distribution Q
gives us the closest linear value distribution according
to the Cramér distance defined by Cλ.

Lemma 5 (Projection onto Φ). Let P be an arbitrary
value distribution supported on P. The ξ-weighted pro-
jection of P onto Φ, Πξ,λ,ΦP, is equal to the ξ-weighted
projection of Πξ,λ,DP.

The above lemma will let us restrict our attention to
distributions on z, that is P ∈ D.

Proof. Fix Q := ΦΘ. By definition, the support of Q
is P. Now

l2ξ,λ(P,Q) =
∑

x∈X
ξ(x)l2λ(P(x),Q(x))

=
∑

x∈X
ξ(x)l2λ(Q(x),Πλ,DP(x))

+
∑

x∈X
ξ(x)l2λ(Πλ,DP(x),P(x))

= l2ξ,λ(Q,Πλ,DP)+
∑

x∈X
ξ(x)l2λ(Πλ,DP(x),P(x)),

using Eq. 11. From the above we deduce that the matrix
Θ which minimizes l2ξ,λ(ΦΘ,P) is also the minimizer

of l2ξ,λ(ΦΘ,Πλ,DP).

Lemma 6 (Πξ,λ,Φ is a non-expansion). Πξ,λ,Φ is a
non-expansion in l2ξ,λ, i.e. for every pair (P,Q) of
value distributions, we have

l2ξ,λ(Πξ,λ,ΦP,Πξ,λ,ΦQ) ≤ l2ξ,λ(P,Q) .

Proof. We can view l2ξ,λ as a weighted L2 norm over

vectors in Rn×k, with Πξ,λ,Φ the corresponding projec-
tion onto the affine subspace spanned by Φ. The result
is standard from these observations.

Recall that the loss l2λ between vectors is defined
through the matrix Cλ = Πe⊥CC

>Πe⊥ + λee>:
l2λ(p,q) = (p− q)>Cλ(p− q) = ‖p− q‖2Cλ . To prove
Theorem 1 we will consider two separate components
of that loss: along e and along the subspace orthogonal
to e. That is, let us write

A := Πe⊥C,

such that

l2λ(p,q) = ‖p− q‖2AA> + λ ‖p− q‖2ee> .

We extend this notation to a ξ-weighted norm over value
distributions. For a matrix B ∈ Rk×k and ∆ ∈ Rn×k
write

‖∆‖2ξ,B =
∑

x∈X
ξ(x) ‖∆(x)‖2B ,

where we associate each state x ∈ X with an integer
in {1, . . . , n}. Then:

l2ξ,λ(P,Q) = ‖P−Q‖2ξ,AA> + λ ‖P−Q‖2ξ,ee> .

Lemma 3. Let ξ be the stationary distribution induced
by the policy π. Write T π ′ := Πλ,DT π to mean the
distributional Bellman operator followed by a projection
onto the support z = z1, . . . , zk. For a matrix B ∈ Rk×k
and ∆ ∈ Rn×k, write

‖∆‖2ξ,B =
∑

x∈X
ξ(x) ‖∆(x)‖2B .

Then for any two value distributions P,Q ∈ Rn×k,

∥∥T π ′P− T π ′Q
∥∥2

ξ,AA>
≤ γ ‖P−Q‖2ξ,AA>

∥∥T π ′P− T π ′Q
∥∥2

ξ,ee>
≤ ‖P−Q‖2ξ,ee> .

where A := Πe⊥C.

Lemma 3 states that the distributional Bellman oper-
ator, applied over distributions in Rn×k, contracts all
dimensions orthogonal to e by a factor γ1/2 but is only
a nonexpansion along e.
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Proof. Let P,Q be two value distributions. To keep
the notation light, without loss of generality let λ = 1.
We begin with the term in ee>:

∥∥T π ′P− T π ′Q
∥∥2

ξ,ee>

=
∑

x∈X
ξ(x)

∥∥T π ′P(x)− T π ′Q(x)
∥∥2

ee>

=
∑

x∈X
ξ(x)

∥∥e>T π ′P(x)− e>T π ′Q(x)
∥∥2
.

The term e>T π ′P(x) measures the total mass at x
(up to a multiplicative constant

√
k), after applying

the distributional Bellman operator T π and projecting
onto the finite support. T πP(x) consists of a mixture
of next-state distributions, shifted by the reward r(x)
and scaled by the discount factor γ. However, neither
of these two operations affects the mass of the distri-
butions. Furthermore, the Cramér projection onto the
support also preserves mass (Rowland et al., 2018).
Hence

e>T π ′P(x) =
∑

x′∈X
Prπ(x′ |x)e>P(x′).

And therefore
∑

x∈X
ξ(x)

∥∥T π ′P(x)− T π ′Q(x)
∥∥2

ee>

=
∑

x∈X
ξ(x)

(∑

x′∈X
Prπ(x′ |x)e>P(x′)−

Prπ(x′ |x)e>Q(x′)
)2

=
∑

x∈X
ξ(x)

(∑

x′∈X
Prπ(x′ |x)e>(P(x′)−Q(x′))

)2

.

Now, by Jensen’s inequality and the fact that ξ(x′) =∑
x ξ(x) Prπ(x′ |x),

∑

x∈X
ξ(x)

( ∑

x′∈X
Prπ(x′ |x)e>(P(x′)−Q(x′))

)2

≤
∑

x∈X
ξ(x)

∑

x′∈X
Prπ(x′ |x)(e>(P(x′)−Q(x′)))2

=
∑

x′∈X
ξ(x′) Prπ(x′ |x)(e>(P(x′)−Q(x′)))2

= ‖P−Q‖2ξ,ee> .

This proves the second statement. For the first, notice
that we can add any constant vector α(x)e to the
distribution at each state, without changing the AA>-
distance between them:
∥∥T π ′P− T π ′Q

∥∥2

ξ,AA>
=
∥∥T π ′(P + αe)− T π ′Q

∥∥2

ξ,AA>
.

In particular, we can choose αe so that the two value
distributions have equal mass at all states (and in fact,

sum to 1 at all states, by also changing Q). In turn
we can modify results by Bellemare et al. (2017b) and
Rowland et al. (2018) showing that the distributional
Bellman operator, projected onto a finite support or
not, is a γ1/2 contraction in Cramér metric, extending
it as above to deal with the ξ-weighted norm rather
than the maximal norm. We conclude that

∥∥T π ′P− T π ′Q
∥∥2

ξ,AA>
≤ γ ‖P−Q‖2ξ,AA> .

Theorem 1 (Convergence of the projected distribu-
tional Bellman process). Let ξ be the stationary distri-
bution induced by the policy π. The process

P0 := ΦΘ0 , Pk+1 := Π̂ξ,λ,ΦT πPk.

converges to a set S such that for any two P,P′ ∈ S,
there is a X -indexed vector of constants α such that

P(x) = P′(x) + α(x)e.

If λ > 0, S consists of a single point P̃ which is the
fixed point of the process. Furthermore, we can bound
the error of this fixed point with respect to the true
value distribution Pπ:

l2ξ,λ(P̃,Pπ) ≤ 1

1− γ l
2
ξ,λ(Πξ,λ,ΦPπ,Pπ)

− γλ

1− γ
∥∥P̃−Pπ

∥∥2

ξ,ee>
,

where the second term measures the difference in mass
between P̃ and Pπ.

Proof (Sketch). To prove the theorem, we cannot make
direct use of the usual techniques e.g. from Tsitsiklis
& Van Roy (1997). First, the operator Π̂ξ,λ,Φ is not
a projection operator when λ > 0, because of the
normalization term λ(q>e− 1)2 (Equation 9). Second,
the Bellman operator is not a contraction when applied
to distributions with varying mass.

Let us consider two process Pk+1 = Π̂ξ,λ,ΦT πPk and

Qk = Π̂ξ,λ,ΦT πQk, possibly with different initial con-
ditions. We make use of the following fact:

Π̂ξ,λ,ΦT πP = Πξ,λ,ΦT̃ πP,

where T̃ πP = Πe⊥T πP+ e√
k

is a modification of the dis-

tributional Bellman operator which “resets” the mass
of the resulting distribution to 1 by adding the appro-
priate constant vector (recall e = [1/

√
k, . . . , 1/

√
k]>).

We use this fact to measure how the two processes
evolve under the norm ‖·‖ξ,Cλ :
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‖Pk+1 −Qk+1‖2ξ,Cλ =

=
∥∥∥Π̂ξ,λ,ΦT πPk − Π̂ξ,λ,ΦT πQk

∥∥∥
2

ξ,Cλ

=
∥∥∥Πξ,λ,ΦT̃ πPk −Πξ,λ,ΦT̃ πQk

∥∥∥
2

ξ,Cλ

≤
∥∥∥T̃ πPk − T̃ πQk

∥∥∥
2

ξ,Cλ

=
∥∥∥T̃ πPk − T̃ πQk

∥∥∥
2

ξ,AA>
+
∥∥∥T̃ πPk − T̃ πQk

∥∥∥
2

ξ,ee>

= ‖T πPk − T πQk‖2ξ,AA> + ‖T πPk − T πQk‖2ξ,ee> ,

where the last line follows from the fact that the addi-
tion of the constant e/

√
k does not impact either term.

Furthermore,

∥∥∥T̃ πPk − T̃ πQk

∥∥∥
2

ξ,ee>
= ‖Πe⊥Pk −Πe⊥Qk‖2ξ,ee>

= 0.

It follows from Lemma 3 that

‖Pk+1 −Qk+1‖2ξ,Cλ ≤
∥∥∥T̃ πPk − T̃ πQk

∥∥∥
2

ξ,AA>

≤ γ ‖Pk −Qk‖2ξ,AA>
≤ γ ‖Pk −Qk‖2ξ,Cλ .

Now if λ > 0, the norm ‖·‖ξ,Cλ is a true norm and

‖Pk −Qk‖2ξ,Cλ → 0 =⇒ Pk,Qk → P̃.

When λ = 0 we have no guarantees on what happens to
the e component of either Pk or Qk, and we can only
say that Pk (resp., Qk) converges to a set S whose
elements differ by a constant component.

Using a variation on a standard argument (Tsitsiklis
& Van Roy, 1997), we now write (in ξ-weighted norm)

l2ξ,λ(P̃,Pπ) = l2ξ,λ(Π̂ξ,λ,ΦT πP̃,Pπ)

(By definition of P̃)

= l2ξ,λ(Πξ,λ,ΦT̃ πP̃,Pπ)

= l2ξ,λ(Πξ,λ,ΦT̃ πP̃,Πξ,λ,ΦPπ)

+ l2ξ,λ(Πξ,λ,ΦPπ,Pπ)

(Using Eq. (11))

= l2ξ,λ(Πξ,λ,ΦT̃ πP̃,Πξ,λ,ΦT πPπ)

+ l2ξ,λ(Πξ,λ,ΦPπ,Pπ)

(Pπ is the fixed point of T π)

≤ l2ξ,λ(T̃ πP̃, T πPπ) + l2ξ,λ(Πξ,λ,ΦPπ,Pπ).

We now focus on the first term. Unlike Tsitsiklis &
Van Roy (1997)’s argument, we are faced here with two

different operators: T̃ π and T π. We write

l2ξ,λ(T̃ πP̃, T πPπ) =
∥∥∥T̃ πP̃− T πPπ

∥∥∥
2

ξ,Cλ

=
∥∥∥T̃ πP̃− T πPπ

∥∥∥
2

ξ,AA>

+ λ
∥∥∥T̃ πP̃− T πPπ

∥∥∥
2

ξ,ee>
.

Because T̃ π “resets” the distribution’s mass to 1, the
second term is zero. Similarly,
∥∥∥T̃ πP̃− T πPπ

∥∥∥
2

ξ,AA>
=
∥∥∥T πP̃− T πPπ

∥∥∥
2

ξ,AA>

≤ γ
∥∥∥P̃−Pπ

∥∥∥
2

ξ,AA>

= γ
∥∥∥P̃−Pπ

∥∥∥
2

ξ,Cλ

− γλ
∥∥∥P̃−Pπ

∥∥∥
2

ξ,ee>
.

Expanding the first inequality repeatedly, we put ev-
erything together and find that

l2ξ,λ(P̃,Pπ) ≤ 1

1− γ ‖Πξ,λ,ΦPπ −Pπ‖2ξ,Cλ

− γλ

1− γ
∥∥∥P̃−Pπ

∥∥∥
2

ξ,ee>
.

Corollary 1. Under the same conditions as those used
by Tsitsiklis & Van Roy (1997), the stochastic update
process where one samples x ∼ ξ and updates the pa-
rameter Θ according to

Θk+1 ← Θk + αk∇Θl
2
λ(T̂ πPk(x),Pk(x)) ,

where T̂ π is the random operator derived from a sample
transition (x, r, x′), also converges.

To prove Theorem 2, we will need the following result:

Lemma 7 (Ratio of operators). Let M be a self-adjoint
linear operator and N be a self-adjoint, invertible linear
operator. Then

sup
f

< f,Mf >

< f,Nf >
= ρ

(
N−1/2MN−1/2

)
,

where ρ(·) denotes the spectral radius of its argument.

Proof. Denoting g = N1/2f , we have

f = N−1/2g

< f,Mf >

< f,Nf >
=
< N−1/2g,MN−1/2g >

< g, g >

=
< g,N−1/2MN−1/2g >

< g, g >
.

Taking the supremum over g gives the desired result.
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Theorem 2 (Error bound for the expected value).
Let ‖·‖ξ be the ξ-weighted norm over value functions.

The squared expectation error of the fixed point P̃ with
respect to the true value function V π is bounded as

‖EP̃ z− V π‖2
ξ
≤ ‖C−1/2

λ z‖2l2ξ,λ(P̃,Pπ).

Proof.

‖EP̃ z− V π‖2
ξ

=

=
∑

x∈X
ξ(x)〈P̃(x)−Pπ(x), zz∗

(
P̃(x)−Pπ(x)

)
〉

=
∑

x∈X
ξ(x)〈P̃(x)−Pπ(x), Cλ

(
P̃(x)−Pπ(x)

)
〉

× 〈P̃(x)−Pπ(x), zz∗
(
P̃(x)−Pπ(x)

)
〉

〈P̃(x)−Pπ(x), Cλ
(
P̃(x)−Pπ(x)

)
〉

≤
∑

x∈X
ξ(x)〈P̃(x)−Pπ(x), Cλ

(
P̃(x)−Pπ(x)

)
〉

×max
f

〈f, zz∗f〉
〈f, Cλf〉

(a)
=
∑

x∈X
ξ(x)〈P̃(x)−Pπ(x), Cλ

(
P̃(x)−Pπ(x)

)
〉

× ‖C−1/2
λ z‖2

= ‖C−1/2
λ z‖2l2ξ,λ(Ππ

ξ,λ,Φ,P
π)

where the step a) uses Lemma 7 and the fact that
A−1/2zz∗A−1/2 is a rank one operator.

A Experimental Details

Our S51 implementation is based on the C51 code from
the Dopamine framework Castro et al. (2018), with
only minor modifications to account for the new loss.
Specifically, we

1. Remove the softmax transfer function mapping log-
its to probabilities; our network’s outputs o(x, a)
are directly used as “probabilities”;

2. Select actions according to the maximum predicted
“expectation”, which is z>o(x, a), where z is a 51-
dimensional vector whose entries are uniformly
spaced within [−10, 10];

3. Replace the cross-entropy loss by the modified
squared loss defined in Equation 9.

For C51, we used the hyperparameters provided by
Bellemare et al. (2017a). We optimized the hyper-
parameters for S51 over the same range as used in
that paper, and found that a smaller step size (α =
2.5× 10−5, vs. 2.5× 10−4 for C51) and optimizer ep-
silon (εopt = 3.125× 10−5, vs 3.125× 10−4) performed

best. The parameter λ = 10 was selected from a hy-
perparameter sweep (λ ∈ {0, 0.25, 1, 10, 20, 100}); we
found the method to perform reasonably the same for
a broad range of λ values, but note that λ = 0 yielded
worse performance. In both cases, the training epsilon
was set to ε = 0.05, and lives lost were counted as the
end of an episode.

games video url
Asterix https://youtu.be/hk4sYkx-VuQ

Breakout https://youtu.be/POWvu9-2m6E

Pong https://youtu.be/f63K_peZ6uE

Seaquest https://youtu.be/lbySDvtAmPo

Space Invaders https://youtu.be/dMvN9gmAy7E

Figure 3: Links to videos of the S51 value distributions
after training.


