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Abstract

Survival models derived from health care data
are an important support to inform critical
screening and therapeutic decisions. Most
models however, do not generalize to popu-
lations outside the marginal and conditional
distribution assumptions for which they were
derived. This presents a significant barrier to
the deployment of machine learning techniques
into wider clinical practice as most medical
studies are data scarce, especially for the anal-
ysis of time-to-event outcomes. In this work
we propose a survival prediction model that
is able to improve predictions on a small data
domain of interest - such as a local hospital
- by leveraging related data from other do-
mains - such as data from other hospitals. We
construct an ensemble of weak survival pre-
dictors which iteratively adapt the marginal
distributions of the source and target data
such that similar source patients contribute
to the fit and ultimately improve predictions
on target patients of interest. This represents
the first boosting-based transfer learning algo-
rithm in the survival analysis literature. We
demonstrate the performance and utility of
our algorithm on synthetic and real healthcare
data collected at various locations.

1 Introduction

Survival models characterize the probability of event
occurrence over time. Understanding risk of disease or
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death, and how they vary with time, is important to
assist clinicians in their treatment policies and disease
diagnosis. Crucially to be useful in practice these mod-
els need to perform well on each intended hospital or
patient population, but often individual centers lack the
data to train complex models for their patients. As an
example, NHS hospitals in the UK have on average 89
beds per hospital1 - which for rare diseases can lead to
fewer than 50 registered outcomes of interest per year.
This problem is exacerbated in survival settings since
the time of death or disease onset may be unobserved
for many patients - these are called censored patients.
Transferring patient data from similar domains is useful
in such settings, but special care needs to be taken such
as to ensure that it results on reliable predictions on
the target domain (Wainberg et al., 2018).

Patient characteristics are governed by a joint distri-
bution p(X,T ), where patient features X take values
in a space X and T ∈ R+ represents a patient’s time
to event. Using data from source domains different
from a target domain presents major challenges be-
cause differences may occur (1) in the actual variables
observed - Xso 6= Xta - (which we refer to as hetero-
geneous domains) and (2) in their joint distribution -
p(Xso, Tso) 6= p(Xta, Tta). Hospitals for instance often
have different standards of data recording, measure-
ments taken for our target population of patients might
not all be available in a different hospital population
even though they might overlap substantially and be
useful to use. Patients also tend to be highly hetero-
geneous, survival dynamics and covariate relationship
cannot be expected to be alike across diseases or lo-
cations for example, that is joint distributions might
differ. To the best of our knowledge, in this work we
present the first transfer learning method for survival
data that overcomes both these challenges.

Our proposed approach intends to provide a new charac-

1www.kingsfund.org.uk/publications/nhs-hospital-bed-
numbers



Boosting Transfer Learning with Survival Data from Heterogeneous Domains

terization of boosting algorithms in a transfer learning
scenario (Dai et al., 2007; Pardoe and Stone, 2010) that
effectively extends this family to time-to-event data
from multiple sources that may have feature mismatch.
To enable this, we define weak nonparametric survival
trees that learn a shared representation between related
domains that implicitly corrects for marginal distribu-
tion differences such as to improve predictions on the
target population over successive iterations via instance
boosting. To correct for feature mismatch the space
of splitting rules of trees is expanded to include ”miss-
ingness” of a variable itself as a valid splitting rule, in
this way even source patients with only overlapping
feature spaces can be used in the tree construction if
they are considered to improve the fit. The proposed
boosting process filters those source patients consid-
ered to favourably impact predictions and increase the
predictive power over using the target data only. An
important distinction of this approach to classification
and regression algorithms relates to the error measure
used to evaluate survival predictions of individual learn-
ers on an instance-basis; these need to accommodate
for censoring and different prediction horizons.

1.1 Related work

The problem we consider is that of learning survival
distributions from censored data by leveraging auxiliary
data from heterogeneous domains with no assumptions
on their joint distributional properties. Our goal is
to improve prediction performance on the target data
only.

Knowledge transfer is a rich field, our work touches on
heterogeneous transfer learning, instance-based transfer
learning and survival analysis. However, our prob-
lem differs in ways that make most of the existing
approaches not directly applicable to our problem.

Heterogeneous transfer learning attempts to uti-
lize domains with different feature spaces, but most
often from a domain adaptation perspective, that is,
they estimate a latent domain representation close in
distribution to the target domain with the objective
of augmenting the number of target examples. (Yoon,
Jordon, and van der Schaar, 2018) is a recent exam-
ple of this approach. Closer to our work is (Wiens,
Guttag, and Horvitz, 2014). Like us, they attempt to
improve predictions in a given hospital using potentially
useful information from patients in different hospitals,
but crucially do not account for distribution mismatch
which will render the model biased if distributions differ.
A key difference with the above is that none of them
consider learning from censored data and acknowledge
difficulties when the target data is small - which is
precisely the strength of the proposed approach.

Instance-based transfer learning methods re-
weight individual examples as a mechanism to correct
for distributional differences. Because of the heterogene-
ity in modern datasets subgroups or even individuals
in auxiliary datasets may be close in distribution to
a target population while other source individuals are
not. This idea motivated the design of our algorithm
and has found particular success in boosting-based ap-
proaches. Our method is closest to the work of (Dai et
al., 2007); the authors developed a classification transfer
algorithm that iteratively combines weighted instances
from auxiliary and target data to enable transfer learn-
ing. Boosting survival predictions however, requires a
new definition of how to measure error on an individual
basis (Bellot and van der Schaar, 2018) that appropri-
ately considers censored patients. Moreover (Dai et al.,
2007) (and also posterior extensions such as Pardoe
and Stone (2010); Yao and Doretto (2010)) assume
equal feature spaces. In this manner, we consider our
work to be an extension to boosting methods for trans-
fer learning for survival analysis from heterogeneous
domains.

Within the survival analysis literature, to the best of
our knowledge the only method that attempts transfer
learning was recently proposed in (Li et al., 2016). They
proposed an extension to Cox model; a linear model
that assumes proportionality of hazards, which means
that the relative rate of mortality between two patients
stays constant over time. As a practical consequence, if
with respect to a given patient survival probabilities of
another patient are higher at one point in time it will
be higher for all times, which is often not realistic to
assume. Other important distinctions to our approach
is that we allow for heterogeneous domains and make
no assumptions on the data generating process. Mul-
titask learning methods have been used for survival
analysis and are often associated with transfer learning
(Caruana, 1997), but their underlying objective is to
discover a common representation among multiple tasks
in order to improve generalization ability on all tasks.
Critically this assumes a common data distribution for
the whole population and requires a uniform feature
space, which makes them biased in our context.

2 Problem Description

We use medicine as a running example but the method
and analysis we introduce are more general and apply to
fields of study such as reliability analysis in engineering
and economics.

A domain D consists of a feature space X - such as for
example Rd - and a marginal probability distribution
p(X), where X ∈ X . Xi describes an individual pa-
tient i and Ti ∈ R+ defines the time to the event of
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interest. We use subscripts so and ta to denote source
and target domains respectively. Differing domains
in realistic applications will often result in heteroge-
neous feature spaces Xso 6= Xta; different marginal
distributions pso(X) 6= pta(X) or different conditional
distributions pso(T |X) 6= pta(T |X). In medicine the
interpretation of time to event T might coincide for dif-
ferent tasks, for example time from cancer diagnosis to
death in different hospitals, or not, for example time to
cancer onset versus time to cardiovascular disease onset.
In addition, patients being followed in a medical study
may drop-out resulting in a potential event being unob-
served, C represents this censoring time. We define a
variable δ = I(T < C) that indicates the type of event
observed and assumed independent of X. For a specific
domain, a time-to-event dataset is assumed to be drawn
i.i.d from the random tuple (X, δT + (1− δ)C, δ).

Our goal is to estimate the survival function S for target
patients which represents the probability of event oc-
currence after time t as a function of patient covariates
X and time t,

S(t|X) = P(T > t|X) (1)

given labeled data from source and target domains.
The objective is to improve survival predictions with
the potentially useful information gained from a source
domain.

3 Survival Transfer Algorithm

This section discusses our main contribution: a boosting
algorithm for predicting time to event distributions in
data scarce situations for which data from related tasks
is available. We call our method TSB, short for Transfer
Survival Boosting.

3.1 Weak Predictors

Weak predictors are trees composed of leaves and nodes.
Leaves define a partition for the data and are responsi-
ble for making predictions and nodes guide examples
towards appropriate leaves using binary splits based on
boolean-valued rules.

Splitting on different feature spaces - We define
a binary recursive partitioning scheme such that every
node splits the whole population - both source and
target - into homogeneous subsets with similar survival
behaviour. Homogeneity is measured with the reduc-
tion in model deviance - a measure of goodness of fit -
assuming an exponential model in each node (LeBlanc
and Crowley, 1992). In other words, we choose the
split that maximizes the likelihood ratio statistic that
compares the likelihood of the resulting split with the

likelihood of the original population. A variable pro-
posed to split a given node might not be observed for
all patients. For these patients three natural splitting
procedures are proposed: (1) Patients with the consid-
ered variable missing are sent to the left child node, (2)
Patients with the considered variable missing are sent
to the right child node or (3) ’missingness’ itself is used
to partition the population.

Survival Predictions - Predictions in each leaf of
the resulting tree are made with the Kaplan-Meier
estimator. Let Cj denote the index set of patients with
terminal node j, we compute survival predictions in the
terminal node j with the Kaplan-Meier estimator,

ĥj(t) =
∏

i∈Cj :ti≤t

(
1− Nj(ti)

Yj(ti)

)
(2)

where Nj(ti) is the number of events at time ti in termi-
nal node j and Yj(ti) is the total number of individuals
at risk at time just before ti in terminal node j. Leaf
nodes define the survival function for the tree,

ĥ(t;xi) =
∑
j

I(i ∈ Cj)ĥj(t) (3)

We note that in none of the steps described above
assumptions are being made on the data generating
process. Most survival models in turn assume acceler-
ated failure times or proportional hazards which can
be limiting if patient populations are complex and het-
erogeneous.

3.2 Ensemble Construction

Many patient populations that we are interested in
describing to improve day to day care are of small
size. To enable transfer learning we would like part of
the auxiliary populations - those that are most similar
to our target patients - to play a role in the ensemble
construction. The aim of our boosting architecture is to
filter out those patients that are most dissimilar to our
target population - and thus induce negative transfer
- while incorporating those that are most similar and
thus help target predictions. Figure 1 shows intuitively
how this process can benefit the resulting overall fit.

Individual errors - Boosting architectures define a
re-weighting scheme that encourages the algorithm to
focus on those instances of interest that are being
mis-predicted in the data to improve the fit overall.
Mis-predictions in the survival setting are not well de-
fined since a comparison has to be made between an
estimated survival distribution and the observed event-
time (or censoring time), in contrast to classification
or regression approaches. We generalize existing imple-
mentations by considering a consistent error measure
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Figure 1: Transfer learning through instance boosting.
The upper panel shows predictions of our algorithm
without using auxiliary datasets while in the bottom
panel our algorithm leverages those instances from re-
lated datasets that improve the fit on our target task
(those are assigned higher weight - larger symbols), re-
sulting in more accurate predictions. For simplicity of
exposition we have ignored censoring and only show ex-
pected event times (rather than full predicted survival
distributions).

for data subject to censoring and extend this to capture
the full time horizon. On a per instance basis, we use
the integrated brier score, a variant of the mean squared
error adapted to the survival setting and integrated to
capture all future time horizons.

1

τ

∫ τ

0

E(T,X)∼pta

[(
I(T > t)− ĥ(t;X)

)2]
dt (4)

I stands for the indicator function and τ is defined as
the maximum observed event time. Note that the ex-
pectation is taken with respect to the target population
only. We approximate equation (4) by a consistent esti-
mate and define individual errors of each weak predictor
using a threshold φ (estimated by cross-validation) as
follows,

Oi := δiTi + (1− δi)Ci

ei := I

(
1

τ

∫ τ

0

Ŵi(t)
(
I(Oi > t)− ĥ(t;xi)

)2
dt > φ

)
(5)

τ is the maximum observed event time and Oi refers
to the observed time of patient i. For censored pa-
tients (δi = 0), the time to the event of interest will

be unobserved and thus we approximate the integrand
in equation (4) using inverse probability of censoring
weights at each time t, Ŵi(t) (Mogensen, Ishwaran,
and Gerds, 2012) which - assuming they are estimated
consistently - ensure our estimator is consistent with
the underlying Brier Score.

Ŵi(t) =
(1− I(Ti > t))δi

Ĝ(Ti)
+
I(Ti > t)

Ĝ(t)
(6)

Ĝ is an estimate of the censoring distribution.

Algorithm 1

Input: Target survival data Dta of size nta, source
survival data Dso of size nso, number of iterations

M , initial weights w
(1)
i ∝ 1, sampling fraction s

(threshold φ is selected by cross-validation).

for m = 1 to M do

1. Let D be a randomly sampled fraction s of the
combined data {Dta,Dso} with distribution w(m)

(a vector of size nta + nso).
2. Learn hypothesis h(m) : X × T → [0, 1] on D.

3. Calculate prediction error e
(m)
i for each instance

i = 1, ..., nta + nso with equation (5).
4. Calculate adjusted error of h(m) on the target

population, ε(m) =
∑nta

i=1 e
(m)
i w

(m)
i .

5. Calculate confidence in individual hypothesis

β
(m)
T = ε(m)

1−ε(m) :
6. Update data distribution

w
(m+1)
i ∝{

w
(m)
i (β

(m)
T )−e

(m)
i , i = 1, ..., nta

w
(m)
i (β

(m)
S )e

(m)
i , i = nta + 1, ..., nta + nso

.

where β
(m)
S is chosen such that∑nta+nso

i=nta+1 w
(m)
i /

∑nta+nso

i=1 w
(m)
i =

nso

nso+nta

(
1− mnta

2Mnso

)
end for

Output: Final hypothesis hf , the weighted median

of h(m) for dM/2e ≤ m ≤ M using log(1/β
(m)
T ) as

the weight of hypothesis h(m).

Learning to Transfer - A sequence of successive weak
survival predictors form the building blocks of our learn-
ing algorithm. We give a formal description of our
method in Algorithm 1. In a given iteration, a weak
survival predictor is trained on a weighted sample of a
combination of source and target data; such as (1) to
improve survival predictions of correctly predicted pa-
tients from the target data - similarly to conventional
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boosting algorithms - while also; (2) increasing the
influence of correctly predicted source data patients -
intuitively those are most similar to our target patients
- and decreasing the influence of incorrectly predicted
source data patients - those are most dis-similar to
our target patients. The magnitude of these updates
is given by βS and βT for the source and target data
respectively.

This idea was also used in classification and regression
transfer algorithms in (Dai et al., 2007) and (Pardoe and
Stone, 2010). However as discussed in (Al-Stouhi and
Reddy, 2011), previous boosting algorithms such as (Dai
et al., 2007) although provably optimal, in practice even
source instances that are representative of the target
population tend to have their weights reduced quickly
and erratically such that they become irrelevant and no
longer influence the combined output. The error scheme
of (Dai et al., 2007) fixes βS = 1/(1−

√
2 log(ns/M)).

We opt instead for an adjusted error scheme based
on experimental approximation similarly to (Pardoe
and Stone, 2010). βS is selected such that the sum of
source weights smoothly decreases to 1/2×nta/nso over
successive iterations, we found this to balance target
and source influence well in experimental settings.

A decomposition of the mean squared error suggests
improved performance with uncorrelated weak predic-
tors, which we encourage by randomly sub-sampling
the data before training each weak predictor (see step
1. in Algorithm 1 and derivation in the Supplementary
material).

Finally, survival predictions on the target data ĥf result
from a weighted median of the predictions of individual
weak survival predictors ĥ(m), weighted by log(1/β(m))
which can be thought of as a measure of confidence
in ĥ(m) since higher log(1/β(m)) implies higher overall

predictive performance of ĥ(m) on the target population.

ĥf (t;xi) :=

median({log(1/β
(m)
T )ĥ(m)(t;xi)}Mm=dM/2e) (7)

3.3 Discussion on Convergence Guarantees

The desirable convergence properties of Adaboost (Fre-
und and Schapire, 1995; Dai et al., 2007) on the pre-
diction error on the target population can be shown to
hold in our setting, albeit with a modification of our
algorithm and a more careful interpretation of what it
means to make errors in survival predictions.

The binary error measure in equation (5) maps the
survival prediction error into {0, 1} - incorrect/correct
outcomes - to be interpreted as to whether prediction
agree within φ of the true outcome where agreement
is measured with equation (4). The key intuition to

ensure the error bound of Adaboost in the survival
setting is that our final hypothesis ĥf (in the form of a
weighted median) ”φ-disagrees” on a patient i with its
true outcome only if more than (weighted) half of the
learned weak predictors ”φ-disagree”, then combining
a large number of predictors (assumed weak learners)
exponentially decreases the training error. This obser-
vation is used analogously in the original derivation
of the error bound in Freund and Schapire (1995) for
classification with the concept of majority voting.

(Dai et al., 2007) leveraged this result in the context
of transfer learning for classification to simultaneously
minimize the error on source and target populations. By
instead using the error scheme of (Dai et al., 2007) that
fixes βS = 1/(1−

√
2 log(ns/M)) and using the full data

in every iteration; a straightforward modification of the
convergence results in (Dai et al., 2007) apply to our
setting and are given in the Supplementary material.

4 Experiments

4.1 Prediction Performance Evaluation

We measure performance with a common metric used in
the literature: the (time-dependent) concordance index
(C-index) defined as follows (Wolbers et al., 2014):

C(t) := P(Ŝi(t) > Ŝj(t)|δi = 1, t ≤ Tj , Ti > Tj) (8)

where Ŝi(t) is the predicted survival probability be-
yond time t for a test patient i. The time-dependent
C-index as defined above corresponds to the probabil-
ity that predicted survival probabilities are ranked in
accordance to the actual observed survival times given
the occurrence of an event. The C-index thus serves
as a measure of the discriminative power of a model
and can be interpreted as an extension of the AUROC
for censored data. Random guessing corresponds to a
C-index of 0.5 and perfect prediction to a C-index of 1.
On all experiments the C-index is computed only for
patients in the target population.

4.2 Synthetic Experiments

In this paper, we address the distributional differences
take place in the marginal p(x) and in the conditional
distributions p(t|x). In the following subsections we
analyze the extent to which transfer learning is benefi-
cial by varying the similarity in the source and target
domain distributions.

Scenario description - 10 covariates are drawn from
a uniform distribution U(−1.5.2.5) with the first 5 co-
variates influencing survival through the following asso-
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Figure 2: Performance on synthetic data experiments as a function of marginal and conditional distribution
similarities.

ciation rule:

Λ(x;a) :=10a1x1(x1 − 1)(x1 + 1)(x1 − 2)

+ 5a2x
2
2 − 2a3 log(x3 + 3)− a4(x4 − 1)2

then T |a ∼ N (100 + Λ(X;a), 10), and censoring is im-
posed on 20% of the population by drawing C ∼ U(0, T ).
By varying the proportion of samples with covariates
in a specific interval L ⊂ (−1.5, 2.5) we control the
amount of overlap between source and target marginal
feature distributions while the ai’s govern the under-
lying relationships between features and time-to-event
conditional distribution. In all experiments a target
population of 100 instances is generated by restricting
covariates to lie in the interval L = (−1, 1) and each ai
to be equal to 1; we set the number of source instances
to 1, 000 but vary their marginal and conditional dis-
tributions as detailed below. Performance is computed
on a held out target dataset of 10, 000 patients.

Baselines - We compare TSB with conventional sur-
vival models: (1) trained using both the source and
target data, and (2) trained solely on the target data.
We evaluate the original Cox proportional hazard model
(Cox, 1972) which serves as a semi-parametric alterna-
tive that is expected to perform well when the under-
lying variable interactions are linear and the hazard
is unspecified. Next, we implement the boosting algo-
rithm for survival data in (Bellot and van der Schaar,
2018). This method is relevant because like ours they do
not make assumptions on the data generating process
and use a boosting scheme to improve survival predic-
tions over time; the comparison thus shows the extent
to which transfer learning influences performance. In all
experiments the tree-depth of TSB is set to 3 and 250
boosting iterations, while hyperparameter settings of all
competing algorithms are set to default specifications.

Performance as p(x) varies - We investigate the
influence of marginal feature differences as follows. A

proportion δ of source patients have their covariates
generated uniformly in the interval (−1, 1) - just as
target patients - while the remaining (1 − δ) portion
of source patients have their covariates generated uni-
formly in (−1.5,−1) ∪ (1, 2.5). δ in this way controls
the overlap in these patients populations. Performance
results computed with the C-index are given in the up-
per panel of Figure 2. TSB’s main contribution occurs
on data with a moderate degree of feature distribution
overlap, in the more extreme cases of little overlap,
algorithms using only the target slightly outperform
TSB, as would be expected since very little knowledge
is to be transferred from auxiliary patients. The same
logic holds for the case of large overlap.

Performance as p(t|x) varies - Transfer learning
should be possible even if the underlying survival re-
lationship mildly differs among different populations.
For example, such a situation is to be expected in pa-
tient cohorts at risk of related diseases. We generate
synthetic data to mimic this behaviour by drawing the
ai’s from N (1, 0.1d) while the marginal feature distri-
butions are set to be equal for both source and target.
Larger values of d will result in larger survival difference
between source and target populations - recall that for
the target population the ai’s are equal to 1. The lower
panel of Figure 2 gives performance as a function of d.
For d = 0 source and target populations are equal in
distributions, it is natural thus for conventional survival
models to outperform. For increasing values of d the
gain of TSB becomes apparent as the competing meth-
ods are not designed for transfer. d = 20 corresponds
to the extreme case of no relationship between source
and target survival patterns, using the target data only
gives better performance.

Notice that on both panels on Figure 2 performance
of ”target only” methods stays the same in all experi-
ments as only the source population is modified in each
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Models DIAMO DIG ECHOS Euro IN-CH

Cox (Target) 0.609± 0.01 0.585± 0.02 0.603± 0.02 0.500± 0.02 0.579± 0.01

SurvBoost (Target) 0.593± 0.01 0.609± 0.02 0.621± 0.02 0.562± 0.02 0.619± 0.02

Cox (All) 0.619± 0.01 0.621± 0.01 0.617± 0.01 0.640± 0.01 0.649± 0.01

SurvBoost (All) 0.610± 0.01 0.600± 0.01 0.639± 0.01 0.637± 0.02 0.643± 0.01

DiscoGAN 0.552± 0.02 0.550± 0.03 0.590± 0.02 0.577± 0.02 0.587± 0.02

Multitask RSF 0.620± 0.01 0.618± 0.01 0.648± 0.02 0.648± 0.01 0.661± 0.01

TSB 0.638± 0.01 0.612± 0.03 0.666± 0.01 0.677± 0.01 0.686± 0.01

Table 1: C-index figures (higher better) and standard deviations on MAGGIC data studies.

experiment.

4.3 Real Data Experiments

This section investigates MAGGIC (Pocock et al., 2012),
a collection of real datasets from 30 different medical
studies containing patients that experienced heart fail-
ure. The question of how to transfer medically relevant
information across patients in different studies is impor-
tant as many of them contain fewer than 100 patients.

Data description - Each study contains a number
of patients ranging from as little as 66 to 8438. We
consider the 5 studies with highest amount of patients
which we subsample to 100 patients for training and the
rest for testing, we repeat this process 5 times to give
a measure of uncertainty around mean performance.
For patients in each one of the selected studies our aim
is to improve survival predictions using data from the
remaining 4 studies. On average 22 variables overlap
in the considered datasets, with the highest number
of observed variables in a single dataset being 30
variables - these correspond to demographics, lab tests,
co-morbidities and medications. 32% of all patients
died while the rest were censored before death time.
Study-specific data statistics and an analysis of all
remaining studies within MAGGIC are given in the
Supplementary material.

Algorithms for performance comparison - In or-
der to evaluate competing algorithms that do not ac-
count for heterogeneous feature spaces we restrict the
input for these methods to overlapping features. We
compared performance with the multitask algorithm
Random Survival Forest (Ishwaran et al., 2008), origi-
nally designed for competing risks. A relevant compar-
ison can be also made with the unsupervised domain
translation GAN in (Kim et al., 2017). We proceed by
adapting the feature distribution of source data to the
target domain and predict with a Cox model on the
augmented data. Target only and combined source and
target algorithms implemented in the synthetic data

experiments are also included for comparison on real
data. In all experiments the tree-depth of TSB is set
to 3 and 250 boosting iterations, while hyperparameter
settings of all competing algorithms are set to default
specifications.

4.3.1 Discussion of Performance

As can be seen in Table 1 mean performance of TSB
is highest in comparison to all other methods in all
but one study. Methods using source data in combina-
tion with target data outperform target only methods,
in this case even indiscriminately including auxiliary
patients improves the fit as the low number of target
patients does not allow for reliable predictions using
only this set. Among these methods we observe that
the more flexible boosting algorithm provides little (if
any) benefit over Cox which suggests that the underly-
ing feature interactions are likely close to linear, this
is in contrast to the performance pattern observed in
the synthetic experiment. Multitask Random Forest
is able to successfully leverage the shared relationship
between the studies which is effective is most cases
but its performance lags because it does not directly
consider shifts in distributions.

Because of the low number of target examples the un-
supervised GAN model - DiscoGAN - is unable to
effectively translate the source distribution and under-
performs in all cases.

4.3.2 Source of Gain

Number of target patients - We selected the study
DIAMO to illustrate the influence of the number of tar-
get patients on predictive performance. We randomly
subsample DIAMO increasing the number of training
instances from 50 to 1000, with the remaining patients
being used for testing. As can be seen in Table 2 the
main contribution of TSB occurs when fewer than 200
target patients are available. This performance gain
becomes marginal beyond that point as conventional
supervised learning are appropriately powered for the



Boosting Transfer Learning with Survival Data from Heterogeneous Domains

complexity of the data.

# Target
patients

SurvBoost
(Target)

TSB

50 0.541± 0.08 0.610± 0.06

100 0.582± 0.08 0.635± 0.07

200 0.628± 0.06 0.649± 0.05

300 0.540± 0.06 0.652± 0.05

500 0.663± 0.04 0.650± 0.04

1000 0.668± 0.04 0.653± 0.04

Table 2: C-index performance on DIAMO as a function
of the number of target patients.

Heterogeneous domains - In Table 3 we compared
across all 5 studies the performance of TSB using its
full capabilities to TSB fit using only variables recorded
in all studies - 22 patient variables. The performance
gain can be attributed to the information present in
additional variables.

Study All
variables

Overlapping
variables

DIAMO 0.638± 0.01 0.625± 0.01

DIG 0.612± 0.03 0.614± 0.02

ECHOS 0.666± 0.01 0.660± 0.01

Euro 0.677± 0.01 0.678± 0.01

IN-CH 0.686± 0.01 0.677± 0.01

Table 3: C-index performance gain due to heteroge-
neous domains.

4.3.3 Deeper Analysis of TSB fit

TSB filters out those patients from auxiliary hospitals
that do not conform to the survival behaviour observed
in the target hospital. We analyze in this section the
behaviour of TSB fit on ECHOS as target patient pop-
ulation with the remaining 4 studies as auxiliary source
data. We explicitly analyze patients by looking at
the average weight wi for all source patients over all
boosting iterations. Those with high weight (above me-
dian source weight) are considered to contribute to the
overall fit and therefore benefit target predictions while
those with low weight (below median source weight) are
discarded, since they exhibit the most different survival
behaviour.

What patients are ”transferred”? - As can be
seen in Figure 3 we observe a large difference in the
empirical marginal survival distributions of auxiliary
patients incorporated to contribute to ECHOS patient
predictions and of those discarded. TSB selects those

auxiliary patients with similar marginal survival dis-
tribution while rejects those that exhibit an obviously
different survival pattern. Interesting differences are
also observed in the respective feature distributions of
the three groups: for example, the average heart failure
duration in discarded patients was 34s, much longer
than target patients - 26s - and included patients - 28s.
Ethnicity was also discovered to play a prominent role
in survival behaviour, 97% of ECHOS patients happen
to be Caucasian, 88% of included source patients are
also Caucasian while only 6% of discarded patients are
Caucasian.

Figure 3: Empirical survival distributions of ECHOS
target patients, included auxiliary patients and ex-
cluded auxiliary patients.

This experiment shows that TSB is able to discover fine-
grained similarities between target and source patients
by individually weighting patients and thus identifying
relevant source subgroups close in distribution without
a priori knowledge of the underlying survival behaviour.

5 Conclusion

Developing accurate survival prediction models with
only scarce data available is an important challenge
to overcome for wider use of machine learning tech-
niques - especially in health care. In this paper we
proposed the first survival analysis method that is able
to utilize data from multiple heterogeneous auxiliary
domains to improve the prediction performance on a
target population of interest.

From a clinical perspective this means that clinicians
can benefit from accurate decision support mechanisms
even when the target population at the local hospital
is small. Future work will investigate how to avoid
negative transfer - a situation where the addition of
auxiliary data harms the performance on a target pop-
ulation - in an effort to make transfer learning more
reliable.
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