Supplementary material to

" Detection of Planted Solutions for Flat Satisfiability Problems"

Quentin Berthet and Jordan Ellenberg

Appendix A: Technical proofs

Proof [of Lemma 2] It holds that

$$
Z=\sum_{x \in \mathbb{F}_{2}^{n}} \prod_{i=1}^{m} \mathbf{1}\left\{x \notin V_{j}\right\}
$$

By linearity, symmetry of the distribution, and independence of the V_{j}, we have for any $x_{0} \in \mathbb{F}_{2}^{n}$

$$
\mathbf{E}[Z]=2^{n}\left(\mathbf{P}_{\text {unif }}\left(x_{0} \notin V_{1}\right)\right)^{m} .
$$

Furthermore, for each k-flat of $\mathbb{F}_{2}^{n},\left|V_{1}\right|=2^{n-k}$, which yields the desired result.
Proof [of Lemma 3] We derive the second moment of Z

$$
\begin{aligned}
Z^{2} & =\sum_{x, x^{\prime} \in \mathbb{F}_{2}^{n}} \mathbf{1}\{x \in \mathcal{S}(V)\} \mathbf{1}\left\{x^{\prime} \in \mathcal{S}(V)\right\} \\
& =\sum_{x} \mathbf{1}\{x \in \mathcal{S}(V)\}+\sum_{x \neq x^{\prime}} \mathbf{1}\{x \in \mathcal{S}(V)\} \mathbf{1}\left\{x^{\prime} \in \mathcal{S}(V)\right\} .
\end{aligned}
$$

Taking expectation yields

$$
\mathbf{E}\left[Z^{2}\right]=\mathbf{E}[Z]+\sum_{x \neq x^{\prime}} \mathbf{P}_{\text {unif }}\left(\{x \in \mathcal{S}(V)\} \cap\left\{x^{\prime} \in \mathcal{S}(V)\right\}\right)
$$

The uniform distribution is invariant under the action of the affine group G, which is doubly transitive on \mathbb{F}_{2}^{n}. Therefore, the term $\mathbf{P}_{\text {unif }}\left(\{x \in \mathcal{S}(V)\} \cap\left\{x^{\prime} \in \mathcal{S}(V)\right\}\right)$ is constant for all couples of distinct elements $\left(x, x^{\prime}\right)$ of \mathbb{F}_{2}^{n}. To compute this distribution, it thus suffices to consider that x and x^{\prime} are uniformly randomly chosen among the set of pairs of distinct elements. For all $j \in[m]$, this yields

$$
\mathbf{P}_{\mathrm{unif}}\left(\left\{x \notin V_{j}\right\} \cap\left\{x^{\prime} \notin V_{j}\right\}\right)=\frac{2^{n}-2^{n-k}}{2^{n}} \cdot \frac{2^{n}-\left(2^{n-k}-1\right)}{2^{n}-1}=\left(1-2^{-k}\right)\left(1-2^{-k}+\frac{2-2^{-k}}{2^{n}-1}\right) .
$$

Using this in the derivation of the second moment, we have

$$
\begin{aligned}
\mathbf{E}\left[Z^{2}\right] & =\mathbf{E}[Z]+\left(2^{2 n}-2^{n}\right)\left(1-2^{-k}\right)^{m}\left(1-2^{-k}+\frac{2-2^{-k}}{2^{n}-1}\right)^{m} \\
& \leq \mathbf{E}[Z]+2^{2 n}\left(1-2^{-k}\right)^{2 m}\left(1+\frac{2-2^{-k}}{1-2^{-k}} \frac{1}{2^{n}-1}\right)^{m} \\
& \leq \mathbf{E}[Z]+\mathbf{E}[Z]^{2}\left(1+\frac{2-2^{-k}}{1-2^{-k}} \frac{1}{2^{n}-1}\right)^{\Delta n}
\end{aligned}
$$

Note that the last term is a $1+o(1)$.
Proof [of Theorem 4] We first note that $2\left(1-2^{-k}\right)^{\Delta_{k}}=1$, so that $\mathbf{E}[Z]=\left[2\left(1-2^{-k}\right)^{\Delta}\right]^{n}$ is exponentially large when $\Delta<\Delta_{k}$, and exponentially small when $\Delta>\Delta_{k}$.

- For $\Delta<\Delta_{k}$, Markov's inequality yields

$$
\mathbf{P}_{\text {unif }}(V \in \mathrm{FLAT})=\mathbf{P}_{\text {unif }}(Z(V) \geq 1) \leq \mathbf{E}[Z] \rightarrow 0
$$

- For $\Delta<\Delta_{k}$, Paley-Zigmund's inequality and the result of Lemma 3 yields

$$
\mathbf{P}_{\mathrm{unif}}(V \in \mathrm{FLAT})=\mathbf{P}_{\mathrm{unif}}(Z(V)>0) \geq \frac{\mathbf{E}[Z]^{2}}{\mathbf{E}\left[Z^{2}\right]} \rightarrow 1
$$

Proof [of Lemma 5] By definition of $\mathbf{P}_{\text {planted }}$

$$
\frac{\mathbf{P}_{\text {planted }}(V)}{\mathbf{P}_{\text {unif }}(V)}=\frac{1}{2^{n}} \sum_{x \in \mathbb{F}_{2}^{n}} \frac{\mathbf{P}_{x^{*}}(V)}{\mathbf{P}_{\text {unif }}(V)}
$$

To compute the probabilities in the above ratios, we use the interpretation above of m drawings in $N=2^{k} \mathcal{N}_{k}$ possible flats independently if the distribution is $\mathbf{P}_{\text {unif }}$, or otherwise in $N^{*}=\left(2^{k}-1\right) \mathcal{N}_{k}$ possible choices corresponding to flats that do not contain x^{*}. Therefore, it holds for all V

$$
\frac{\mathbf{P}_{x^{*}}(V)}{\mathbf{P}_{\text {unif }}(V)}=\left\{\begin{aligned}
0 & \text { if } x \notin \mathcal{S}(V) \\
\left(\frac{N}{N^{*}}\right)^{m} & \text { otherwise }
\end{aligned}\right.
$$

Therefore, the likelihood ratio can be expressed in terms of $\mathbf{1}\{x \in \mathcal{S}(V)\}$, and $N / N^{*}=1 /\left(1-2^{-k}\right)$

$$
\begin{aligned}
\frac{\mathbf{P}_{\text {planted }}}{\mathbf{P}_{\text {unif }}}(V) & =\frac{1}{2^{n}} \sum_{x \in \mathbb{F}_{2}^{n}}\left(\frac{N}{N^{*}}\right)^{m} \mathbf{1}\{x \in \mathcal{S}(V)\} \\
& =\frac{1}{\mathbf{E}[Z]} \sum_{x \in \mathbb{F}_{2}^{n}} \mathbf{1}\{x \in \mathcal{S}(V)\}=\frac{Z(V)}{\mathbf{E}[Z]} .
\end{aligned}
$$

Proof [of Lemma 8] Consider a fixed $Z \in \mathbb{F}_{2}^{N_{k}}$ such that $Z_{\emptyset}=1$. For an k-flat W described by (ℓ, α), we write $\mathcal{L}_{\alpha, \ell}(Z)$ as a function $q_{Z, \ell}$ of $\alpha \in \mathbb{F}_{2}^{k}$

$$
q_{Z, \ell}(\alpha)=\sum_{\substack{S \subset[n] \\|S| \leq k}} c_{S}(\ell, \alpha) Z_{S}
$$

We observe that each $c_{S}(\ell, \cdot)$ is a multivariate multilinear polynomial (with monomials that are squarefree), so that $q_{Z, \ell} \in \mathbb{F}_{2}\left[\alpha_{1}, \ldots, \alpha_{k}\right]$. Furthermore, the coefficient of the monomial $\alpha_{1} \ldots \alpha_{k}$ is $Z_{\emptyset}=1$. As the squarefree monomials are linearly independent, there exists an element of \mathbb{F}_{2}^{k} such that $q_{Z, \ell}(\alpha) \neq 0$. Therefore, as α is uniformly distributed under the uniform distribution q_{0}, it holds that

$$
\mathbf{P}_{\mathrm{unif}}\left(\mathcal{L}_{\alpha, \ell}(Z)=0\right)=\mathbf{P}_{\mathrm{unif}}\left(q_{Z, \ell}(\alpha)=0\right) \leq 1-2^{-k} .
$$

As an aside, note that this bound is tight. Indeed, for all $Z \in \mathcal{V}$, the event $\mathcal{L}_{\alpha, \ell}(Z)=0$ is equivalent to $z \notin W$, for $z=\phi^{-1}(Z)$. The probability of this event is $1-2^{-k}$, as seen in the proof of Lemma 2.

Let $V=\left(V_{1}, \ldots, V_{m}\right) \sim \mathbf{P}_{\text {unif }}$. By independence, we obtain directly that

$$
\mathbf{P}_{\text {unif }}\left(\mathcal{L}_{\ell_{j}, \alpha_{j}}(X)=0, \forall j \in[m]\right) \leq\left(1-2^{-k}\right)^{m}
$$

By a union bound over all elements of $\mathbb{F}_{2}^{N_{k}}$, it holds that

$$
\mathbf{P}_{\text {unif }}\left(\mathcal{L}_{V} \text { has a solution }\right) \leq 2^{N_{k}}\left(1-2^{-k}\right)^{m} .
$$

Taking $\Delta>\Delta_{k}$ yields the desired result.

Proof [of Lemma 10] For all $x \in \mathbb{F}_{2}^{n}$, we observe that under the null hypothesis, the variable $s(x, V)$ has distribution $\mathcal{B}\left(m, 1-2^{-k}\right)$. Therefore, by Hoeffding's inequality,

$$
\mathbf{P}_{\text {unif }}\left(s(x, V)>\left[\left(1-2^{-k}\right)+\alpha\right] m\right) \leq \exp \left(-2 \alpha^{2} m\right) .
$$

A union bound on \mathbb{F}_{2}^{n} yields

$$
\mathbf{P}_{\text {unif }}\left(\sigma(V)>\left[\left(1-2^{-k}\right)+\alpha\right] m\right) \leq 2^{n} \exp \left(-2 \alpha^{2} m\right) \leq \exp \left(-\left[2 \alpha^{2} \Delta-\log (2)\right] n\right)
$$

Under $\mathbf{P}_{x^{*}}$ the variable $s\left(x^{*}, V\right)$ has distribution $\mathcal{B}\left(m,\left(1-2^{-k}\right)+\pi 2^{-k}\right)$. By Hoeffding's inequality,

$$
\mathbf{P}_{x^{*}, \pi}\left(s\left(x^{*}, V\right)<\left[\left(1-2^{-k}\right)+\pi 2^{-k}-\alpha\right] m\right) \leq \exp \left(-2 \alpha^{2} m\right) .
$$

By definition of $\mathbf{P}_{\text {planted, } \pi}$ and $\sigma(V) \geq s(x, V)$ for all $x \in \mathbb{F}_{2}^{n}$, we obtain the desired result.

Proof [of Theorem 11] For $\Delta>\tilde{\Delta}_{k, \pi}$, taking $\alpha=\pi 2^{-(k+1)}$ in the results of Lemma 10 yields the desired upper bound, as $2 \alpha^{2} \Delta-\log (2)>0$.

For $\Delta<\Delta_{k, \pi}$, we derive a bound on the total variation distance $d_{\mathrm{TV}}\left(\mathbf{P}_{\text {unif }}, \mathbf{P}_{\text {planted }, \pi}\right)$, through the inequality

$$
d_{\mathrm{TV}}\left(\mathbf{P}_{\text {unif }}, \mathbf{P}_{\text {planted }, \pi}\right)=\frac{1}{2} \mathbf{E}\left[\left|\frac{\mathbf{P}_{\text {planted }, \pi}}{\mathbf{P}_{\text {unif }}}(V)-1\right|\right] \leq \frac{1}{2} \sqrt{\mathbf{E}\left[\left(\frac{\mathbf{P}_{\text {planted }, \pi}}{\mathbf{P}_{\text {unif }}}(V)-1\right)^{2}\right]} .
$$

The term inside the square root being equal to the chi-square divergence $\chi^{2}\left(\mathbf{P}_{\text {planted }, \pi}, \mathbf{P}_{\text {unif }}\right)$ between the two distributions. We write $\mathbf{P}_{x, \pi}=q_{x, \pi}^{\otimes m}$ and $\mathbf{P}_{\text {unif }}=q_{0}^{\otimes m}$ as products of the distribution of each independent V_{j}. Writing out $\mathbf{P}_{\text {planted }, \pi}$ as a uniform mixture of the $\mathbf{P}_{x, \pi}$ yields

$$
\begin{aligned}
\chi^{2}\left(\mathbf{P}_{\text {planted }, \pi}, \mathbf{P}_{\text {unif }}\right) & =\frac{1}{2^{2 n}} \sum_{x, x^{\prime} \in \mathbb{F}_{2}^{n}} \mathbf{E}\left[\frac{\mathbf{P}_{x, \pi}}{\mathbf{P}_{\text {unif }}} \frac{\mathbf{P}_{x^{\prime}, \pi}}{\mathbf{P}_{\text {unif }}}(V)\right]-1 \\
& =\frac{1}{2^{2 n}} \sum_{x, x^{\prime} \in \mathbb{F}_{2}^{n}} \mathbf{E}\left[\frac{q_{x, \pi}}{q_{0}} \frac{q_{x^{\prime}, \pi}}{q_{0}}\left(V_{1}\right)\right]^{m}-1 \\
& =\frac{1}{2^{2 n}} \sum_{x \in \mathbb{F}_{2}^{n}} \mathbf{E}\left[\left(\frac{q_{x, \pi}}{q_{0}}\left(V_{1}\right)\right)^{2}\right]^{n}+\frac{1}{2^{2 n}} \sum_{x \neq x^{\prime}} \mathbf{E}\left[\frac{q_{x, \pi}}{q_{0}} \frac{q_{x^{\prime}, \pi}}{q_{0}}\left(V_{1}\right)\right]^{m}-1 .
\end{aligned}
$$

Note that $q_{x, \pi}=(1-\pi) q_{0}+\pi q_{x}$, where q_{x} is the uniform distribution on k-flats that do not contain x (the planting distribution), so that

$$
\frac{q_{x, \pi}}{q_{0}}=1+\pi\left[\frac{q_{x}}{q_{0}}-1\right] .
$$

Substituting this in the above yields

$$
\begin{aligned}
\chi^{2}\left(\mathbf{P}_{\text {planted }, \pi}, \mathbf{P}_{\text {unif }}\right)= & \frac{1}{2^{2 n}} \sum_{x \in \mathbb{F}_{2}^{n}}\left(1+\pi^{2}\left[\mathbf{E}\left[\left(\frac{q_{x}}{q_{0}}\left(V_{1}\right)\right)^{2}\right]-1\right]\right)^{m} \\
& +\frac{1}{2^{2 n}} \sum_{x \neq x^{\prime}}\left(1+\pi^{2}\left[\mathbf{E}\left[\frac{q_{x}}{q_{0}} \frac{q_{x^{\prime}}}{q_{0}}\left(V_{1}\right)\right]-1\right]\right)^{m}-1 .
\end{aligned}
$$

Furthermore, for any k-flat V_{1}, it holds that $q_{x} / q_{0}\left(V_{1}\right)=\left(N / N_{k}\right) \mathbf{1}\left\{x \notin V_{1}\right\}$. We give the following upper bound the last two terms of this equation's RHS,

$$
\begin{aligned}
\frac{1}{2^{2 n}} \sum_{x \neq x^{\prime}}\left(1+\pi^{2}\left[\mathbf{E}\left[\frac{q_{x}}{q_{0}} \frac{q_{x^{\prime}}}{q_{0}}\left(V_{1}\right)\right]-1\right]\right)^{m}-1 & \leq \frac{1}{2^{2 n}} 2^{n}\left(1-\pi^{2}+\pi^{2} \frac{\mathbf{P}_{\text {unif }}\left(x, x^{\prime} \notin V_{1}\right)}{\left(1-2^{-k}\right)^{2}}\right)^{m}-1 \\
& \leq\left(\frac{1-\pi^{2}}{2}\right)^{n}\left(1+\frac{\pi^{2}}{1-\pi^{2}} \frac{2-2^{-k}}{\left(1-2^{-k}\right.} \frac{1}{2^{n}-1}\right)^{\Delta n}-1 \\
& \leq\left(1+\frac{c_{k} \pi^{2}}{2^{n}-1}\right)^{c_{k} n / \pi^{2}}-1
\end{aligned}
$$

for some constant $c_{k}>0$ (independent of n and π), by the formula for $\mathbf{P}_{\text {unif }}\left(x, x^{\prime} \notin V_{1}\right)$ derived in the proof of Lemma ??. The last term converges to 0 when $n \rightarrow+\infty$. We bound as well the first term of the main equation's RHS

$$
\begin{aligned}
\frac{1}{2^{2 n}} \sum_{x \in \mathbb{F}_{2}^{n}}\left(1+\pi^{2}\left[\mathbf{E}\left[\left(\frac{q_{x}}{q_{0}}\left(V_{1}\right)\right)^{2}\right]-1\right]\right)^{m} & \leq \frac{1}{2^{2 n}} 2^{n}\left(1+\pi^{2}\left(\mathbf{P}_{\mathrm{unif}}\left(x \notin V_{1}\right)-1\right)\right)^{m} \\
& \leq \frac{1}{2^{n}}\left(1+\frac{\pi^{2}}{2^{k}-1}\right)^{\Delta n}
\end{aligned}
$$

Taking $\Delta<\Delta_{k, \pi}=2^{k} \log (2) / \pi^{2}$ yields $1 / 2\left(1+\pi^{2} /\left(2^{k}-1\right)\right)^{\Delta}<1$, and all the terms of $\chi^{2}\left(\mathbf{P}_{\text {planted }, \pi}, \mathbf{P}_{\text {unif }}\right)$ go to 0 when $n \rightarrow+\infty$.

Proof [of Lemma 12] In all cases, the k-flats are independent, and the m sets of k linear forms are uniformly distributed. If (A, b) is uniformly random, so are the b_{j}, and as a consequence, the ε_{j}. This yields the desired $V \sim \mathbf{P}_{\text {unif }}$. However, if there is a secret $x, \phi_{j}(x)=1-b_{j}$ with probability η. The distribution of $1-b_{j}-\phi_{j}(x)$ is therefore is a mixture of the uniform distribution on \mathbb{F}_{2} (with weight $1-\pi$) and of the unit mass at 1 (with weight π). The distribution of $\varepsilon_{j}-\ell_{j}(x)$ is thus the mixture of the uniform distribution on \mathbb{F}_{2}^{n} (with weight $1-\pi)$ and of the the distribution on $\mathbb{F}_{2}^{k} \backslash\{0\}$ generated by placing a 1 in one of the coefficients of $\varepsilon_{j}-\ell_{j}(x)$, and letting the others be independent and uniform. As shown in Remark 1, the flat V_{j} has distribution $q_{x, \pi}$ and $V \sim \mathbf{P}_{x, \pi}$, as desired.

