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Abstract

We study the detection problem of finding
planted solutions in random instances of flat
satisfiability problems, a generalization of
boolean satisfiability formulas. We describe
the properties of random instances of flat sat-
isfiability, as well of the optimal rates of de-
tection of the associated hypothesis testing
problem. We also study the performance of
an algorithmically efficient testing procedure.
We introduce a modification of our model,
the light planting of solutions, and show that
it is as hard as the problem of learning parity
with noise. This hints strongly at the diffi-
culty of detecting planted flat satisfiability for
a wide class of tests.

1 Introduction

The rapid growth in many scientific fields of the size
of typical datasets, and the increasingly complex mod-
els that are studied, have naturally brought forth the
notions of statistical and computational complexity in
learning theory. For many learning problems, the al-
gorithmic aspect of inference procedures cannot be ig-
nored: it is necessary to consider jointly the difficulties
posed by the presence of noise or random errors, and
by computational hardness.

The problem of understanding the trade-offs between
algorithmic and statistical efficiency, has therefore at-
tracted a lot of interest [14, 7, 8, 25]. A particu-
larly successful approach has been to investigate the
links between learning problems that naturally arise,
inspired by applications, and more abstract problems
related to random discrete structures, that have been
extensively studied in theoretical computer science.
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An hypothesis of [20], based on the hardness of re-
futing satisfiability in random satisfiability formulas -
initially used to prove hardness of approximation for
several problems - has been used as a primitive to show
hardness of improper learning [17, 18, 32]. An hypoth-
esis on the planted clique problem has also been used
as a primitive to prove computational limits to infer-
ence, initially for sparse principal component detection
in [11, 10], and subsequently for other problems in high
dimensional statistics [33, 15, 37, 26, 13, 36, 6].

The desire to understand barriers to learning that
come from randomness and computation has natu-
rally brought attention to such fundamental problems,
and the questions of learning distributions of their in-
stances, in a computationally efficient manner. Exam-
ples include [21, 23, 22, 24], investigating the query
complexity of statistical algorithms for these problems
[28], or [9] treating the problem of satisfiability detec-
tion as an hypothesis testing problem.

We consider here a learning problem on sets of flats in
Fn2 , shown to be a generalization of the k-SAT problem
in n variables. We introduce the k-FLAT problem over
sets of m flats of dimension n − k, that are flat satis-
fiable if they do not cover all of Fn2 . This is analogous
to satisfiability formulas, that are satisfiable if the m
clauses do not exclude all the assignments. We also
introduce a learning problem over these instances. It
is formulated as a high-dimensional hypothesis testing
problemWe study the optimal rate of detection for this
problem, in a minimax sense, based on various param-
eters. We show that the optimal sample size m scales
linearly with the dimension n. These rates, derived
only using information-theoretic limits, are useful as
benchmarks. They give a context to the performance
of candidate algorithms, and let us see if there is a
gap between what we are able to achieve in a compu-
tationally efficient manner and the best possible case.
We introduce a polynomial-time algorithm for a test,
inspired by a technique of [4], and show that the test
is successful for a sample of order nk.

We discuss further the algorithmic aspects of this prob-
lem, for different types. An important tool to do so
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is the introduction of a modification of the problem,
denoted by lightly planted flat satisfiability, where for
every sample one might “forget” to plant a solution,
and draw instead from the uniform distribution. This
change does not significantly alter the statistical as-
pects but affects the computational aspects, making it
as hard as the “Learning Parity with Noise” problem.
We also show how this result shows that a wide class
of testing methods (including those based on so-called
statistical algorithms) cannot be used for detection of
planted solutions for flat satisfiability. Indeed, these
procedures are by nature not sensitive to this modifi-
cation, and view these two problems as equally hard.

These results aim to contribute to a larger discussion
on the notion of learning under computational con-
straints. We provide here an example of a problem
where an algorithmically efficient testing method is
powerful, given a reasonable - albeit suboptimal - sam-
ple size (polynomial in the dimension instead of simply
linear). This method is not robust to some modifica-
tion in the model, where the planted assignment is
only almost flat satisfiable. This in turn shows that it
is impossible for any procedure that is robust to this
modification to be both computationally and statisti-
cally efficient.

This concept of “weaker planting models”, that do not
fundamentally change the statistical nature but make
them computationally harder have recently attracted
interest (see, e.g. [5] about hypothesis on planted
cliques or dense subgraphs). By design, these gen-
eralizations prevent the use of brittle properties of the
alternative distributions (the existence of a clique in
a random graph, or here of an assignment that satis-
fies all clauses) to solve these decision problems. Here,
we show that such a modification makes the problem
significantly harder for computationally efficient meth-
ods. Furthermore, results about this auxiliary problem
can be used to establish lower bounds for the orig-
inal problem, for any method that does not depend
on these brittle properties. This could be a useful ap-
proach to derive similar results for other problems, and
to guide us in understanding which properties of cer-
tain distributions can be used by efficient algorithms.

The k-FLAT problem, and the associated detection
problem, are described in Section 2. In Section 3, we
show that there exists a sharp phase transition for flat
satisfiability of random instances, with a an explicit
threshold in the linear regime m = ∆n. In Section 4,
we derive the optimal rate of detection, with an opti-
mal constant, that coincides with the flat satisfiabil-
ity transition. In Section 5, we show that a test that
can be computed in polynomial time will be successful
with a sample size that is polynomial in n. We intro-
duce and analyz in Section 6 the problem of detecting

a lightly planted solution. We discuss computational
aspects in Section 7. All proofs are in the appendix.

2 Problem description

2.1 The k-FLAT problem

Consider Fn2 , the n-dimensional coordinate space on
F2. We are given V = (V1, . . . , Vm), a collection of m
flats of dimension n − k, or k-flats on Fn2 . We denote
by k-FLAT the problem of determining whether there
exists an element x ∈ Fn2 that is flat satisfying, i.e.
that does not lie on any of the Vj , or alternatively,
whether Fn2 = ∪jVj . We can define the flats by taking
k linearly independent linear forms `j,1, . . . , `j,k and k
values εj,1, . . . , εj,k ∈ F2, and having

Vj = {x ∈ Fn2 : `j,i(x) = εj,i , ∀i ∈ [k]} .

We note that there are many such descriptions for
any flat, but choosing the `j,i and εj,i uniformly
at random does yield the uniform distribution on
flats. We also note that if we constrain the flats
to be coordinate-aligned by taking each linear form
among the projections on one of the eis, the Vj can
be interpreted as satisfiability clauses on k literals,
and the set V1, . . . , Vm a satisfiability formula with m
clauses: For each x ∈ Fn2 , x satisfies the j-th clause
if and only if x /∈ Vj , and satisfies the formula if
and only if it the case for all the Vj . The set of flat
satisfying assignments is therefore Fn2 \ ∪jVj . The
problem described above is therefore a generalization
of k satisfiability. Thus, the k-FLAT problem is
NP-complete for k ≥ 3.

We denote by S(V ) the set of flat satisfying elements
Fn2 \∪jVj , and by Z(V ) its cardinality. We write S and
Z when it is not ambiguous. We denote by FLAT the
set of V that are flat satisfiable, i.e. for which there
exists a satisfying element. We will consider asymp-
totics in the linear regime of m = ∆n, for a constant
∆ > 0, and m,n→ +∞.

2.2 Detection of planted flat-satisfiable
assignment

Given a random instance V , our goal is to distinguish
two hypotheses for its underlying joint distribution.
This detection problem is a generalization of the prob-
lem of detecting planted satisfiability [9]. Under the
uniform distribution (denoted by Puni) the Vjs are in-
dependent and identically distributed. Their distribu-
tion is uniform on the set of flats of dimension n−k. A
possible way to generate them is to draw uniformly k
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linearly independent linear forms `j,1, . . . , `j,k and in-
dependently k values εj,1, . . . , εj,k ∈ F2, and to define

Vj = {x ∈ Fn2 : `j,i(x) = εj,i , ∀i ∈ [k]} .

Note that the uniform distribution has a lot of symme-
tries. Indeed, let G be the group of affine transforma-
tions, generated by translations and GLn(F2). Then
for any γ ∈ G, Puni is invariant by action of γ on
Fn2 . This rich symmetry structure yields a very precise
description of random instances of k-FLAT problems.

Under the planted distribution, (denoted by Pplant),
an element x∗ ∈ Fn2 is chosen uniformly. Conditioned
on this element, the Vjs are independent and identi-
cally distributed, with a distribution denoted by Px∗ .
Under this distribution, they are chosen uniformly on
the set of flats of dimension n− k that do not contain
x∗. They can be generated in a similar manner as
under the uniform distribution, by drawing uniformly
k linearly independent linear forms `j,1, . . . , `j,k, and
the k values εj,i uniformly among the 2k − 1 choices
that are not all `j,i(x

∗). We define Vj similarly.
By construction, it does not contain x∗, which is a
satisfying assignment for V .

Remark 1. Let Gx∗ be the subgroup of G, the affine
group consisting of affine transformations fixing x∗.
Then Gx∗ acts transitively on the k-flats not contain-
ing x∗. In particular, a probability distribution on k-
flats which is supported on k-flats not containing x∗,
and which is invariant under Gx∗ , must be uniform
on the k-flats not containing x∗; in other words, it is
the distribution Px∗ described above. In particular, the
procedure of choosing k linear forms `i and k bits εi
uniformly at random subject to the conditions that the
`i are linearly independent, and that the `i(x

∗) − εi
is nonzero for at least one i, is evidently G-invariant;
thus, the resulting distribution on k-flats is Px∗ . In
this paper we will mostly use this description of Px∗ .
But we want to emphasize that there are many such de-
scriptions, i.e. many distributions on k-tuples of pairs
(`, ε) which yield the distribution Px∗ on k-flats.

In order to avoid confusion regarding the representa-
tion of these flats, we consider here that the input
data is the actual flat, given to us either as a mem-
bership oracle - a function that returns whether any
element of Fn2 belongs to the flat Vj - or as a uniformly
random base `j of the space of linear forms that are
constant on the flat, and the corresponding values εj .
From a purely statistical point of view, this makes no
difference.From an algorithmic point of view, we will
consider that our data is a uniformly random basis of
linear forms and the associated values (`j , εj) for the
k-flat, which has then the distribution above.

Formally, we denote by q0 the uniform distribution on
k-flats of in Fn2 , and for all x ∈ Fn2 by qx the uniform
distribution on k-flats of Fn2 , that do not contain x.
With these notations, the distributions considered in
this problem are defined thus

Puni := q⊗m0 , Px,π := q⊗mx , Pplant :=
1

2n

∑
x∈Fn

2

Px∗ .

Our detection problem can be written as testing be-
tween two hypotheses

H0 : V = (V1, . . . , Vm) ∼ Puni

H0 : V = (V1, . . . , Vm) ∼ Pplant .

3 Flat-satisfiability threshold

In this section, we study the probability that a uni-
formly random instance V of the k-FLAT problem is
flat satisfiable, when m = ∆n, as a function of ∆ > 0.
This is achieved by studying the first two moments of
Z(V ), number of satisfying assignments.

Lemma 2. Under the uniform distribution

E[Z] = 2n(1− 2−k)m .

Note that the first moment of Z is the same when we
consider the number of solutions in random k-SAT for-
mulas. Intrinsically, the group of symmetries H of the
uniform distribution for k-SAT - generated by transla-
tions and permutations - and of the uniform distribu-
tion for k-FLAT - the affine group G - both act tran-
sitively on Fn2 , which is the main point of the proof
above. However, while the action of the affine group is
also doubly transitive on Fn2 , it is not the case for the
action of H, which preserves Hamming distances for
instance. This affects the computation of the second
moments of Z, which is consequently very different
under these two models.

Lemma 3. Let V = (V1, . . . , Vm) be a random col-
lection of m k-flats on Fn2 with distribution Puni. Let
m = ∆n, for some ∆ > 0. We have

E[Z2]

E[Z]2
≤ 1 + o(1) +

1

E[Z]
.

Together, Lemma 2 and 3 yield the following

Theorem 4. For k > 0 let ∆k := log(1/2)/ log(1 −
2−k) ≈ 2k log(2). For ∆ > 0, let m = ∆n, and V
be uniformly distributed. When m,n → +∞, it holds
that

• For ∆ < ∆k, Puni(V ∈ FLAT)→ 1.

• For ∆ > ∆k, Puni(V ∈ FLAT)→ 0.



Detection of Planted Solutions for Flat Satisfiability Problems

There is therefore a sharp phase transition in the lin-
ear regime, at ∆k, where the limit of the probability
of flat satisfiability switches from 1 to 0. This re-
sult can be compared to the satisfiability transition
for k-SAT problems, for which Z has the same ex-
pectation, but for which the second moment is much
larger than E[Z]2. The proofs of satisfiability transi-
tions [2, 16, 19] are therefore much more technical, and
this phenomenon does not occur at ∆k.

4 Detection of planted
flat-satisfiability

4.1 Optimal rate

One can understand the two distributions by the fol-
lowing generating process. Let Nk be the number of
subspaces of dimension n− k in Fn2 . There are there-
fore 2kNk possible k-flats (equivalent to a choice of
linear forms, and k values). Under the uniform dis-
tribution, m flats are chosen independently and uni-
formly among the 2kNk possible choices. Under Px∗ ,
there is an excluded choice of values, and there are
(2k − 1)Nk allowed flats, among which we draw inde-
pendently and uniformly m flats. This interpretation
of the distributions is useful to derive the likelihood
ratio, in the following.

Lemma 5. Let V = (V1, . . . , Vm) be a collection of m
k-flats on Fn2 ,

Pplant

Puni
(V ) =

Z(V )

E[Z]
.

The distribution Pplant therefore has a likelihood pro-
portional to Z(V ): only the flat satisfiable V have a
positive measure, and those with a large number of flat
satisfying assignments are more likely to occur. This
can be contrasted with the uniform distribution on
FLAT, for which all flat satisfiable V are equally likely.
One of the motivations behind the study of this like-
lihood ratio is its relationship with the total variation
distance. Indeed, we have

dTV(Puni,Pplant) =
1

2
E
[∣∣∣ Z

E[Z]
−1
∣∣∣] ≤ 1

2

√
E[Z2]

E[Z]2
− 1 .

The last inequality is a consequence of Jensen’s in-
equality, and gives a more tractable bound on the total
variation distance. It is equivalent to considering the
χ2 divergence between the two distributions. When
∆ < ∆k, Lemma 3 yields

dTV(Puni,Pplant) ≤
1

2

√
1

E[Z]
+ o(1)→ 0 .

Note that this approach is not fruitful to control the
total variation distance in the k-SAT planted satisfi-
ability problem, as E[Z2] is too large, in the linear
regime of m = ∆n for some constant ∆ > 0.

For this problem, when ∆ > ∆k, Puni(Z > 0) ≤
E[Z] → 0. Checking flat satisfiability, i.e. if Z > 0
is therefore a test with a one-sided probability of error
equal to Puni(Z > 0), as we have Pplant(Z > 0) = 1.
Together, these two observations yield the following

Theorem 6. For a fixed ∆ > 0, let m = ∆n. The
following holds

• For ∆ > ∆k, and ψFLAT(V ) = 1{Z(V ) > 0}

Puni(ψFLAT = 1) ∨Pplant(ψFLAT = 0)→ 0 .

• For ∆ < ∆k,

inf
ψ

Puni(ψ = 1) ∨Pplant(ψ = 0)→ 1

2
.

We observe in the statistical problem the same phase
transition as in Theorem 4: the problem switches at
∆k from being insolvable (with a total variation dis-
tance converging to 0) to the existence of an powerful
test, i.e. checking flat satisfiability. Note that in this
regime, since E[Z] < 1, this test is equivalent to the
likelihood ratio test Z(V ) > E[Z].

4.2 Alternative planting distribution

The distribution Pplant is a canonical way to draw a
k-FLAT instance that is surely satisfying while having
independence of the m k-flats, and having a simple
distribution for each flat (conditionally on the choice
of x∗). This is done in a similar spirit to the planted
distribution used for k-SAT instances [9, 23]. More
generally, let PFLAT be the set of distributions on flat
satisfiable instances defined as

P ∈ PFLAT ⇐⇒ P(V ∈ FLAT) = 1 .

One can consider the more general problem of detect-
ing planted flat satisfiability with the following hy-
pothesis testing problem with an unknown planting
distribution

H0 : V = (V1, . . . , Vm) ∼ Puni

H0 : V = (V1, . . . , Vm) ∼ P1 ∈ PFLAT .

The test ψFLAT exploits almost no property of the
Pplant, apart from Pplant(V ∈ FLAT) = 1, the sure ex-
istence of a flat satisfying assignment. Therefore, the
upper bound described in Theorem 6 would still hold
for any choice of alternative distribution P1 ∈ PFLAT,
and even for the composite hypothesis testing problem
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above. The lower bound is based on the fact that the
likelihood ratio between Pplant and Puni is equal to
Z/E[Z], which is not true for all planting distribution
P1. However, to prove a lower bound for the composite
hypothesis testing problem, it suffices to obtain such a
bound for one example of the set of distributions (here
Pplant ∈ PFLAT). Together these observations yield the
following

Theorem 7. For a fixed ∆ > 0, let m = ∆n. The
following holds

• For ∆ > ∆k, and ψFLAT(V ) = 1{Z(V ) > 0}

Puni(ψFLAT = 1) ∨ sup
P1∈PFLAT

P1(ψFLAT = 0)→ 0 .

• For ∆ < ∆k,

inf
ψ

{
Puni(ψ = 1) ∨ sup

P1∈PFLAT

P1(ψ = 0)
}
→ 1

2
.

Overall, the test ψFLAT is reliant on the fact that under
the alternative, V is satisfiable, not on how this sat-
isfiability is achieved. We discuss further this feature
of certain tests in Section 5 and 7, when considering
some algorithmic aspects of this decision problem.

The picture is clear from the statistical and proba-
bilistic point of view. However, from a computational
point of view, checking if Z is equal to 0 (i.e. if the
union of flats covers Fn2 ) is an NP-complete problem for
k ≥ 3, as k-SAT is a particular case. An interesting
question is whether there are detection methods that
can solve this problem in an algorithmically efficient
manner.

5 Polynomial-time detection

We study in this section the statistical performance
of a test that runs in polynomial time. We introduce
some notations necessary to define this test. Let W be
a k-flat of Fn2 , defined by k affine constraints

W = {x ∈ Fn2 : `i(x) = εi , ∀i ∈ [k]} .

We make the observation that x does not lie on W if
and only if one of the above equations is not satisfied,
or equivalently, taking αi = 1− εi

x /∈W ⇐⇒ P`,α(x) :=

k∏
i=1

(
`i(x) + αi

)
= 0 .

Factoring out, P`,α can be written as a multivariate
polynomial over F2 of degree k

P`,α(x) =
∑
S⊂[n]
|S|≤k

cS(`, α)
∏
s∈S

xs .

Note that all the monomials are squarefree, as z2 = z
for all z ∈ F2. Solving the k-FLAT problem is therefore
equivalent to solving a system of m polynomial equa-
tions of degree k, an NP-hard problem. In order to
obtain a test that is computationally tractable, we lift
this system of equations in a higher dimensional space
to obtain a system of linear equations with quadratic
constraints, that we will then relax. This general idea
is common over reals [34, 31], and adapted here in a
finite field. In this particular context, this approach
is inspired by [4], where this technique is used in a
problem of learning with errors.

Let Nk =
∑k
i=0

(
n
i

)
≤ (n + 1)k, and for x ∈ Fn2 , let

X ∈ FNk
2 such that XS =

∏
s∈S xs. We remark that

P`,α takes the same values as a linear form L`,α over

FNk
2 , such that P`,α(x) = L`,α(X) for the X associated

to x, by taking

L`,α(X) =
∑
S⊂[n]
|S|≤k

cS(`, α)XS .

If we consider the mapping φ from Fn2 to FNk
2 , the

so-called Veronese embedding, that associates x to X,
and V ⊂ FNk

2 the image of φ, it is equivalent to solve
P`,α(x) = 0 over all of Fn2 and L`,α(X) = 0 over V. In
particular, determining if an instance of the k-FLAT
problem is flat satisfiable is equivalent to determining

if a system of m linear equations in FNk

2 has a solution
in V. The image V can be written as the intersection of
quadratic constraints of the type X{1}X{2} = X{1,2},
making the system of equations intractable. In order
to obtain a tractable approximation of this problem,
we consider the relaxed linear system of equations, by
keeping solely the constraint X∅ = 1. Formally, for an
instance V of the k-FLAT problem, we will consider for
each flat Vj the associated linear form L`j ,αj

, and the

overall system LV of m+ 1 linear equations in FNk
2

L`j ,αj (X) = 0 , ∀j ∈ [m] ; X∅ = 1 . (LV )

Note that if x∗ ∈ Fn2 is flat-satisfiable for V , the as-
sociated X∗ = φ(x∗) ∈ FNk

2 is a solution to LV , as
it is even a solution to the linear system of equations
with stricter constraint X ∈ V. As a consequence, the
system LV always has a solution for V ∼ Pplant. How-
ever, under the uniform distribution, it is not always
the case.

Lemma 8. Recall that ∆k := log(1/2)/ log(1−2−k) ≈
2k log(2). Let m = ∆Nk for ∆ > ∆k, and V =
(V1, . . . , Vm) ∼ Puni. The linear system LV has no
solutions in FNk

2 , with probability converging to 1 when
n→ +∞.

We consider the test ψL : V 7→ 1{LV has a solution}.
When m is of order Nk ≤ (n + 1)k, it is possible to
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construct and solve the linear system, and thus to de-
termine the outcome of the test, in time O(n3k), by
Gaussian elimination. The result of Lemma 8 gives a
guarantee, in terms of sample size, about the perfor-
mance of this test.

Theorem 9. Let m = ∆nk, for ∆ > ∆k. It holds
that

Puni(ψL = 1) ∨Pplant(ψL = 0)→ 0 .

The test ψL allows to distinguish the two distributions
with probability of error going to 0, with computation
time and sample size that are both polynomial in n.
The statistical performance shown here is suboptimal,
and it is not clear whether there exists a test that
runs in time polynomial in n and that can distinguish
the two distributions with high probability for a sam-
ple size linear in n, the optimal regime. Perhaps the
properties of the space of satisfiable assignment, such
as the shattering property [1] could shed some light on
these phenomena.

There are other detection problems for which the opti-
mal regime of detection is not known to be attainable
by algorithmically efficient testing methods. In par-
ticular, for the planted clique problem [27, 30] in a
graph with n vertices, even though hidden cliques of
size greater than 2 log2(n) can be detected or recov-
ered, polynomial-time algorithms are only known to
be efficient at size of order

√
n [3], widely believed to

be optimal. This hypothesis has recently been used as
a primitive to show hardness for other learning prob-
lems. This problem, as well as those of estimating
planted assignments for CSP problems have been stud-
ied, and computational lower bounds shown to exist,
in a specific computational model [21, 23].

A common type of method to solve these detection
problems, one that comes naturally to mind to find
an improved algorithm for this problem - i.e. that
would need significantly less than nk samples - is to
study the behavior of a judiciously chosen, tractable
statistic σ of the data D. When D is constituted of
m independent samples, let us consider only σ that
are sums of statistics ρ of r-tuples of the data, for
a finite r. Simply, these approaches revolve around
showing that σ(D) behaves differently under the two
distributions of interest, say Euniform[σ(D)] = 0, and
Eplanted[σ(D)] = µ > 0, and by showing that when the
sample size is large enough, µ is much greater than the
typical deviations of σ, making a test such as such as
1{σ(D) > µ/2} powerful. Typical examples include
statistics based on the degrees of vertices in a graph,
bias in signs of literals in a CSP, etc. This type of ap-
proaches has been formalized in the notion of statistical
algorithms [21], where instead of having access to i.i.d.
samples Xi with an unknown distribution, one has ac-

cess to an oracle that returns, for any query function
f , a value close to E[f(X)], up to some tolerance τ .
This generalizes the query model of [28].

This is not the approach used here, where the test ψL is
based on the existence of an element verifying certain
properties - here being a solution to a linear system of
equations in a finite field - not on summing a certain
statistic over i.i.d samples (or couples, or triplets of
these samples). This is a situation similar to the one
described in Section 4.2, where the test ψFLAT relies
solely on the fact that under the planted distribution,
there exists a planted assignment. Similarly, the result
of Theorem 9 would still hold for any alternative dis-
tribution P1 ∈ PFLAT or for the composite hypothesis
testing problem on PFLAT, as V being flat satisfiable
implies that LV has a solution.

In the following section, we describe a modified ver-
sion of our hypothesis testing problem, by introducing
the model of light planting. Even though it does not
change the statistical nature of the problem, we show
in Section 7 it is as hard as the “Learning Parity with
Noise” problem, strongly suggesting that it cannot be
efficiently solved. Therefore, it is highly improbable
that any method that is robust to this modification
- which is true for the approaches based on biases of
statistics, as described above - could be successful for
detection of planted flat satisfiability.

6 Detection of lightly planted
flat-satisfiability

We consider a modified version of our hypothesis test-
ing problem. It has the same null hypothesis and in
the alternative, planting only happens with some con-
stant probability π ∈ (0, 1), which we call light plant-
ing. This auxiliary problem is a useful tool to un-
derstand some computational aspects of our original
decision problem (where π = 1). Formally, we denote
by qx,π := (1−π)q0 +πqx the distribution on the flats
of dimension n − k that is mixture of the uniform q0

and of the planting distribution qx, and define simi-
larly Px,π and Pplant,π. As in the original planting
model, we have

Px,π := q⊗mx,π , Pplant,π :=
1

2n

∑
x∈Fn

2

Px,π .

The alternative hypothesis is therefore replaced with
H1,π : V = (V1, . . . , Vm) ∼ Pplant,π, and this new
detection problem is

H0 : V = (V1, . . . , Vm) ∼ Puni

H1,π : V = (V1, . . . , Vm) ∼ Pplant,π .

This setting is different from problems with quiet, or
hidden planting [see, e.g. 29]. To tackle this problem,
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we consider for a given set of flats V the following
statistics

s(V, x) = |{j : x /∈ Vj}| , and σ(V ) = max
x∈Fn

2

s(V, x) .

They are respectively the number of flats of V on which
x does not lie, and the maximum number of flat con-
straints simultaneously satisfiable by an element of Fn2 .
We derive the following deviation bounds for this sec-
ond statistic under both hypotheses.

Lemma 10. For a fixed ∆ > 0, let m = ∆n. It holds
that

Puni

(
σ(V ) > [(1− 2−k) + α]m

)
≤ e−[2α2∆−log(2)]n

Pplant,π

(
σ(V ) < [(1− 2−k) + π2−k − α]m

)
≤ e−2α2∆n .

These deviation can be used to prove that a particular
test is powerful in the linear regime.

Theorem 11. For a fixed ∆ > 0, let m = ∆n,
∆̃k,π := 22k−1 log(2)/π2 and ∆k,π := 2k log(2)/π2,
and ψσ(V ) = 1{σ(V ) > [(1 − 2−k) + π2−(k+1)]m}.
It holds that

For ∆ > ∆̃k,π, Puni(ψσ = 1) ∨Pplant,π(ψσ = 0)→ 0,

∆ < ∆k,π, infψ Puni(ψ = 1) ∨Pplant,π(ψ = 0)→ 1
2 .

If we consider π to be a constant, the optimal rate
of detection for the light planting version of the prob-
lem is therefore still in the linear regime m = ∆k,πn.
Furthermore, the right dependency of ∆k,π on π is in
1/π2, up to constants that only depend on k.

7 Computational limits for planting
detection

As noted above, the algorithmically efficient testing
method ψL described in Section 5 can be used to solve
this detection problem for any planting distribution in
PFLAT, given a sample size of order nk. It is however
not robust to the modification of the hypothesis test-
ing problem described in Section 6: it relies heavily on
the fact that for V ∼ Pplant (or any other planting dis-
tribution) there exists some x∗ that is flat-satisfiable,
which guarantees in turn the existence of a solution
to the linear system LV . This reasoning does not go
through under the light planting model.

This phenomenon can be contrasted with the behav-
ior of more standard testing methods, based on aver-
ages of simple statistics over samples, covered by the
framework of statistical algorithms, or queries. Under
this paradigm, testing methods are very sensitive to
the choice of planting distribution (see, e.g. [23] for a
study of the effect of the planting distribution in CSPs

on the sample complexity in estimation and detection
problems), but not on the fact that the problem in-
stance is actually satisfiable. Indeed, under the light-
planting model, expectations under the alternative are
only affected by a multiplicative constant π.

We give here strong reasons to believe that improving
the result of Theorem 9 - for the case π = 1 - by using
testing procedures of this type is hopeless, and provide
a lower bound for statistical algorithms. Our reason-
ing is that such an approach would be robust to light
planting, and would allow us to distinguish Puni and
Pplant,π with sample size and running time polynomial
in n. The following result shows that this would im-
ply in turn the existence of an efficient method for the
decision version of the “Learning Parity with Noise”
(LPN) problem of [12], known to be as hard as the re-
covery of the “secret” signal. This is conjectured to be
a hard problem, for which the best algorithms run in
time 2O(n/ log(n)), and used to prove the safety of cryp-
tography systems (see [35], and references within).

Let (A, b) ∈ Fn×m2 × Fm2 be an instance of LPN. For
each j ∈ [m], let γj,1, . . . , γj,k−1 be k−1 uniformly ran-
dom, linearly independent linear forms on Fn2 , them-
selves independent of the linear form ϕj generated by
Aj . If Aj is uniformly random, the n− k dimensional
linear subspace of Fn2 that is the vanishing set of these
k linear forms is therefore uniformly random as well.
Furthermore, let βj,1, . . . , βj,k−1 be k−1 independent,
uniformly random elements of F2, independent of bj .
Take `j,1, . . . , `j,k be equal to γj,1, . . . , γj,k−1, ϕj in a
uniformly random order, and εj,1, . . . , εj,k be equal to
βj,1, . . . , βj,k−1, 1−bj in the same order. The equation
`j(x) = εj defines the n− k dimensional flat Vj .

Lemma 12. Let (A, b) ∈ Fn×m2 × Fm2 , and V the as-
sociated instance of k-FLAT obtained by the procedure
described above. The following holds

• If (A, b) are independent and uniformly random,
V ∼ Puni.

• If (A, b) is distributed as an instance of LPN with
secret x, and probability of error η < 1/2, V ∼
Px,π, with π = 1− 2η.

Remark 13. Lemma 12 reduces the problem of dis-
tinguishing Px,π from Puni to LPN. The same ar-
gument reduces the problem of distinguishing Pplant,π

from Puni to DLPN, the “decision version” of LPN.
The DLPN problem, in turn, is at least as hard as
LPN, by [4, Theorem C.2].

From a computational point of view, there is a very
strong difference between the problems of detecting
planted solutions to flat satisfiability, and detecting so-
lutions that are only lightly planted, for any constant
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π ∈ (0, 1). It seems impossible to adapt the result
of Theorem 9 to this new setting, and to describe an
efficient algorithm that can distinguish these distribu-
tions for a sample size of order nk/π2, similarly to the
result of Theorem 11, or for any sample size that is
polynomial in n.

The testing methods based on simple statistics (i.e.
sums of simpler statistics that depend on finite r-tuples
of samples) as described in Section 5, are usually ro-
bust to these modifications. As an example, for the
planted clique problem, consider a light planting dis-
tribution that only plants edges in the small subgraph
with probability π. The sum of the degrees of all the

vertices has mean n(n−1)
4 under the null, and respec-

tively n(n−1)
4 + k(k−1)

2 and n(n−1)
4 + π k(k−1)

2 under
the planted, or lightly planted distribution. Devia-
tion bounds will therefore show that a test based on
this statistic will be successful when k ≥ C

√
n un-

der the planted model and k ≥ C
√
n/π under the

lightly planted model, for some constant C > 0. The
rates of detection for this method are not changed by
this modification, for a constant π. The situation is
similar for detection of planted satisfiability [9, Thm
3.1]: a statistic based on joint signs of variables ap-
pearing several times in the formula has mean 0 un-
der the uniform distribution, and mean 1/[2(2k − 1)]
under the planted distribution, and would have mean
π2/[2(2k − 1)] under the light planting model. The
necessary sample size m of order

√
n in this problem

would only be affected in the constant by π.

This informal remark can be formalized within the set-
ting of statistical algorithms, by the following

Proposition 14. Consider an hypothesis testing prob-
lem between distributions q0 and q1 that can be solved
by N queries of a statistical oracle with tolerance τ .
The hypothesis testing problem between q0 and q1,π =
(1− π)q0 + πq1 can be solved by N queries of a statis-
tical oracle with tolerance τπ.

Indeed, for any bounded function f , it holds that
E1,πf − E0f = π(E1f − E0f). As only the difference
in expectation between these two distributions matter,
it is equivalent to have access to an oracle with preci-
sion τ over either q0 or q1 or with precision πτ over q0

or q1,π. This is particularly important if this oracle is
obtained by m actual samples of the unknown distri-
butions, in which case τ is of order 1/

√
m. In this case,

the necessary sample size needs only to be multiplied
by a constant factor 1/π2 in order to obtain an oracle
with the desired precision τπ. Note that this propo-
sitions can be generalized to cases when the function
f is allowed to depend on a finite number of samples
from the unknown distribution.

Proposition 14 immediately implies that the k-FLAT

problem cannot be efficiently solved by a statistical
oracle.

Proposition 15. No statistical oracle can be used to
distinguish Puni from Pplant in a number of queries
polynomial in n.

Proof. By Proposition 14, a statistical oracle that
could efficiently distinguish Puni from Pplant could
also efficiently distinguish Puni from Pplant,π. By
Lemma 12 and Remark 13, this is at least as hard as
LPN. In the computational model of statistical queries,
it is known that an exponential number of queries are
necessary to solve LPN ([28]), so no statistical algo-
rithm can efficiently distinguish Puni from Pplant.

As noted in sections 4.2 and 5, the tests ψFLAT and
ψL studied for the problem of distinguishing Puni and
Pplant are robust to changes in the alternative distri-
bution (i.e. the planting distribution), as long as it be-
longs to PFLAT. They can even solve this problem when
the planting distribution is unknown: this is the case
of composite hypothesis testing. In this sense, they are
able to refute, with high probability, most flat satisfi-
ability instances when m is greater than, respectively
∆kn and ∆kn

k, while never refuting a flat satisfiable
instance. This is reminiscent of a problem considered
for 3-SAT formulas by [20] in a hardness hypothesis.
For the problem of satisfiability, the usual planted dis-
tribution does not illustrate well the hardness of this
problem. Indeed, as mentioned above, there exists
even a polynomial-time test that can distinguish the
uniform and planted distribution with a sample size
of order

√
n, which is optimal and well below the sat-

isfiability threshold and the conjectured hard regime
[9]. This test is also robust to the introduction of light
planting, as it is based on distinguishing the expecta-
tion of a simple statistic over samples between the null
and alternative hypotheses.

For the detection of planted flat-satisfiability, we show
the existence of a test that can be decided in poly-
nomial time, and that only necessitates a polynomial
number of samples, and that never wrongly refutes a
flat satisfiable instance (i.e. is powerful for all alterna-
tives P1 ∈ PFLAT). However, as shown in Lemma 12,
these tests are not robust to other changes in the alter-
native, where planting yields instances that are almost
flat satisfiable. An analogue of the problem, as con-
sidered in Hypothesis 2 in [20], which weakens in this
way the original hypothesis, would be as shown here,
a much harder task.
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