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Abstract

GAIL is a recent successful imitation learn-
ing architecture that exploits the adversar-
ial training procedure introduced in GANs.
Albeit successful at generating behaviours
similar to those demonstrated to the agent,
GAIL suffers from a high sample complexity
in the number of interactions it has to carry
out in the environment in order to achieve
satisfactory performance. We dramatically
shrink the amount of interactions with the
environment necessary to learn well-behaved
imitation policies, by up to several orders
of magnitude. Our framework, operating in
the model-free regime, exhibits a significant
increase in sample-efficiency over previous
methods by simultaneously a) learning a self-
tuned adversarially-trained surrogate reward
and b) leveraging an off-policy actor-critic ar-
chitecture. We show that our approach is sim-
ple to implement and that the learned agents
remain remarkably stable, as shown in our ex-
periments that span a variety of continuous
control tasks. Video visualisations available
at: https://youtu.be/-nCsqUJnRKU.

1 Introduction

Reinforcement learning (RL) is a powerful and exten-
sive framework enabling a learner to tackle complex
continuous control tasks (Sutton and Barto, 1998).
Leveraging strong function approximators such as
multi-layer neural networks, deep reinforcement learn-
ing alleviates the customary preliminary workload con-
sisting in hand-crafting relevant features for the learn-
ing agent to work on. While being freed from this en-
gineering burden opens up the framework to an even
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broader range of complex control and planning tasks,
RL remains hindered by its reliance on reward design,
referred to as reward shaping. Albeit appealing in the-
ory, shaping often requires an intimidating amount of
engineering via trial and error to yield natural-looking
behaviours and makes the system prone to premature
convergence to local minima (Ng et al., 1999).

Imitation learning breaks free from the preliminary
reward function hand-crafting step as it does not
need access to a reinforcement signal. Instead, im-
itation learning learns to perform a task directly
from expert demonstrations. The emerging policies
mimic the behaviour displayed by the expert in those
demonstrations. Learning from demonstrations (LfD)
has enabled significant advances in robotics (Billard
et al., 2008) and autonomous driving (Pomerleau,
1989, 1990). Such models were fit from the expert
demonstrations alone in a supervised fashion, with-
out gathering new data in simulation. Albeit efficient
when data is abundant, they tend to be frail as the
agent strays from the expert trajectories. The ensuing
compounding of errors causes a covariate shift (Ross
and Bagnell, 2010; Ross et al., 2011). This approach,
referred to as behavioral cloning, is therefore poorly
adapted for imitation. Those limitations stem from
the sequential nature of the problem.

The caveats of behavioral cloning have recently been
successfully addressed by Ho and Ermon (Ho and Er-
mon, 2016) who introduced a model-free imitation
learning method called Generative Adversarial Imi-
tation Learning (GAIL). Leveraging Generative Ad-
versarial Networks (GAN) (Goodfellow et al., 2014),
GAIL alleviates the limitations of the supervised ap-
proach by a) learning a reward surrogate that explains
the behaviour shown in the demonstrations and b) fol-
lowing an RL procedure in an inner loop, consisting in
performing rollouts in a simulated environment with
the learned surrogate as reinforcement signal. Sev-
eral works have built on GAIL to overcome the weak-
nesses it inherits from GANs, with a particular empha-
sis on avoiding mode collapse (Li et al., 2017; Hausman
et al., 2017; Kuefler and Kochenderfer, 2017), causing
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policies to fail at displaying the diversity of demon-
strated behaviours or skills (Goodfellow, 2017). How-
ever, as the authors point out in the original paper
((Ho and Ermon, 2016), Section 7), GAIL suffers
from severe sample inefficiency. It is this limitation of
GAIL that we address in this paper. “Sample-efficient”
here means that we focus on limiting the number of
agent-environment interactions, in contrast with re-
ducing the number of demonstrations needed by the
agent. Although learning from fewer demonstrations
is not the primary focus of this work, our experiments
span a spectrum of demonstration dataset sizes.

Failures of previous works to address the exceeding
sample complexity stems from the on-policy nature of
the RL procedure they employ. In such methods, ev-
ery interaction in a given rollout typically is used to
compute the Monte Carlo estimate of the state value
by summing the rewards accumulated during the cur-
rent trajectory. The experienced transitions are then
discarded. Holding on to past trajectories to carry
out more than a single optimization step might ap-
pear viable but often results in destructively large pol-
icy updates (Schulman et al., 2017). Gradients based
on those estimates therefore suffer from high variance,
which can be reduced by sampling more intensively,
hence the deterring sample complexity.

In this work, we introduce a novel method that suc-
cessfully addresses the impeding sample inefficiency in
the number of simulator queries suffered by previous
methods. By designing an off-policy learning proce-
dure relying on the use of retained past experiences, we
considerably shrink the amount of interactions neces-
sary to learn good imitation policies. Despite involving
an adversarial training procedure and an actor-critic
method, both notorious for being prone to instabili-
ties and prohibitively difficult to train, our technique
demonstrates consistent stability, as shown in the ex-
perimental section. Additionally, our reliance on the
deterministic policy gradients allows us to exploit fur-
ther information about the learned reward function,
such as its gradient. Previous methods either ignore
it by treating the reward signal as a scalar in a model-
free fashion or train a forward model to exploit it. Our
method achieves the best of both worlds as it can per-
form a backward pass from the discriminator to the
generator (policy) while remaining model-free.

2 Related Work

Imitation learning aims to learn how to perform tasks
solely from expert demonstrations. Two approaches
are typically adopted to tackle imitation learning prob-
lems: a) behavioral cloning (BC) (Pomerleau, 1989,
1990), which learns a policy via regression on the

state-action pairs from the expert trajectories, and b)
apprenticeship learning (AL) (Abbeel and Ng, 2004),
which posits the existence of some unknown reward
function under which the expert policy is optimal and
learns a policy by i) recovering the reward that the
expert is assumed to maximise (an approach called in-
verse reinforcement learning (IRL)) and ii) running an
RL procedure with this recovered signal. As a super-
vised approach, BC is limited to the available demon-
strations to learn a regression model, whose predic-
tions worsen dramatically as the agent strays from the
demonstrated trajectories. It then becomes increas-
ingly difficult for the model to recover as the errors
compound (Ross and Bagnell, 2010; Ross et al., 2011;
Bagnell, 2015). Only the presence of correcting be-
haviour in the demonstration dataset can allow BC
to produce robust policies. AL alleviates this weak-
ness by entangling learning the reward function and
learning the mimicking policy, leveraging the return
of the latter to adjust the parameters of the former.
Models are trained on traces of interaction with the
environment rather than on a fixed state pool, lead-
ing to greater generalization to states absent from the
demonstrations. Albeit preventing errors from com-
pounding, IRL comes with a high computational cost,
as both modelling the reward function and solving the
ensuing RL problem (per learning iteration) can be re-
source intensive (Syed et al., 2008; Syed and Schapire,
2008; Ho et al., 2016; Levine et al., 2011).

In an attempt to overcome the shortcomings of IRL,
Ho and Ermon (Ho and Ermon, 2016) managed to by-
pass the need for learning the reward function assumed
to have been optimised by the expert when collecting
the demonstrations. The proposed approach to AL,
Generative Adversarial Imitation Learning (GAIL), re-
lies on an essential step consisting in learning a sur-
rogate function measuring the similarity between the
learned policy and the expert policy, using Genera-
tive Adversarial Networks (GAN) (Goodfellow et al.,
2014). The learned similarity metric is then employed
as a reward proxy to carry out the RL step, inherent
to the AL scheme. Recently, connections have been
drawn between GANs, RL (Pfau and Vinyals, 2016)
and IRL (Finn et al., 2016). In this work, we extend
GAIL to further exploit the connections between those
frameworks and overcome a limitation that was left un-
addressed: the burdensome sample inefficiency of the
method.

GANs involve a generator and a discriminator, each
represented by a neural network, making the associ-
ated computational graph fully differentiable. The gra-
dient of the discriminator with respect to the output
of the generator is of primary importance as it indi-
cates how the generator should change its output to
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have better chances at fooling the discriminator at the
next iteration. In GAIL, the generator’s role is carried
out by a stochastic policy, causing the computational
graph to no longer be differentiable end-to-end. Fol-
lowing a model-based approach, (Baram et al., 2017)
recovers the gradient of the discriminator with respect
to actions (via reparametrization tricks) and with re-
spect to states (via a forward model), making the com-
putational graph fully differentiable. In contrast, the
method introduced in this work can, by operating over
deterministic policies and leveraging the determinis-
tic policy gradient theorem (Silver et al., 2014), di-
rectly wield the gradient of the discriminator with re-
spect to the actions, without requiring gradient estima-
tion techniques (e.g. reparametrization trick (Kingma
and Welling, 2013), Gumbel-Softmax trick (Jang et al.,
2017; Maddison et al., 2017)). Since we stick to the
model-free setting, states remain stochastic nodes and
therefore block (backward) gradient flows.

An independent endeavour to overcome the data inef-
ficiency of GAIL has very recently been reported in
(Kostrikov et al., 2018), in which the authors leverage
a similar architecture, yet rely on an arguably ad-hoc
preliminary preprocessing technique on the demonstra-
tions before the imitation begins. In contrast, our
method does not rely on any preprocessing to yield
gains in sample efficiency by orders of magnitude.

3 Background

Setting We address the problem of an agent learn-
ing to act in an environment in order to reproduce
the behaviour of an expert demonstrator. No direct
supervision is provided to the agent — she is never di-
rectly told what the optimal action is — nor does she
receives a reinforcement signal from the environment
upon interaction. Instead, the agent is provided with
a pool of trajectories and must use them to guide its
learning process.

Preliminaries We model this sequential interac-
tive problem over discrete timesteps as a Markov
decision process (MDP) M, formalised as a tuple
(S,A, ρ0, p, r, γ). S and A respectively denote the
state and action spaces. The dynamics are defined
by a transition distribution with conditional density
p(st+1|st, at), along with ρ0, the density of the dis-
tribution from which the initial state is sampled. Fi-
nally, γ ∈ (0, 1] denotes the discount factor and r :
S ×A → R the reward function. We consider only the
fully-observable case, in which the current state can
be described with the current observation ot = st, alle-
viating the need to involve the entire history of obser-
vations. Although our results are presented following
the previous infinite-horizon MDP, the MDPs involved

in our experiments are episodic, with γ = 0 at episode
termination. In the theory, whenever we omit the dis-
count factor, we implicitly assume the existence of an
absorbing state along any agent-generated trajectory.

We formalise the sequential decision making process of
the agent by defining a parameterised policy πθ, mod-
elled via a neural network with parameter θ. πθ(at|st)
designates the conditional probability density concen-
trated at action at when the agent is in state st. In
line with our setting, the agent interacts with M−, an
MDP comprising every element of M except its re-
ward function r. Since our approach involves learn-
ing a surrogate reward function, we use M+ to de-
note the MDP resulting from the augmentation of M−

with the learned reward. We can therefore equiva-
lently assume that the agent interacts with M+. Tra-
jectories are traces of interaction between an agent
and an MDP. Specifically, we model trajectories as se-
quences of transitions (st, at, rt, st+1), atomic units of
interaction. Demonstrations are provided to the agent
through a set of expert trajectories τe, generated by
an expert policy πe in M.

We now introduce additional concepts and notations
that will be used in the remainder of this work. The
return is the total discounted reward from timestep
t onwards: Rγt ≜

∑+∞
k=t γ

k−tr(sk, ak). The state-
action value, or Q-value, is the expected return af-
ter picking action at in state st, and thereafter fol-
lowing policy πθ: Qπθ (st, at) ≜ E>tπθ

[Rγt ], where E>tπθ
[·]

denotes the expectation taken along trajectories gen-
erated by πθ in M+ (respectively E>tπe

[·] for πe in M)
and looking onwards from state st and action at. We
want our agent to find a policy πθ that maximises
the expected return from the start state, which con-
stitutes our performance objective, J(π) ≜ Eπ[Rγ0 ],
i.e. πθ = argmaxπ J(π). To ease further notations,
we finally introduce the discounted state visitation dis-
tribution of a policy π, denoted by ρπ : S → [0, 1],
and defined by ρπ(s) ≜

∑+∞
t=0 γ

tPρ0,π[st = s], where
Pρ0,π[st = s] is the probability of arriving at state s
at time step t when sampling the initial state from ρ0
and thereafter following policy π. In our experiments,
we omit the discount factor for state visitation, in line
with common practices.

Gail Leveraging Generative Adversarial Networks
(Goodfellow et al., 2014), Generative Adversarial Imi-
tation Learning (Ho and Ermon, 2016) introduces an
extra neural network Dϕ to play the role of discrimi-
nator, while the role of generator is carried out by the
agent’s policy πθ. Dϕ tries to assert whether a given
state-action pair originates from trajectories of πθ or
πe, while πθ attempts to fool Dϕ into believing her
state-action pairs come from πe. The situation can be
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described as a minimax problem minθmaxϕ V (θ, ϕ),
where the value of the two-player game is V (θ, ϕ) ≜
Eπθ

[log(1−Dϕ(s, a))]+Eπe
[logDϕ(s, a)]. We omit the

causal entropy term for brevity. The optimization is
however hindered by the stochasticity of πθ, causing
V (θ, ϕ) to be non-differentiable with respect to θ.

The solution proposed in (Ho and Ermon, 2016) con-
sists in alternating between a gradient step (Adam,
(Kingma and Ba, 2014)) on ϕ to increase V (θ, ϕ) with
respect to Dϕ, and a policy optimization step (TRPO,
(Schulman et al., 2015)) on θ to decrease V (θ, ϕ) with
respect to πθ. In other words, while Dϕ is trained as a
binary classifier to predict if a given state-action pair
is real (from πe) or generated (from πθ), the policy
πθ is trained by being rewarded for successfully con-
fusing Dϕ into believing that generated samples are
coming from πe, and treating this reward as if it were
an external analytically-unknown reward from the en-
vironment.

Actor-critic Policy gradient methods with function
approximation (Sutton et al., 1999), referred to as
actor-critic (AC) methods, interleave policy evaluation
with policy iteration. Policy evaluation estimates the
state-action value function with a function approxima-
tor called critic Qψ ≈ Qπθ , usually via either Monte-
Carlo (MC) estimation or Temporal Difference (TD)
learning. Policy iteration updates the policy πθ by
greedily optimising it against the estimated critic Qψ.

4 Algorithm

The approach in this paper, named Sample-efficient
Adversarial Mimic (Sam), adopts an off-policy TD
learning paradigm. By storing past experiences and
replaying them in an uncorrelated fashion, Sam dis-
plays significant gains in sample-efficiency, in line with
(Wang et al., 2016; Gu et al., 2016). To solve the
differentiability bottleneck of (Ho and Ermon, 2016)
caused by the stochasticity of its generator, we oper-
ate over deterministic policies. At a given state st,
following its deterministic policy µθ, an agent selects
the action at = µθ(st). Alternatively, we can obtain a
deterministic policy from any stochastic policy πθ by
systematically picking the average action for a given
state: µθ(st) = Ea[πθ(a|st)]. By relying on an off-
policy actor-critic architecture and wielding determin-
istic policies, Sam builds on the Deep Deterministic
Policy Gradients (DDPG) algorithm (Lillicrap et al.,
2016), in the context of Imitation Learning.

Sam is composed of three interconnected learning mod-
ules: a reward module (parameter ϕ), a policy mod-
ule (parameter θ), and a critic module (parameter
ψ) (Figure 1). The reward and policy modules are

both involved in a GAN’s adversarial training proce-
dure, while the policy and critic modules are trained
as an actor-critic architecture. As reminded recently
in (Pfau and Vinyals, 2016), GANs and actor-critic
architectures can be both framed as bilevel optimiza-
tion problems, each involving two competing compo-
nents, which we just listed out for both architectures.
Interestingly, the policy module plays a role in both
problems, tying the two bilevel optimization problems
together. In one problem, the policy module is trained
against the reward module, while in the other, the pol-
icy module is trained against the critic module. The
reward and critic modules can therefore be seen as serv-
ing analogous roles in their respective bilevel optimiza-
tion problems: forging and maintaining a signal which
enables the reward-seeking policy to adopt the desired
behaviour. How each of these component is optimised
is described in the subsequent dedicated sections.

Figure 1: Inter-module relationships in different neural
architectures (the scope of this figure was inspired from
(Pfau and Vinyals, 2016)). Modules with distinct loss
functions are depicted with empty circles, while filled
circles designate environmental entities. Solid and dot-
ted arrows respectively represent (forward) flow of in-
formation and (backward) flow of gradient. a) Gener-
ative Adversarial Imitation Learning (Ho and Ermon,
2016) b) Actor-Critic architecture (Sutton et al., 1999)
c) Sam (this work). Note that in Sam, the critic takes
in information from the reward module, while in the
vanilla AC architecture, the critic receives the reward
from the environment. The gradient flow from the
critic to the reward module must however be sealed.
Indeed, such a gradient flow would allow the policy to
adjust its parameters to induce values of the reward
which yield low TD residuals, hence preventing both
critic and reward modules to be learned as intended.
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As an off-policy method, Sam cycles through the fol-
lowing steps: i) the agent uses πθ to interact with
M+, ii) stores the experienced transitions C in a re-
play buffer R, iii) updates the reward module ϕ with
an equal mixture of uniformly sampled state-action
pairs from C and τe, iv) updates the reward module
ϕ with an equal mixture of uniformly sampled state-
action pairs from R and τe, and v) updates the policy
module θ and critic module ψ with transitions sampled
from R. Note that while sampling uniformly from C
(iii) gives states and actions distributed as ρπθ and πθ
respectively (on-policy), sampling uniformly from R
(iv) gives states and actions distributed as ρβ and β
respectively, where β denotes the off-policy sampling
mixture distribution corresponding to sampling tran-
sitions uniformly from the replay buffer. A more de-
tailed description of the training procedure is laid out
in the algorithm pseudo-code (Algorithm 1).

Reward We introduce a reward network with pa-
rameter vector ϕ, operating as the discriminator. The
cross-entropy loss used to train the reward network is:

Eπθ
[− log(1−Dϕ(s, a))] + Eπe

[− logDϕ(s, a)] (1)
+ λRGP(ϕ) (2)

where RGP(ϕ) is a penalty on the discriminator gradi-
ent, as introduced in (Gulrajani et al., 2017), Section
4. (Lucic et al., 2017) reports benefits from applying
such regulariser to the non-saturated variant of the
discriminator loss, although it was initially introduced
for Wasserstein GANs (Arjovsky et al., 2017) in (Gul-
rajani et al., 2017). This penalty favours our method
by further improving its stability.

The reward is defined as the negative of the genera-
tor loss. The later has been declined in many vari-
ants, which are thoroughly compared in (Lucic et al.,
2017). We can therefore analogously define a syn-
thetic reward for each of these forms. We go over and
discuss major ones in supplementary material. Ad-
ditionally, (Fu et al., 2018) proposes an extra vari-
ant in the context of IRL. In the remainder, we use
rϕ(st, at) = − log(1 − Dϕ(st, at)) as synthetic reward.
The reward network is trained, each iteration, first
on the mini-batch most recently collected by πθ, then
on mini-batches sampled from the replay buffer. Al-
though (Pfau and Vinyals, 2016) reports that using
a replay buffer in GANs causes the generation to be
poor, we do not seem to suffer the same detrimental
effect in the continuous control tasks we tackle.

Critic The loss optimised by the critic, noted ℓ(ψ),
involves three components: i) a 1-step Bellman resid-
ual ℓ1(ψ), ii) a n-step Bellman residual ℓn(ψ), and iii)
a weight decay regulariser RWD(ψ). A similar loss is

employed in (Večerík et al., 2017) in the context of
Reinforcement Learning from Demonstrations. While
the authors use weight decay regularisers for both the
policy and the critic, we restrain from decaying the pol-
icy’s weights since, in our setting, the policy plays a
role in two distinct optimization problems. We do not
apply a weight decay regulariser for the discriminator
either, as it was proven to cause the Wasserstein GAN
critic (name given to the discriminator in Wasserstein
GANs) to diverge (Gulrajani et al., 2017).

We define the critic loss as follows:

ℓ(ψ) = ℓ1(ψ) + ℓn(ψ) + νRWD(ψ) (3)

where ν is a hyperparameter that determines how
much decay is used. The losses i) and ii) are defined
respectively based on the 1-step and n-step lookahead
versions of the Bellman equation,

Q̃1
ψ(st, at) ≜ rϕ(st, at) (4)

+ γQψ(st+1, µθ(st+1)) (5)

Q̃nψ(st, at) ≜
n−1∑
k=0

γkrϕ(st+k, at+k) (6)

+ γnQψ(st+n, µθ(st+n)) (7)

yielding the critic losses:

ℓ1(ψ) ≜ Est∼ρβ ,at∼β [(Q̃
1
ψ −Qψ)

2(st, at)] (8)

ℓn(ψ) ≜ Est∼ρβ ,at∼β [(Q̃
n
ψ −Qψ)

2(st, at)] (9)

where Est∼ρβ ,,at∼β [·] signifies that transitions are sam-
pled from the replay buffer R, using in effect the off-
policy distribution β. Both Qψ and Q̃·

ψ ((5), (7)) de-
pend on ψ, which might cause severe instability. In
order to prevent the critic from diverging, we use sepa-
rate target networks for both policy and critic (θ′, ψ′)
to calculate Q̃·

ψ, which slowly track the learned pa-
rameters (θ, ψ). In line with results exhibited in the
recent ablation study (Rainbow (Hessel et al., 2017))
assessing the influence of the various add-ons of DQN
(Mnih et al., 2013, 2015) on its performance, we stud-
ied the influence of two add-ons that were transposable
to Sam: longer TD backups and replay prioritisation.
n-step returns not only played a significant role in im-
proving the sample complexity, but also had a posi-
tive influence on stability in the training regime. Pri-
oritized Experience Replay (Schaul et al., 2016) how-
ever prevented Sam from consistently learning well-
behaved policies. Being already prone to overfitting in
its original setting (Schaul et al., 2016), we conjecture
this phenomenon is amplified in our setting since the
TD-errors, instrumental in the priority assignments,
depend on rewards that are themselves learned. Uni-
form experience replay offers greater resilience against
oversampling transitions that have wrongfully been
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assigned high synthetic rewards by the adversarially-
trained reward module.

Policy We update the policy µθ so as to maximise
the performance objective, defined as the expected re-
turn from the start state. To that end, the policy is
updated by taking a gradient ascent step along:

∇(1)
θ J(µθ) ≈ Est∼ρβ [∇θQψ(st, µθ(st))] (10)

= Est∼ρβ
[
∇θµθ(st)∇aQψ(st, a)|a=µθ(st)

]
(11)

where the partial derivative with respect to the state is
ignored since we consider the model-free setting. This
gradient estimation stems from the policy gradient the-
orem proved by (Silver et al., 2014), and points to-
wards regions of the parameter space in which the pol-
icy displays high similarity with the demonstrator.

We model the synthetic reward as a parametrised func-
tion that takes a state and an action as inputs. As such,
we can take the derivative of the reward with respect
to θ. By applying the chain rule, we obtain:

∇(2)
θ J(µθ) ≈ Est∼ρβ [∇θrϕ(st, µθ(st))] (12)

= Est∼ρβ
[
∇θµθ(st)∇arϕ(st, a)|a=µθ(st)

]
(13)

which constitutes another estimate of how to up-
date the policy parameters θ to increase the similar-
ity between the policy and the expert ((Sasaki and
Kawaguchi, 2018) employs a similar estimate). Each
estimate of how well the agent is behaving, rϕ and
Qψ, is trained via a different policy evaluation method,
each presenting its own advantages. The first is up-
dated by adversarial training, providing an accurate
estimate of the immediate similarity with expert tra-
jectories. The second is trained via TD learning, en-
abling longer propagation of rewards along trajectories
and effectively tackling the credit assignment problem.
While our formulation enables us to use either of these
gradient estimates, ∇(1)

θ J(µθ) is more suited to learn
control policies in environments inducing delayed re-
wards. As the continuous control tasks we consider in
this paper belong to this category, we use ∇(1)

θ J(µθ) to
update the policy module. While we could use a mix-
ture of ∇(1)

θ J(µθ) and ∇(2)
θ J(µθ) we found that the

latter had a detrimental effect on the former, as it pre-
vented the policy to reason across timesteps, resulting
in poor reward propagation.

Exploration Deterministic policies have zero vari-
ance in their predictions for a given state, translating
to no exploratory behaviour. The exploration problem
is therefore treated independently from how the policy
is modelled, by defining a stochastic policy πθ from the

learned deterministic policy µθ. In this work, we con-
struct πθ via the combination of two fundamentally dif-
ferent techniques: a) by applying an adaptive pertur-
bation to the learned weights θ (exploration by noise-
injection in parameter space (Plappert et al., 2018;
Fortunato et al., 2017)) and b) by adding temporally-
correlated noise sampled from a Ornstein-Uhlenbeck
process OU (Lillicrap et al., 2016), well-suited for con-
trol tasks involving inertia (e.g. simulated robotics and
locomotion tasks). We denote the obtained policy by
πθ ≜ µθ̃ + OU, where θ̃ results from applying a) to θ.
When interacting with the environment, Sam samples
from the conditional distribution πθ, and stores the col-
lected transitions in the replay buffer R. An interest-
ing result is that the reward is adversarially trained on
samples coming from the parameter-perturbed policy.
Rather than causing severe divergence, it seems that it
positively impacts the adversarial training procedure.
This observation directly echoes noise-injection tech-
niques from the GAN literature. The additive noise
applied to the output of our policy (which plays the
role of generator in our architecture) aligns with (Ar-
jovsky and Bottou, 2017) who add artificial noise to
the inputs of the discriminator (although we do not
perturb expert trajectories). Furthermore, perturbing
µθ in parameter space draws strong similarities with
(Zhao et al., 2017), in which the authors add Gaussian
noise to the layers of the generator.

5 Results

Our agents were trained in physics-based control en-
vironments, built with the MuJoCo physics engine
(Todorov et al., 2012), and wrapped via the Ope-
nAI Gym (Brockman et al., 2016) API. Tasks simu-
lated in the environments range from legacy balance-
oriented tasks to simulated robotics and locomotion
tasks of various complexities. In this work, we con-
sider the 5 following environments, ordered by increas-
ing complexity (degrees of freedom in state and ac-
tion spaces): InvertedPendulum, InvertedDoublePen-
dulum, Reacher, Hopper, Walker2d. In the experi-
ments presented in Figure 2, we explore how the per-
formance of SAM and that of GAIL evolve as a func-
tion of the number of interactions they have with the
environment.

For each environment, an expert was designed by train-
ing an agent for 10M timesteps using the Proximal Pol-
icy Optimization (PPO) algorithm (Schulman et al.,
2017). The episode horizon (maximum episode length)
was left to its default value per environment. We
created a dataset of expert trajectories per environ-
ment. For every environment, we evaluated the per-
formance of the agents when provided with various
quantities of demonstrations, sampled for the demon-
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Algorithm 1: Sample-efficient Adversarial Mimic
Initialise replay buffer R
Initialise network parameters (ϕ, θ, ψ)
Initialise target network parameters (θ′, ψ′) as
respective copies of (θ, ψ)

for i ∈ 1, . . . , imax do
# Interact with environment

# and store collected transitions

for c ∈ 1, . . . , cmax do
Interact with environment following πθ and
collect the experienced transitions in C
augmented with synthetic rewards

Store C in the replay buffer R
end
for t ∈ 1, . . . , tmax do

# Update reward module

for d ∈ 1, . . . , dmax do
Sample uniformly a minibatch Bc of
state-action pairs pairs from C

Sample uniformly a minibatch Bce of
state-action pairs from the expert dataset
τe, with |Bc| = |Bce|

Update synthetic reward parameter ϕ with
the equal mixture Bc ∪ Bce by following
the gradient: ÊBc [∇ϕ log(1−Dϕ(s, a))] +

ÊBc
e
[∇ϕ logDϕ(s, a)] + λ∇ϕRGP(ϕ)

Sample uniformly a minibatch Bd of
state-action pairs from R

Sample uniformly a minibatch Bde of
state-action pairs from the expert dataset
τe, with |Bd| = |Bde |

Update synthetic reward parameter ϕ with
the equal mixture Bd ∪ Bde by following
the gradient: ÊBd [∇ϕ log(1−Dϕ(s, a))] +

ÊBd
e
[∇ϕ logDϕ(s, a)] + λ∇ϕRGP(ϕ)

end
# Update policy and critic modules

for g ∈ 1, . . . , gmax do
Sample uniformly a minibatch Bg of
transitions from R

Update policy parameter θ by following
the gradient: ÊBg [∇θJ(µθ)]

Update critic parameters ψ by minimizing
critic loss: ÊBg [ℓ(ψ)]

Update target network parameters (θ′, ψ′)
to slowly track (θ, ψ), respectively

end
end

end

Figure 2: Performance comparison between Sam and
GAIL in terms of episodic return. The horizontal axis
depicts, in logarithmic scale, the number of interac-
tions with the environment. While there is no ambi-
guity for GAIL, we used the unperturbed Sam policy
µθ (without parameter noise and additive action noise)
to collect those returns during a per-iteration evalua-
tion phase. The figure shows that our method has
a considerably better sample-efficiency than GAIL in
various continuous control tasks, often by several or-
ders of magnitude. Red-colored lines and filled areas
indicate the performance range of the expert demon-
strations present in the training set. The meaning of
the different line styles and colors is given in-text.
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stration dataset associated with the environment. We
do so in order to explore how the two methods be-
have with respect to the number of demonstrations
to which they are exposed. Both models are shown
the same set of selected trajectories. We ensure that
the two compared models are trained on exactly the
same subset of extracted trajectories by training them
with the same random seeds. We varied the cardinal-
ity of the set of selected trajectories as a function of
the environment’s complexity. We ran every experi-
ment on the same range of 4 random seeds, namely
{0, 1, 2, 3}. In Figure 2, we use scatter plots to vi-
sualise every episodic return, for every random seed.
Solid blue and green lines represent the mean episodic
return across the random seeds for the given number of
interactions. The filled areas are confidence intervals
around the solid lines, corresponding to a fixed frac-
tion of the standard deviation around the mean for
the given number of interactions. Every item coloured
in red relates to the expert performance, for a given
environment. The solid red line corresponds to the
mean episodic return of the demonstrations present in
the expert dataset associated with the given environ-
ment. The filled red region is a trust region whose
width is equal to the standard deviation of returns in
the expert dataset. The dotted line depicts the min-
imum return in the demonstration dataset while the
dashed line represents the maximum. Having statis-
tics about the demonstration datasets is particularly
insightful when evaluating the results of experiments
dealing with few demonstrations.

Every experiment runs with 4 parallel instantiations of
the same model, initialised with different seeds. Each
instantiation has its own interaction with the environ-
ment, its own replay buffer and its own optimisers.
However, every iteration, the gradients are averaged
per module across instantiations and the averaged gra-
dients are distributed per module to every instanti-
ation and immediately used to update the respective
module parameters. Both Sam and GAIL experiments
were run under this setting. This vertical scalabil-
ity played a considerable role in speeding up training
phases, equivalently for both models. Since every in-
stantiation has its own random seed, the fairness of
our performance comparison between Sam and GAIL
is further strengthened (Henderson et al., 2017).

We used layer normalisation (Ba et al., 2016) in the
policy module. Indeed, applying layer normalisation
to every layer of the policy was instrumental in yielding
better results, in line with the observations reported
in (Plappert et al., 2018). To ensure symmetry within
the actor-critic architecture, we also applied layer nor-
malisation to the critic module. Pop-Art (van Has-
selt et al., 2016) was also useful to our architecture

as our learned reward would sometimes output scores
of various magnitudes. Applying Pop-Art helped in
overcoming the various scales. Finally, note that Sam
and GAIL implementations use exactly the same dis-
criminator implementation.

We provide architecture, hyperparameter, implementa-
tion, and other details in the supplementary material.
We also provide video visualisations of learned poli-
cies at https://youtu.be/-nCsqUJnRKU, as well as
the code associated with this work at https://github.
com/lionelblonde/sam-tf.

The sample-efficiency we gain over GAIL is consider-
able: Sam needs one or two orders of magnitude less
interactions with the environment to attain asymp-
totic expert performance. Note that the horizontal
axis is scaled logarithmically. Additionally, we ob-
serve in Figure 2 that GAIL agents sometimes fall
short of reaching the demonstrator’s asymptotic per-
formance (e.g. Reacher and InverseDoublePendulum).
While GAIL requires full traces of agent–environment
interaction per iteration as it relies on Monte-Carlo es-
timates, Sam only requires a couple of transitions per
iteration since it performs policy evaluation via Tem-
poral Difference learning. Instead of sampling tran-
sitions from the environment, performing an update
and discarding the transitions, Sam keeps experien-
tial data in memory and can therefore leverage decor-
related transitions collected in previous iterations to
perform an off-policy update. Our method therefore
requires considerably fewer new samples (interactions)
per iteration, as it can re-exploit the transitions previ-
ously experienced.

Since our approach trades interactions with the envi-
ronment with replays with past experiences to extract
more knowledge out of past interactions, echoing ficti-
tious play in game theory, it generally takes a longer
wall-clock time to train imitation policies. However,
in real-world scenarios (e.g. robotic manipulation, au-
tonomous cars), reducing the required interaction with
the world is significantly more desirable, for safety and
cost reasons.

6 Conclusion

In this work, we introduced a method, called Sample-
efficient Adversarial Imitation Learning (Sam), that
meaningfully overcomes one considerable drawback of
GAIL (Ho and Ermon, 2016): the number of agent–
environment interactions it requires to learn expert-
like policies. We demonstrate that our method shrinks
the number of interactions by an order of magnitude,
and sometimes more. Leveraging an off-policy proce-
dure was key to that success.

https://youtu.be/-nCsqUJnRKU
https://github.com/lionelblonde/sam-tf
https://github.com/lionelblonde/sam-tf
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