Appendix

A More examples of generalized entropies

In this section, we give two more examples of generalized entropies: squared norm entropies and Rényi entropies.
Squared norm entropies. Inspired by Niculae and Blondel (2017), as a simple extension of the Gini index (7), we consider the following generalized entropy based on squared q-norms:

$$
\mathrm{H}_{q}^{\mathrm{SQ}}(\boldsymbol{p}):=\frac{1}{2}\left(1-\|\boldsymbol{p}\|_{q}^{2}\right)=\frac{1}{2}-\frac{1}{2}\left(\sum_{j=1}^{d} p_{j}^{q}\right)^{\frac{2}{q}}
$$

The constant term $\frac{1}{2}$, omitted by Niculae and Blondel (2017), ensures satisfaction of A.1. For $q \in(1,2]$, it is known that the squared q-norm is strongly convex w.r.t. $\|\cdot\|_{q}$ (Ball et al., 1994), implying that $\left(-\mathrm{H}_{q}^{\text {SQ }}\right)^{*}$, and therefore $L_{-H_{q}^{\text {so }}}$, is smooth. Although $\widehat{\boldsymbol{y}}_{-\mathrm{H}_{q}^{\mathrm{so}}}(\boldsymbol{\theta})$ cannot be solved in closed form for $q \in(1,2)$, it can be solved efficiently using projected gradient descent methods.

Rényi $\boldsymbol{\beta}$-entropies. Rényi entropies (Rényi, 1961) are defined for any $\beta \geq 0$ as:

$$
\mathrm{H}_{\beta}^{\mathrm{R}}(\boldsymbol{p}):=\frac{1}{1-\beta} \log \sum_{j=1}^{d} p_{j}^{\beta} .
$$

Unlike Shannon and Tsallis entropies, Rényi entropies are not separable, with the exception of $\beta \rightarrow 1$, which also recovers Shannon entropy as a limit case. The case $\beta \rightarrow+\infty$ gives $\mathrm{H}_{\beta}^{R}(\boldsymbol{p})=-\log \|\boldsymbol{p}\|_{\infty}$. For $\beta \in[0,1]$, Rényi entropies satisfy assumptions A.1-A.3; for $\beta>1$, Rényi entropies fail to be concave. They are however pseudoconcave (Mangasarian, 1965), meaning that, for all $\boldsymbol{p}, \boldsymbol{q} \in \triangle^{d},\left\langle\nabla \mathrm{H}_{\beta}^{\mathrm{R}}(\boldsymbol{p}), \boldsymbol{q}-\boldsymbol{p}\right\rangle \leq 0 \operatorname{implies} \mathrm{H}_{\beta}^{\mathrm{R}}(\boldsymbol{q}) \leq \mathrm{H}_{\beta}^{\mathrm{R}}(\boldsymbol{p})$. This implies, among other things, that points $\boldsymbol{p} \in \triangle^{d}$ with zero gradient are maximizers of $\langle\boldsymbol{p}, \boldsymbol{\theta}\rangle+\mathrm{H}_{\beta}^{\mathrm{R}}(\boldsymbol{p})$, which allows us to compute the predictive distribution $\widehat{\boldsymbol{y}}_{-\mathrm{H}_{\beta}^{\mathrm{R}}}$ with gradient-based methods.

Figure 3: Squared norm and Rényi entropies, together with the distributions and losses they generate.

B Experiment details and additional empirical results

Benchmark datasets. The datasets we used in $\S 6$ are summarized below.
Table 3: Dataset statistics

Dataset	Type	Train	Dev	Test	Features	Classes	Avg. labels
Birds	Audio	134	45	172	260	19	2
Cal500	Music	376	126	101	68	174	25
Emotions	Music	293	98	202	72	6	2
Mediamill	Video	22,353	7,451	12,373	120	101	5
Scene	Images	908	303	1,196	294	6	1
SIAM TMC	Text	16,139	5,380	7,077	30,438	22	2
Yeast	Micro-array	1,125	375	917	103	14	4

The datasets can be downloaded from http://mulan.sourceforge.net/datasets-mlc.html and https:// www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.

Sparse label proportion estimation on synthetic data. We follow Martins and Astudillo (2016) and generate a document $\boldsymbol{x} \in \mathbb{R}^{p}$ from a mixture of multinomials and label proportions $\boldsymbol{y} \in \triangle^{d}$ from a multinomial. The number of words in \boldsymbol{x} and labels in \boldsymbol{y} is sampled from a Poisson distribution - see Martins and Astudillo (2016) for a precise description of the generative process. We use 1200 samples as training set, 200 samples as validation set and 1000 samples as test set. We tune $\lambda \in\left\{10^{-6}, 10^{-5}, \ldots, 10^{0}\right\}$ and $\alpha \in\{1.0,1.1, \ldots, 2.0\}$ against the validation set. We report the Jensen-Shannon divergence in Figure 4. Results using the mean squared error (MSE) were entirely similar. When the number of classes is 10 , we see that Tsallis and sparsemax losses perform almost exactly the same, both outperforming softmax. When the number of classes is 50 , Tsallis losses outperform both sparsemax and softmax.

Figure 4: Jensen-Shannon divergence between predicted and true label proportions, when varying document length, of various losses generated by a Tsallis entropy.

C Proofs

In this section, we give proofs omitted from the main text.

C. 1 Proof of Proposition 1

Effect of a permutation. Let Ω be symmetric. We first prove that Ω^{*} is symmetric as well. Indeed, we have

$$
\Omega^{*}(\boldsymbol{P} \boldsymbol{\theta})=\sup _{\boldsymbol{p} \in \operatorname{dom}(\Omega)}(\boldsymbol{P} \boldsymbol{\theta})^{\top} \boldsymbol{p}-\Omega(\boldsymbol{p})=\sup _{\boldsymbol{p} \in \operatorname{dom}(\Omega)} \boldsymbol{\theta}^{\top} \boldsymbol{P}^{\top} \boldsymbol{p}-\Omega\left(\boldsymbol{P}^{\top} \boldsymbol{p}\right)=\Omega^{*}(\boldsymbol{\theta}) .
$$

The last equality was obtained by a change of variable $\boldsymbol{p}^{\prime}=\boldsymbol{P}^{\top} \boldsymbol{p}$, from which \boldsymbol{p} is recovered as $\boldsymbol{p}=\boldsymbol{P} \boldsymbol{p}^{\prime}$, which proves $\nabla \Omega^{*}(\boldsymbol{P p})=\boldsymbol{P} \nabla \Omega^{*}(\boldsymbol{p})$.

Order preservation. Since Ω^{*} is convex, the gradient operator $\nabla \Omega^{*}$ is monotone, i.e.,

$$
\left(\boldsymbol{\theta}^{\prime}-\boldsymbol{\theta}\right)^{\top}\left(\boldsymbol{p}^{\prime}-\boldsymbol{p}\right) \geq 0
$$

for any $\boldsymbol{\theta}, \boldsymbol{\theta}^{\prime} \in \mathbb{R}^{d}, \boldsymbol{p}=\nabla \Omega^{*}(\boldsymbol{\theta})$ and $\boldsymbol{p}^{\prime}=\nabla \Omega^{*}\left(\boldsymbol{\theta}^{\prime}\right)$. Let $\boldsymbol{\theta}^{\prime}$ be obtained from $\boldsymbol{\theta}$ by swapping two coordinates, i.e., $\theta_{j}^{\prime}=\theta_{i}, \theta_{i}^{\prime}=\theta_{j}$, and $\theta_{k}^{\prime}=\theta_{k}$ for any $k \notin\{i, j\}$. Then, since Ω is symmetric, we obtain:

$$
2\left(\theta_{j}-\theta_{i}\right)\left(p_{j}-p_{i}\right) \geq 0
$$

which implies $\theta_{i}>\theta_{j} \Rightarrow p_{i} \geq p_{j}$ and $p_{i}>p_{j} \Rightarrow \theta_{i} \geq \theta_{j}$. To fully prove the claim, we need to show that the last inequality is strict: to do this, we simply invoke $\nabla \Omega^{*}(\boldsymbol{P} \boldsymbol{p})=\boldsymbol{P} \nabla \Omega^{*}(\boldsymbol{p})$ with a matrix \boldsymbol{P} that permutes i and j, from which we must have $\theta_{i}=\theta_{j} \Rightarrow p_{i}=p_{j}$.

Gradient mapping. This follows directly from Danskin's theorem (Danskin, 1966). See also Bertsekas (1999, Proposition B.25).

Temperature scaling. This immediately follows from properties of the argmax operator.

C. 2 Proof of Proposition 3

We set $\Omega:=\Psi+I_{\mathcal{C}}$.

Bregman projections. If Ψ is Legendre type, then $\nabla \Psi\left(\nabla \Psi^{*}(\boldsymbol{\theta})\right)=\boldsymbol{\theta}$ for all $\boldsymbol{\theta} \in \operatorname{int}\left(\operatorname{dom}\left(\Psi^{*}\right)\right)$, where $\operatorname{int}(\mathcal{D})$ denotes the interior of \mathcal{D}. Using this and our assumption that $\operatorname{dom}\left(\Psi^{*}\right)=\mathbb{R}^{d}$, we get for all $\boldsymbol{\theta} \in \mathbb{R}^{d}$:

$$
\begin{equation*}
B_{\Psi}\left(\boldsymbol{p} \| \nabla \Psi^{*}(\boldsymbol{\theta})\right)=\Psi(\boldsymbol{p})-\langle\boldsymbol{\theta}, \boldsymbol{p}\rangle+\left\langle\boldsymbol{\theta}, \nabla \Psi^{*}(\boldsymbol{\theta})\right\rangle-\Psi\left(\nabla \Psi^{*}(\boldsymbol{\theta})\right) \tag{13}
\end{equation*}
$$

The last two terms are independent of \boldsymbol{p} and therefore

$$
\widehat{\boldsymbol{y}}_{\Omega}(\boldsymbol{\theta})=\underset{\boldsymbol{p} \in \mathcal{C}}{\operatorname{argmax}}\langle\boldsymbol{\theta}, \boldsymbol{p}\rangle-\Psi(\boldsymbol{p})=\underset{\boldsymbol{p} \in \mathcal{C}}{\operatorname{argmin}} B_{\Psi}\left(\boldsymbol{p} \| \nabla \Psi^{*}(\boldsymbol{\theta})\right),
$$

where $\mathcal{C} \subseteq \operatorname{dom}(\Psi)$. The r.h.s. is the Bregman projection of $\nabla \Psi^{*}(\boldsymbol{\theta})=\widehat{\boldsymbol{y}}_{\Psi}(\boldsymbol{\theta})$ onto \mathcal{C}.
Difference of Bregman divergences. Let $\boldsymbol{p}=\widehat{\boldsymbol{y}}_{\Omega}(\boldsymbol{\theta})$. Using (13), we obtain

$$
\begin{align*}
B_{\Psi}\left(\boldsymbol{y} \| \nabla \Psi^{*}(\boldsymbol{\theta})\right)-B_{\Psi}\left(\boldsymbol{p} \| \nabla \Psi^{*}(\boldsymbol{\theta})\right) & =\Psi(\boldsymbol{y})-\langle\boldsymbol{\theta}, \boldsymbol{y}\rangle+\langle\boldsymbol{\theta}, \boldsymbol{p}\rangle-\Psi(\boldsymbol{p}) \\
& =\Omega(\boldsymbol{y})-\langle\boldsymbol{\theta}, \boldsymbol{y}\rangle+\Omega^{*}(\boldsymbol{\theta}) \\
& =L_{\Omega}(\boldsymbol{\theta} ; \boldsymbol{y}), \tag{14}
\end{align*}
$$

where we assumed $\boldsymbol{y} \in \mathcal{C}$ and $\mathcal{C} \subseteq \operatorname{dom}(\Psi)$, implying $\Psi(\boldsymbol{y})=\Omega(\boldsymbol{y})$.
If $\mathcal{C}=\operatorname{dom}(\Psi)$ (i.e., $\Omega=\Psi$), then $\boldsymbol{p}=\nabla \Psi^{*}(\boldsymbol{\theta})$ and $B_{\Psi}\left(\boldsymbol{p} \| \nabla \Psi^{*}(\boldsymbol{\theta})\right)=0$. We thus get the composite form of Fenchel-Young losses

$$
B_{\Omega}\left(\boldsymbol{y} \| \nabla \Omega^{*}(\boldsymbol{\theta})\right)=B_{\Omega}\left(\boldsymbol{y} \| \widehat{\boldsymbol{y}}_{\Omega}(\boldsymbol{\theta})\right)=L_{\Omega}(\boldsymbol{\theta} ; \boldsymbol{y})
$$

Bound. Let $\boldsymbol{p}=\widehat{\boldsymbol{y}}_{\Omega}(\boldsymbol{\theta})$. Since \boldsymbol{p} is the Bregman projection of $\nabla \Psi^{*}(\boldsymbol{\theta})$ onto \mathcal{C}, we can use the well-known Pythagorean theorem for Bregman divergences (see, e.g., Banerjee et al. (2005, Appendix A)) to obtain for all $\boldsymbol{y} \in \mathcal{C} \subseteq \operatorname{dom}(\Psi):$

$$
B_{\Psi}(\boldsymbol{y} \| \boldsymbol{p})+B_{\Psi}\left(\boldsymbol{p} \| \nabla \Psi^{*}(\boldsymbol{\theta})\right) \leq B_{\Psi}\left(\boldsymbol{y} \| \nabla \Psi^{*}(\boldsymbol{\theta})\right)
$$

Using (14), we obtain for all $\boldsymbol{y} \in \mathcal{C} \subseteq \operatorname{dom}(\Psi)$:

$$
0 \leq B_{\Psi}(\boldsymbol{y} \| \boldsymbol{p})=B_{\Omega}(\boldsymbol{y} \| \boldsymbol{p}) \leq L_{\Omega}(\boldsymbol{\theta} ; \boldsymbol{y})
$$

Since Ω is a l.s.c. proper convex function, from Proposition 2 , we immediately get

$$
\boldsymbol{p}=\boldsymbol{y} \Leftrightarrow L_{\Omega}(\boldsymbol{\theta} ; \boldsymbol{y})=0 \Leftrightarrow B_{\Omega}(\boldsymbol{y} \| \boldsymbol{p})=0 .
$$

C. 3 Proof of Proposition 4

The two facts stated in Proposition 4 (H is always non-negative and maximized by the uniform distribution) follow directly from Jensen's inequality. Indeed, for all $\boldsymbol{p} \in \triangle^{d}$:

- $\mathrm{H}(\boldsymbol{p}) \geq \sum_{j=1}^{d} p_{j} \mathrm{H}\left(\boldsymbol{e}_{j}\right)=0$;
- $\mathrm{H}(\mathbf{1} / d)=\mathrm{H}\left(\sum_{\boldsymbol{P} \in \mathcal{P}} \frac{1}{d!} \boldsymbol{P} \boldsymbol{p}\right) \geq \sum_{\boldsymbol{P} \in \mathcal{P}} \frac{1}{d!} \mathrm{H}(\boldsymbol{P p})=\mathrm{H}(\boldsymbol{p})$,
where \mathcal{P} is the set of $d \times d$ permutation matrices. Strict concavity ensures that $\boldsymbol{p}=\mathbf{1} / d$ is the unique maximizer.

C. 4 Proof of Proposition 5

Let $\Omega(\boldsymbol{p})=\sum_{j=1}^{d} g\left(p_{j}\right)+I_{\triangle^{d}}(\boldsymbol{p})$, where $g:[0,1] \rightarrow \mathbb{R}_{+}$is a non-negative, strictly convex, differentiable function. Therefore, g^{\prime} is strictly monotonic on $[0,1]$, thus invertible. We show how computing $\nabla(\Omega)^{*}$ reduces to finding the root of a monotonic scalar function, for which efficient algorithms are available.
From strict convexity and the definition of the convex conjugate,

$$
\nabla \Omega^{*}(\boldsymbol{\theta})=\underset{\boldsymbol{p} \in \Delta^{d}}{\operatorname{argmax}}\langle\boldsymbol{p}, \boldsymbol{\theta}\rangle-\sum_{j} g\left(p_{j}\right)
$$

The constrained optimization problem above has Lagrangian

$$
\mathcal{L}(\boldsymbol{p}, \boldsymbol{\nu}, \tau):=\sum_{j=1}^{d} g\left(p_{j}\right)-\langle\boldsymbol{\theta}+\boldsymbol{\nu}, \boldsymbol{p}\rangle+\tau\left(\mathbf{1}^{\top} \boldsymbol{p}-1\right)
$$

A solution $\left(\boldsymbol{p}^{\star}, \boldsymbol{\nu}^{\star}, \tau^{\star}\right)$ must satisfy the KKT conditions

$$
\left\{\begin{align*}
g^{\prime}\left(p_{j}\right)-\theta_{j}-\nu_{j}+\tau & =0 \quad \forall j \in[d] \tag{15}\\
\langle\boldsymbol{p}, \boldsymbol{\nu}\rangle & =0 \\
\boldsymbol{p} \in \triangle^{d}, \boldsymbol{\nu} & \geq 0
\end{align*}\right.
$$

Let us define

$$
\tau_{\min }:=\max (\boldsymbol{\theta})-g^{\prime}(1) \quad \text { and } \quad \tau_{\max }:=\max (\boldsymbol{\theta})-g^{\prime}\left(\frac{1}{d}\right)
$$

Since g is strictly convex, g^{\prime} is increasing and so $\tau_{\min }<\tau_{\text {max }}$. For any $\tau \in\left[\tau_{\min }, \tau_{\max }\right]$, we construct ν as

$$
\nu_{j}:= \begin{cases}0, & \theta_{j}-\tau \geq g^{\prime}(0) \\ g^{\prime}(0)-\theta_{j}+\tau, & \theta_{j}-\tau<g^{\prime}(0)\end{cases}
$$

By construction, $\nu_{j} \geq 0$, satisfying dual feasability. Injecting ν into (15) and combining the two cases, we obtain

$$
\begin{equation*}
g^{\prime}\left(p_{j}\right)=\max \left\{\theta_{j}-\tau, g^{\prime}(0)\right\} \tag{16}
\end{equation*}
$$

We show that i) the stationarity conditions have a unique solution given τ, and ii) $\left[\tau_{\min }, \tau_{\max }\right]$ forms a signchanging bracketing interval, and thus contains τ^{\star}, which can then be found by one-dimensional search. The solution verifies all KKT conditions, thus is globally optimal.

Solving the stationarity conditions. Since g is strictly convex, its derivative g^{\prime} is continuous and strictly increasing, and is thus a one-to-one mapping between $[0,1]$ and $\left[g^{\prime}(0), g^{\prime}(1)\right]$. Denote by $\left(g^{\prime}\right)^{-1}:\left[g^{\prime}(0), g^{\prime}(1)\right] \rightarrow$ $[0,1]$ its inverse. If $\theta_{j}-\tau \geq g^{\prime}(0)$, we have

$$
\begin{aligned}
g^{\prime}(0) \leq g^{\prime}\left(p_{j}\right)=\theta_{j}-\tau & \leq \max (\boldsymbol{\theta})-\tau_{\min } \\
& =\max (\boldsymbol{\theta})-\max (\boldsymbol{\theta})+g^{\prime}(1) \\
& =g^{\prime}(1)
\end{aligned}
$$

Otherwise, $g^{\prime}\left(p_{j}\right)=g^{\prime}(0)$. This verifies that the r.h.s. of (16) is always within the domain of $\left(g^{\prime}\right)^{-1}$. We can thus apply the inverse to both sides to solve for p_{j}, obtaining

$$
\begin{equation*}
p_{j}(\tau)=\left(g^{\prime}\right)^{-1}\left(\max \left\{\theta_{j}-\tau, g^{\prime}(0)\right\}\right) \tag{17}
\end{equation*}
$$

Strict convexity implies the optimal \boldsymbol{p}^{\star} is unique; it can be seen that τ^{\star} is also unique. Indeed, assume optimal $\tau_{1}^{\star}, \tau_{2}^{\star}$. Then, $\boldsymbol{p}\left(\tau_{1}^{\star}\right)=\boldsymbol{p}\left(\tau_{2}^{\star}\right)$, so $\max \left(\boldsymbol{\theta}-\tau_{1}^{\star}, g^{\prime}(0)\right)=\max \left(\boldsymbol{\theta}-\tau_{2}^{\star}, g^{\prime}(0)\right)$. This implies either $\tau_{1}^{\star}=\tau_{2}^{\star}$, or $\boldsymbol{\theta}-\tau_{\{1,2\}}^{\star} \leq g^{\prime}(0)$, in which case $\boldsymbol{p}=\mathbf{0} \notin \triangle^{d}$, which is a contradiction.

Validating the bracketing interval. Consider the primal infeasability function $\phi(\tau):=\langle\boldsymbol{p}(\tau), \mathbf{1}\rangle-1 ; \boldsymbol{p}(\tau)$ is primal feasible iff $\phi(\tau)=0$. We show that ϕ is decreasing on [$\left.\tau_{\min }, \tau_{\max }\right]$, and that it has opposite signs at the two extremities. From the intermediate value theorem, the unique root τ^{\star} must satisfy $\tau^{\star} \in\left[\tau_{\text {min }}, \tau_{\text {max }}\right]$.
Since g^{\prime} is increasing, so is $\left(g^{\prime}\right)^{-1}$. Therefore, for all $j, p_{j}(\tau)$ is decreasing, and so is the sum $\phi(\tau)=\sum_{j} p_{j}(\tau)-1$. It remains to check the signs at the boundaries.

$$
\begin{aligned}
\sum_{i} p_{i}\left(\tau_{\max }\right) & =\sum_{i}\left(g^{\prime}\right)^{-1}\left(\max \left\{\theta_{i}-\max (\boldsymbol{\theta})+g^{\prime}(1 / d), g^{\prime}(0)\right\}\right) \\
& \leq d\left(g^{\prime}\right)^{-1}\left(\max \left\{g^{\prime}(1 / d), g^{\prime}(0)\right\}\right) \\
& =d\left(g^{\prime}\right)^{-1}\left(g^{\prime}(1 / d)\right)=1
\end{aligned}
$$

where we upper-bounded each term of the sum by the largest one. At the other end,

$$
\begin{aligned}
\sum_{i} p_{i}\left(\tau_{\min }\right) & =\sum_{i}\left(g^{\prime}\right)^{-1}\left(\max \left\{\theta_{i}-\max (\boldsymbol{\theta})+g^{\prime}(1), g^{\prime}(0)\right\}\right) \\
& \geq\left(g^{\prime}\right)^{-1}\left(\max \left\{g^{\prime}(1), g^{\prime}(0)\right\}\right) \\
& =\left(g^{\prime}\right)^{-1}\left(g^{\prime}(1)\right)=1
\end{aligned}
$$

using that a sum of non-negative terms is no less than its largest term. Therefore, $\phi\left(\tau_{\min }\right) \geq 0$ and $\phi\left(\tau_{\max }\right) \leq 0$. This implies that there must exist τ^{\star} in $\left[\tau_{\min }, \tau_{\max }\right]$ satisfying $\phi\left(\tau^{\star}\right)=0$. The corresponding triplet $\left(\boldsymbol{p}\left(\tau^{\star}\right), \boldsymbol{\nu}\left(\tau^{\star}\right), \tau^{\star}\right)$ thus satisfies all of the KKT conditions, confirming that it is the global solution.

Algorithm 1 is an example of a bisection algorithm for finding an approximate solution; more advanced root finding methods can also be used. We note that the resulting algorithm resembles the method provided in Krichene et al. (2015), with a non-trivial difference being the order of the thresholding and $(-g)^{-1}$ in Eq. (17).

```
    Algorithm 1: Bisection for \(\widehat{\boldsymbol{y}}_{\Omega}(\boldsymbol{\theta})=\nabla \Omega^{*}(\boldsymbol{\theta})\)
    Input: \(\boldsymbol{\theta} \in \mathbb{R}^{d}, \Omega(\boldsymbol{p})=I_{\triangle^{d}}+\sum_{i} g\left(p_{i}\right)\)
    \(\boldsymbol{p}(\tau):=\left(g^{\prime}\right)^{-1}\left(\max \left\{\boldsymbol{\theta}-\tau, g^{\prime}(0)\right\}\right)\)
    \(\phi(\tau):=\langle\boldsymbol{p}(\tau), \mathbf{1}\rangle-1\)
    \(\tau_{\text {min }} \leftarrow \max (\boldsymbol{\theta})-g^{\prime}(1) ;\)
    \(\tau_{\max } \leftarrow \max (\boldsymbol{\theta})-g^{\prime}(1 / d)\)
    \(\tau \leftarrow\left(\tau_{\text {min }}+\tau_{\text {max }}\right) / 2\)
    while \(|\phi(\tau)|>\epsilon\)
        if \(\phi(\tau)<0 \quad \tau_{\text {max }} \leftarrow \tau\)
        else \(\quad \tau_{\text {min }} \leftarrow \tau\)
        \(\tau \leftarrow\left(\tau_{\text {min }}+\tau_{\text {max }}\right) / 2\)
    Output: \(\nabla \widehat{\boldsymbol{y}}_{\Omega}(\boldsymbol{\theta}) \approx \boldsymbol{p}(\tau)\)
```

Learning Classifiers with Fenchel-Young Losses: Generalized Entropies, Margins, and Algorithms

C. 5 Proof of Proposition 6

We start by proving the following lemma.
Lemma 1 Let H satisfy assumptions A.1-A.3. Then:

1. We have $\boldsymbol{\theta} \in \partial(-\mathrm{H})\left(\boldsymbol{e}_{k}\right)$ iff $\theta_{k}=(-\mathrm{H})^{*}(\boldsymbol{\theta})$. That is:

$$
\partial(-\mathrm{H})\left(\boldsymbol{e}_{k}\right)=\left\{\boldsymbol{\theta} \in \mathbb{R}^{d}: \theta_{k} \geq\langle\boldsymbol{\theta}, \boldsymbol{p}\rangle+\mathrm{H}(\boldsymbol{p}), \forall \boldsymbol{p} \in \triangle^{d}\right\}
$$

2. If $\boldsymbol{\theta} \in \partial(-\mathbf{H})\left(\boldsymbol{e}_{k}\right)$, then, we also have $\boldsymbol{\theta}^{\prime} \in \partial(-\mathbf{H})\left(\boldsymbol{e}_{k}\right)$ for any $\boldsymbol{\theta}^{\prime}$ such that $\theta_{k}^{\prime}=\theta_{k}$ and $\theta_{i}^{\prime} \leq \theta_{i}$, for all $i \neq k$.

Proof of the lemma: Let $\Omega=-\mathrm{H}$. From Proposition 1 (order preservation), we can consider $\partial \Omega\left(\boldsymbol{e}_{1}\right)$ without loss of generality, in which case any $\boldsymbol{\theta} \in \partial \Omega\left(\boldsymbol{e}_{1}\right)$ satisfies $\theta_{1}=\max _{j} \theta_{j}$. We have $\boldsymbol{\theta} \in \partial \Omega\left(\boldsymbol{e}_{1}\right)$ iff $\Omega\left(\boldsymbol{e}_{1}\right)=\left\langle\boldsymbol{\theta}, \boldsymbol{e}_{1}\right\rangle-\Omega^{*}(\boldsymbol{\theta})=\theta_{1}-\Omega^{*}(\boldsymbol{\theta})$. Since $\Omega\left(\boldsymbol{e}_{1}\right)=0$, we must have $\theta_{1}=\Omega^{*}(\boldsymbol{\theta}) \geq \sup _{\boldsymbol{p} \in \Delta^{d}}\langle\boldsymbol{\theta}, \boldsymbol{p}\rangle-\Omega(\boldsymbol{p})$, which proves part 1 . To see 2 , note that we have $\theta_{k}^{\prime}=\theta_{k} \geq\langle\boldsymbol{\theta}, \boldsymbol{p}\rangle-\Omega(\boldsymbol{p}) \geq\left\langle\boldsymbol{\theta}^{\prime}, \boldsymbol{p}\right\rangle-\Omega(\boldsymbol{p})$, for all $\boldsymbol{p} \in \triangle^{d}$, from which the result follows.

We now proceed to the proof of Proposition 6. Let $\Omega=-\mathrm{H}$, and suppose that L_{Ω} has the separation margin property. Then, $\boldsymbol{\theta}=m \boldsymbol{e}_{1}$ satisfies the margin condition $\theta_{1} \geq m+\max _{j \neq 1} \theta_{j}$, hence $L_{\Omega}\left(m \boldsymbol{e}_{1}, \boldsymbol{e}_{1}\right)=0$. From the first part of Proposition 2, this implies $m \boldsymbol{e}_{1} \in \partial \Omega\left(\boldsymbol{e}_{1}\right)$.

Conversely, let us assume that $m \boldsymbol{e}_{1} \in \partial \Omega\left(\boldsymbol{e}_{1}\right)$. From the second part of Lemma 1, this implies that $\boldsymbol{\theta} \in \partial \Omega\left(\boldsymbol{e}_{1}\right)$ for any $\boldsymbol{\theta}$ such that $\theta_{1}=m$ and $\theta_{i} \leq 0$ for all $i \geq 2$; and more generally we have $\boldsymbol{\theta}+c \mathbf{1} \in \partial \Omega\left(\boldsymbol{e}_{1}\right)$. That is, any $\boldsymbol{\theta}$ with $\theta_{1} \geq m+\max _{i \neq 1} \theta_{i}$ satisfies $\boldsymbol{\theta} \in \partial \Omega\left(\boldsymbol{e}_{1}\right)$. From Proposition 2, this is equivalent to $L_{\Omega}\left(\boldsymbol{\theta} ; \boldsymbol{e}_{1}\right)=0$.

Let us now determine the margin of L_{Ω}, i.e., the smallest m such that $m \boldsymbol{e}_{1} \in \partial \Omega\left(\boldsymbol{e}_{1}\right)$. From Lemma 1 , this is equivalent to $m \geq m p_{1}-\Omega(\boldsymbol{p})$ for any $\boldsymbol{p} \in \triangle^{d}$, i.e., $-\Omega(\boldsymbol{p})\left(1-p_{1}\right) \leq m$. Note that by Proposition 1 the "most competitive" \boldsymbol{p} 's are sorted as \boldsymbol{e}_{1}, so we may write $p_{1}=\|\boldsymbol{p}\|_{\infty}$ without loss of generality. The margin of L_{Ω} is the smallest possible such margin, given by (9).

C. 6 Proof of Proposition 7

Let us start by showing that conditions 1 and 2 are equivalent. To show that $2 \Rightarrow 1$, take an arbitrary $\boldsymbol{p} \in \triangle^{d}$. From Fenchel-Young duality and the Danskin's theorem, we have that $\nabla(-\mathrm{H})^{*}(\boldsymbol{\theta})=\boldsymbol{p} \Rightarrow \boldsymbol{\theta} \in \partial(-\mathrm{H})(\boldsymbol{p})$, which implies the subdifferential set is non-empty everywhere in the simplex. Let us now prove that $1 \Rightarrow 2$. Let $\Omega=-\mathrm{H}$, and assume that Ω has non-empty subdifferential everywhere in \triangle^{d}. We need to show that for any $\boldsymbol{p} \in \triangle^{d}$, there is some $\boldsymbol{\theta} \in \mathbb{R}^{d}$ such that $\boldsymbol{p} \in \operatorname{argmin}_{\boldsymbol{p}^{\prime} \in \triangle^{d}} \Omega\left(\boldsymbol{p}^{\prime}\right)-\left\langle\boldsymbol{\theta}, \boldsymbol{p}^{\prime}\right\rangle$. The Lagrangian associated with this minimization problem is:

$$
\mathcal{L}(\boldsymbol{p}, \boldsymbol{\mu}, \lambda)=\Omega(\boldsymbol{p})-\langle\boldsymbol{\theta}+\boldsymbol{\mu}, \boldsymbol{p}\rangle+\lambda\left(\mathbf{1}^{\top} \boldsymbol{p}-1\right) .
$$

The KKT conditions are:

$$
\left\{\begin{array}{l}
0 \in \partial_{p} \mathcal{L}(\boldsymbol{p}, \boldsymbol{\mu}, \lambda)=\partial \Omega(\boldsymbol{p})-\boldsymbol{\theta}-\boldsymbol{\mu}+\lambda \mathbf{1} \\
\langle\boldsymbol{p}, \boldsymbol{\mu}\rangle=0 \\
\boldsymbol{p} \in \triangle^{d}, \boldsymbol{\mu} \geq 0
\end{array}\right.
$$

For a given $\boldsymbol{p} \in \triangle^{d}$, we seek $\boldsymbol{\theta}$ such that $(\boldsymbol{p}, \boldsymbol{\mu}, \lambda)$ are a solution to the KKT conditions for some $\boldsymbol{\mu} \geq 0$ and $\lambda \in \mathbb{R}$.

We will show that such $\boldsymbol{\theta}$ exists by simply choosing $\boldsymbol{\mu}=\mathbf{0}$ and $\lambda=0$. Those choices are dual feasible and guarantee that the slackness complementary condition is satisfied. In this case, we have from the first condition that $\boldsymbol{\theta} \in \partial \Omega(\boldsymbol{p})$. From the assumption that Ω has non-empty subdifferential in all the simplex, we have that for any $\boldsymbol{p} \in \triangle^{d}$ we can find a $\boldsymbol{\theta} \in \mathbb{R}^{d}$ such that $(\boldsymbol{p}, \boldsymbol{\theta})$ are a dual pair, i.e., $\boldsymbol{p}=\nabla \Omega^{*}(\boldsymbol{\theta})$, which proves that $\nabla \Omega^{*}\left(\mathbb{R}^{d}\right)=\triangle^{d}$.

Next, we show that condition $1 \Rightarrow 3$. Since $\partial(-H)(\boldsymbol{p}) \neq \varnothing$ everywhere in the simplex, we can take an arbitrary $\boldsymbol{\theta} \in \partial(-\mathrm{H})\left(\boldsymbol{e}_{k}\right)$. From Lemma 1, item 2, we have that $\boldsymbol{\theta}^{\prime} \in \partial(-\mathrm{H})\left(\boldsymbol{e}_{k}\right)$ for $\theta_{k}^{\prime}=\theta_{k}$ and $\theta_{j}^{\prime}=\min _{\ell} \theta_{\ell}$; since
$(-\mathrm{H})^{*}$ is shift invariant, we can without loss of generality have $\theta^{\prime}=m \boldsymbol{e}_{k}$ for some $m>0$, which implies from Proposition 6 that L_{Ω} has a margin.
Let us show that, if -H is separable, then $3 \Rightarrow 1$, which establishes equivalence between all conditions 1,2 , and 3 . From Proposition 6, the existing of a separation margin implies that there is some m such that $m \boldsymbol{e}_{k} \in \partial(-\mathrm{H})\left(\boldsymbol{e}_{k}\right)$. Let $\mathrm{H}(\boldsymbol{p})=\sum_{i=1}^{d} h\left(p_{i}\right)$, with $h:[0,1] \rightarrow \mathbb{R}_{+}$concave. Due to assumption A.1, h must satisfy $h(0)=h(1)=0$. Without loss of generality, suppose $\boldsymbol{p}=\left[\tilde{\boldsymbol{p}} ; \mathbf{0}_{k}\right]$, where $\tilde{\boldsymbol{p}} \in \operatorname{relint}\left(\triangle^{d-k}\right)$ and $\mathbf{0}_{k}$ is a vector with k zeros. We will see that there is a vector $\boldsymbol{g} \in \mathbb{R}^{d}$ such that $\boldsymbol{g} \in \partial(-\mathrm{H})(\boldsymbol{p})$, i.e., satisfying

$$
\begin{equation*}
-\mathrm{H}\left(\boldsymbol{p}^{\prime}\right) \geq-\mathrm{H}(\boldsymbol{p})+\left\langle\boldsymbol{g}, \boldsymbol{p}^{\prime}-\boldsymbol{p}\right\rangle, \quad \forall \boldsymbol{p}^{\prime} \in \triangle^{d} \tag{19}
\end{equation*}
$$

Since $\tilde{\boldsymbol{p}} \in \operatorname{relint}\left(\triangle^{d-k}\right)$, we have $\left.\tilde{p}_{i} \in\right] 0,1\left[\right.$ for $i \in\{1, \ldots, d-k\}$, hence $\partial(-h)\left(\tilde{p}_{i}\right)$ must be nonempty, since $-h$ is convex and $] 0,1\left[\right.$ is an open set. We show that the following $\boldsymbol{g}=\left(g_{1}, \ldots, g_{d}\right) \in \mathbb{R}^{d}$ is a subgradient of -H at \boldsymbol{p} :

$$
g_{i}= \begin{cases}\partial(-h)\left(\tilde{p}_{i}\right), & i=1, \ldots, d-k \\ m, & i=d-k+1, \ldots, d\end{cases}
$$

By definition of subgradient, we have

$$
\begin{equation*}
-\psi\left(p_{i}^{\prime}\right) \geq-\psi\left(\tilde{p}_{i}\right)+\partial(-h)\left(\tilde{p}_{i}\right)\left(p_{i}^{\prime}-\tilde{p}_{i}\right), \quad \text { for } i=1, \ldots, d-k \tag{20}
\end{equation*}
$$

Furthermore, since m upper bounds the separation margin of H, we have from Proposition 6 that $m \geq$ $\frac{\mathrm{H}\left(\left[1-p_{i}^{\prime}, p_{i}^{\prime}, 0, \ldots, 0\right]\right)}{1-\max \left\{1-p_{i}^{\prime}, p_{i}^{\prime}\right\}}=\frac{h\left(1-p_{i}^{\prime}\right)+h\left(p_{i}^{\prime}\right)}{\min \left\{p_{i}^{\prime}, 1-p_{i}^{\prime}\right\}} \geq \frac{h\left(p_{i}^{\prime}\right)}{p_{i}^{\prime}}$ for any $\left.\left.p_{i}^{\prime} \in\right] 0,1\right]$. Hence, we have

$$
\begin{equation*}
-\psi\left(p_{i}^{\prime}\right) \geq-\psi(0)-m\left(p_{i}^{\prime}-0\right), \quad \text { for } i=d-k+1, \ldots, d \tag{21}
\end{equation*}
$$

Summing all inequalities in Eqs. (20)-(21), we obtain the expression in Eq. (19), which finishes the proof.

C. 7 Proof of Proposition 8

Define $\Omega=-\mathrm{H}$. Let us start by writing the margin expression (9) as a unidimensional optimization problem. This is done by noticing that the max-generalized entropy problem constrained to $\max (\boldsymbol{p})=1-t$ gives $\boldsymbol{p}=$ $\left[1-t, \frac{t}{d-1}, \ldots, \frac{t}{d-1}\right]$, for $t \in\left[0,1-\frac{1}{d}\right]$ by a similar argument as the one used in Proposition 4. We obtain:

$$
\operatorname{margin}\left(L_{\Omega}\right)=\sup _{t \in\left[0,1-\frac{1}{d}\right]} \frac{-\Omega\left(\left[1-t, \frac{t}{d-1}, \ldots, \frac{t}{d-1}\right]\right)}{t}
$$

We write the argument above as $A(t)=\frac{-\Omega\left(\boldsymbol{e}_{1}+t \boldsymbol{v}\right)}{t}$, where $\boldsymbol{v}:=\left[-1, \frac{1}{d-1}, \ldots, \frac{1}{d-1}\right]$. We will first prove that A is decreasing in $\left[0,1-\frac{1}{d}\right]$, which implies that the supremum (and the margin) equals $A(0)$. Note that we have the following expression for the derivative of any function $f\left(\boldsymbol{e}_{1}+t \boldsymbol{v}\right)$:

$$
\left(f\left(\boldsymbol{e}_{1}+t \boldsymbol{v}\right)\right)^{\prime}=\boldsymbol{v}^{\top} \nabla f\left(\boldsymbol{e}_{1}+t \boldsymbol{v}\right)
$$

Using this fact, we can write the derivative $A^{\prime}(t)$ as:

$$
A^{\prime}(t)=\frac{-t \boldsymbol{v}^{\top} \nabla \Omega\left(\boldsymbol{e}_{1}+t \boldsymbol{v}\right)+\Omega\left(\boldsymbol{e}_{1}+t \boldsymbol{v}\right)}{t^{2}}:=\frac{B(t)}{t^{2}}
$$

In turn, the derivative $B^{\prime}(t)$ is:

$$
\begin{aligned}
B^{\prime}(t) & =-\boldsymbol{v}^{\top} \nabla \Omega\left(\boldsymbol{e}_{1}+t \boldsymbol{v}\right)-t\left(\boldsymbol{v}^{\top} \nabla \Omega\left(\boldsymbol{e}_{1}+t \boldsymbol{v}\right)\right)^{\prime}+\boldsymbol{v}^{\top} \nabla \Omega\left(\boldsymbol{e}_{1}+t \boldsymbol{v}\right) \\
& =-t\left(\boldsymbol{v}^{\top} \nabla \Omega\left(\boldsymbol{e}_{1}+t \boldsymbol{v}\right)\right)^{\prime} \\
& =-t \boldsymbol{v}^{\top} \nabla \nabla \Omega\left(\boldsymbol{e}_{1}+t \boldsymbol{v}\right) \boldsymbol{v} \\
& \leq 0
\end{aligned}
$$

where we denote by $\nabla \nabla \Omega$ the Hessian of Ω, and used the fact that it is positive semi-definite, due to the convexity of Ω. This implies that B is decreasing, hence for any $t \in[0,1], B(t) \leq B(0)=\Omega\left(\boldsymbol{e}_{1}\right)=0$, where we used the
fact $\left\|\nabla \Omega\left(e_{1}\right)\right\|<\infty$, assumed as a condition of Proposition 7. Therefore, we must also have $A^{\prime}(t)=\frac{B(t)}{t^{2}} \leq 0$ for any $t \in[0,1]$, hence A is decreasing, and $\sup _{t \in[0,1-1 / d]} A(t)=\lim _{t \rightarrow 0+} A(t)$. By L'Hôpital's rule:

$$
\begin{aligned}
\lim _{t \rightarrow 0+} A(t) & =\lim _{t \rightarrow 0+}\left(-\Omega\left(\boldsymbol{e}_{1}+t \boldsymbol{v}\right)\right)^{\prime} \\
& =-\boldsymbol{v}^{\top} \nabla \Omega\left(\boldsymbol{e}_{1}\right) \\
& =\nabla_{1} \Omega\left(\boldsymbol{e}_{1}\right)-\frac{1}{d-1} \sum_{j \geq 2} \nabla_{j} \Omega\left(\boldsymbol{e}_{1}\right) \\
& =\nabla_{1} \Omega\left(\boldsymbol{e}_{1}\right)-\nabla_{2} \Omega\left(\boldsymbol{e}_{1}\right),
\end{aligned}
$$

which proves the first part.
If Ω is separable, then $\nabla_{j} \Omega(\boldsymbol{p})=-h^{\prime}\left(p_{j}\right)$, in particular $\nabla_{1} \Omega\left(\boldsymbol{e}_{1}\right)=-h^{\prime}(1)$ and $\nabla_{2} \Omega\left(\boldsymbol{e}_{1}\right)=-h^{\prime}(0)$, yielding $\operatorname{margin}\left(L_{\Omega}\right)=h^{\prime}(0)-h^{\prime}(1)$. Since h is twice differentiable, this equals $-\int_{0}^{1} h^{\prime \prime}(t) d t$, completing the proof.

