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Appendix

A More examples of generalized entropies

In this section, we give two more examples of generalized entropies: squared norm entropies and Rényi entropies.

Squared norm entropies. Inspired by Niculae and Blondel (2017), as a simple extension of the Gini index
(7), we consider the following generalized entropy based on squared q-norms:

Hsq

q (p) :=
1

2
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pqj
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q
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The constant term 1
2 , omitted by Niculae and Blondel (2017), ensures satisfaction of A.1. For q ∈ (1, 2], it is

known that the squared q-norm is strongly convex w.r.t. ‖ · ‖q (Ball et al., 1994), implying that (−Hsq

q )∗, and
therefore L−Hsq

q
, is smooth. Although ŷ−Hsq

q
(θ) cannot be solved in closed form for q ∈ (1, 2), it can be solved

efficiently using projected gradient descent methods.

Rényi β-entropies. Rényi entropies (Rényi, 1961) are defined for any β ≥ 0 as:

Hr

β(p) :=
1

1− β
log

d∑

j=1

pβj .

Unlike Shannon and Tsallis entropies, Rényi entropies are not separable, with the exception of β → 1, which also
recovers Shannon entropy as a limit case. The case β → +∞ gives Hr

β(p) = − log ‖p‖∞. For β ∈ [0, 1], Rényi
entropies satisfy assumptions A.1–A.3; for β > 1, Rényi entropies fail to be concave. They are however pseudo-
concave (Mangasarian, 1965), meaning that, for all p, q ∈ △d, 〈∇Hr

β(p), q − p〉 ≤ 0 implies Hr

β(q) ≤ Hr

β(p).

This implies, among other things, that points p ∈ △d with zero gradient are maximizers of 〈p,θ〉+Hr

β(p), which
allows us to compute the predictive distribution ŷ−Hr

β
with gradient-based methods.
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Figure 3: Squared norm and Rényi entropies, together with the distributions and losses they generate.
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B Experiment details and additional empirical results

Benchmark datasets. The datasets we used in §6 are summarized below.

Table 3: Dataset statistics

Dataset Type Train Dev Test Features Classes Avg. labels

Birds Audio 134 45 172 260 19 2
Cal500 Music 376 126 101 68 174 25

Emotions Music 293 98 202 72 6 2
Mediamill Video 22,353 7,451 12,373 120 101 5

Scene Images 908 303 1,196 294 6 1
SIAM TMC Text 16,139 5,380 7,077 30,438 22 2

Yeast Micro-array 1,125 375 917 103 14 4

The datasets can be downloaded from http://mulan.sourceforge.net/datasets-mlc.html and https://

www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.

Sparse label proportion estimation on synthetic data. We follow Martins and Astudillo (2016) and
generate a document x ∈ R

p from a mixture of multinomials and label proportions y ∈ △d from a multinomial.
The number of words in x and labels in y is sampled from a Poisson distribution — see Martins and Astudillo
(2016) for a precise description of the generative process. We use 1200 samples as training set, 200 samples
as validation set and 1000 samples as test set. We tune λ ∈ {10−6, 10−5, . . . , 100} and α ∈ {1.0, 1.1, . . . , 2.0}
against the validation set. We report the Jensen-Shannon divergence in Figure 4. Results using the mean squared
error (MSE) were entirely similar. When the number of classes is 10, we see that Tsallis and sparsemax losses
perform almost exactly the same, both outperforming softmax. When the number of classes is 50, Tsallis losses
outperform both sparsemax and softmax.
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Figure 4: Jensen-Shannon divergence between predicted and true label proportions, when varying document
length, of various losses generated by a Tsallis entropy.

http://mulan.sourceforge.net/datasets-mlc.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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C Proofs

In this section, we give proofs omitted from the main text.

C.1 Proof of Proposition 1

Effect of a permutation. Let Ω be symmetric. We first prove that Ω∗ is symmetric as well. Indeed, we have

Ω∗(Pθ) = sup
p∈dom(Ω)

(Pθ)⊤p− Ω(p) = sup
p∈dom(Ω)

θ⊤P⊤p− Ω(P⊤p) = Ω∗(θ).

The last equality was obtained by a change of variable p′ = P⊤p, from which p is recovered as p = Pp′, which
proves ∇Ω∗(Pp) = P∇Ω∗(p).

Order preservation. Since Ω∗ is convex, the gradient operator ∇Ω∗ is monotone, i.e.,

(θ′ − θ)⊤(p′ − p) ≥ 0

for any θ,θ′ ∈ R
d, p = ∇Ω∗(θ) and p′ = ∇Ω∗(θ′). Let θ′ be obtained from θ by swapping two coordinates, i.e.,

θ′j = θi, θ
′
i = θj , and θ

′
k = θk for any k /∈ {i, j}. Then, since Ω is symmetric, we obtain:

2(θj − θi)(pj − pi) ≥ 0,

which implies θi > θj ⇒ pi ≥ pj and pi > pj ⇒ θi ≥ θj . To fully prove the claim, we need to show that the last
inequality is strict: to do this, we simply invoke ∇Ω∗(Pp) = P∇Ω∗(p) with a matrix P that permutes i and j,
from which we must have θi = θj ⇒ pi = pj .

Gradient mapping. This follows directly from Danskin’s theorem (Danskin, 1966). See also Bertsekas (1999,
Proposition B.25).

Temperature scaling. This immediately follows from properties of the argmax operator.

C.2 Proof of Proposition 3

We set Ω := Ψ + IC .

Bregman projections. If Ψ is Legendre type, then ∇Ψ(∇Ψ∗(θ)) = θ for all θ ∈ int(dom(Ψ∗)), where int(D)
denotes the interior of D. Using this and our assumption that dom(Ψ∗) = R

d, we get for all θ ∈ R
d:

BΨ(p||∇Ψ
∗(θ)) = Ψ(p)− 〈θ,p〉+ 〈θ,∇Ψ∗(θ)〉 −Ψ(∇Ψ∗(θ)). (13)

The last two terms are independent of p and therefore

ŷΩ(θ) = argmax
p∈C

〈θ,p〉 −Ψ(p) = argmin
p∈C

BΨ(p||∇Ψ
∗(θ)),

where C ⊆ dom(Ψ). The r.h.s. is the Bregman projection of ∇Ψ∗(θ) = ŷΨ(θ) onto C.

Difference of Bregman divergences. Let p = ŷΩ(θ). Using (13), we obtain

BΨ(y||∇Ψ
∗(θ))−BΨ(p||∇Ψ

∗(θ)) = Ψ(y)− 〈θ,y〉+ 〈θ,p〉 −Ψ(p)

= Ω(y)− 〈θ,y〉+Ω∗(θ)

= LΩ(θ;y), (14)

where we assumed y ∈ C and C ⊆ dom(Ψ), implying Ψ(y) = Ω(y).

If C = dom(Ψ) (i.e., Ω = Ψ), then p = ∇Ψ∗(θ) and BΨ(p||∇Ψ
∗(θ)) = 0. We thus get the composite form of

Fenchel-Young losses
BΩ(y||∇Ω

∗(θ)) = BΩ(y||ŷΩ(θ)) = LΩ(θ;y).
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Bound. Let p = ŷΩ(θ). Since p is the Bregman projection of ∇Ψ∗(θ) onto C, we can use the well-known
Pythagorean theorem for Bregman divergences (see, e.g., Banerjee et al. (2005, Appendix A)) to obtain for all
y ∈ C ⊆ dom(Ψ):

BΨ(y||p) +BΨ(p||∇Ψ
∗(θ)) ≤ BΨ(y||∇Ψ

∗(θ)).

Using (14), we obtain for all y ∈ C ⊆ dom(Ψ):

0 ≤ BΨ(y||p) = BΩ(y||p) ≤ LΩ(θ;y).

Since Ω is a l.s.c. proper convex function, from Proposition 2, we immediately get

p = y ⇔ LΩ(θ;y) = 0⇔ BΩ(y||p) = 0.

C.3 Proof of Proposition 4

The two facts stated in Proposition 4 (H is always non-negative and maximized by the uniform distribution)
follow directly from Jensen’s inequality. Indeed, for all p ∈ △d:

• H(p) ≥
∑d

j=1 pjH(ej) = 0;

• H(1/d) = H
(∑

P∈P
1
d!Pp

)
≥

∑
P∈P

1
d!H(Pp) = H(p),

where P is the set of d×d permutation matrices. Strict concavity ensures that p = 1/d is the unique maximizer.

C.4 Proof of Proposition 5

Let Ω(p) =
∑d

j=1 g(pj) + I△d(p), where g : [0, 1]→ R+ is a non-negative, strictly convex, differentiable function.
Therefore, g′ is strictly monotonic on [0, 1], thus invertible. We show how computing ∇(Ω)∗ reduces to finding
the root of a monotonic scalar function, for which efficient algorithms are available.

From strict convexity and the definition of the convex conjugate,

∇Ω∗(θ) = argmax
p∈△d

〈p,θ〉 −
∑

j

g(pj).

The constrained optimization problem above has Lagrangian

L(p,ν, τ) :=
d∑

j=1

g(pj)− 〈θ + ν,p〉+ τ(1⊤p− 1).

A solution (p⋆,ν⋆, τ⋆) must satisfy the KKT conditions





g′(pj)− θj − νj + τ = 0 ∀j ∈ [d]

〈p,ν〉 = 0

p ∈ △d, ν ≥ 0.

(15)

Let us define

τmin := max(θ)− g′(1) and τmax := max(θ)− g′
(
1

d

)
.

Since g is strictly convex, g′ is increasing and so τmin < τmax. For any τ ∈ [τmin, τmax], we construct ν as

νj :=

{
0, θj − τ ≥ g

′(0)

g′(0)− θj + τ, θj − τ < g′(0)

By construction, νj ≥ 0, satisfying dual feasability. Injecting ν into (15) and combining the two cases, we obtain

g′(pj) = max{θj − τ, g
′(0)}. (16)

We show that i) the stationarity conditions have a unique solution given τ , and ii) [τmin, τmax] forms a sign-
changing bracketing interval, and thus contains τ⋆, which can then be found by one-dimensional search. The
solution verifies all KKT conditions, thus is globally optimal.
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Solving the stationarity conditions. Since g is strictly convex, its derivative g′ is continuous and strictly
increasing, and is thus a one-to-one mapping between [0, 1] and [g′(0), g′(1)]. Denote by (g′)−1 : [g′(0), g′(1)] →
[0, 1] its inverse. If θj − τ ≥ g

′(0), we have

g′(0) ≤ g′(pj) = θj − τ ≤ max(θ)− τmin

= max(θ)−max(θ) + g′(1)

= g′(1).

Otherwise, g′(pj) = g′(0). This verifies that the r.h.s. of (16) is always within the domain of (g′)−1. We can thus
apply the inverse to both sides to solve for pj , obtaining

pj(τ) = (g′)−1(max{θj − τ, g
′(0)}). (17)

Strict convexity implies the optimal p⋆ is unique; it can be seen that τ⋆ is also unique. Indeed, assume optimal
τ⋆1 , τ

⋆
2 . Then, p(τ⋆1 ) = p(τ⋆2 ), so max(θ − τ⋆1 , g

′(0)) = max(θ − τ⋆2 , g
′(0)). This implies either τ⋆1 = τ⋆2 , or

θ − τ⋆{1,2} ≤ g
′(0), in which case p = 0 /∈ △d, which is a contradiction.

Validating the bracketing interval. Consider the primal infeasability function φ(τ) := 〈p(τ),1〉 − 1; p(τ)
is primal feasible iff φ(τ) = 0. We show that φ is decreasing on [τmin, τmax], and that it has opposite signs at the
two extremities. From the intermediate value theorem, the unique root τ⋆ must satisfy τ⋆ ∈ [τmin, τmax].

Since g′ is increasing, so is (g′)−1. Therefore, for all j, pj(τ) is decreasing, and so is the sum φ(τ) =
∑

j pj(τ)−1.
It remains to check the signs at the boundaries.

∑

i

pi(τmax) =
∑

i

(g′)−1(max{θi −max(θ) + g′ (1/d) , g′(0)})

≤ d (g′)−1(max{g′ (1/d) , g′(0)})

= d (g′)−1 (g′ (1/d)) = 1,

where we upper-bounded each term of the sum by the largest one. At the other end,
∑

i

pi(τmin) =
∑

i

(g′)−1(max{θi −max(θ) + g′(1), g′(0)})

≥ (g′)−1(max{g′(1), g′(0)})

= (g′)−1(g′(1)) = 1,

using that a sum of non-negative terms is no less than its largest term. Therefore, φ(τmin) ≥ 0 and
φ(τmax) ≤ 0. This implies that there must exist τ⋆ in [τmin, τmax] satisfying φ(τ

⋆) = 0. The corresponding
triplet (p(τ⋆),ν(τ⋆), τ⋆) thus satisfies all of the KKT conditions, confirming that it is the global solution.

Algorithm 1 is an example of a bisection algorithm for finding an approximate solution; more advanced root
finding methods can also be used. We note that the resulting algorithm resembles the method provided in
Krichene et al. (2015), with a non-trivial difference being the order of the thresholding and (−g)−1 in Eq. (17).

Algorithm 1: Bisection for ŷΩ(θ) = ∇Ω
∗(θ)

Input: θ ∈ R
d, Ω(p) = I△d +

∑
i g(pi)

p(τ) := (g′)−1(max{θ − τ, g′(0)})
φ(τ) := 〈p(τ),1〉 − 1
τmin ← max(θ)− g′(1);
τmax ← max(θ)− g′ (1/d)
τ ← (τmin + τmax)/2
while |φ(τ)| > ǫ

if φ(τ) < 0 τmax ← τ
else τmin ← τ
τ ← (τmin + τmax)/2

Output: ∇ŷΩ(θ) ≈ p(τ)
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C.5 Proof of Proposition 6

We start by proving the following lemma.

Lemma 1 Let H satisfy assumptions A.1–A.3. Then:

1. We have θ ∈ ∂(−H)(ek) iff θk = (−H)∗(θ). That is:

∂(−H)(ek) = {θ ∈ R
d : θk ≥ 〈θ,p〉+ H(p), ∀p ∈ △d}.

2. If θ ∈ ∂(−H)(ek), then, we also have θ′ ∈ ∂(−H)(ek) for any θ′ such that θ′k = θk and θ′i ≤ θi, for all
i 6= k.

Proof of the lemma: Let Ω = −H. From Proposition 1 (order preservation), we can consider ∂Ω(e1)
without loss of generality, in which case any θ ∈ ∂Ω(e1) satisfies θ1 = maxj θj . We have θ ∈ ∂Ω(e1) iff
Ω(e1) = 〈θ, e1〉 − Ω∗(θ) = θ1 − Ω∗(θ). Since Ω(e1) = 0, we must have θ1 = Ω∗(θ) ≥ supp∈△d 〈θ,p〉 − Ω(p),

which proves part 1. To see 2, note that we have θ′k = θk ≥ 〈θ,p〉 − Ω(p) ≥ 〈θ′,p〉 − Ω(p), for all p ∈ △d, from
which the result follows. �

We now proceed to the proof of Proposition 6. Let Ω = −H, and suppose that LΩ has the separation margin
property. Then, θ = me1 satisfies the margin condition θ1 ≥ m+maxj 6=1 θj , hence LΩ(me1, e1) = 0. From the
first part of Proposition 2, this implies me1 ∈ ∂Ω(e1).

Conversely, let us assume that me1 ∈ ∂Ω(e1). From the second part of Lemma 1, this implies that θ ∈ ∂Ω(e1)
for any θ such that θ1 = m and θi ≤ 0 for all i ≥ 2; and more generally we have θ + c1 ∈ ∂Ω(e1). That is, any
θ with θ1 ≥ m+maxi 6=1 θi satisfies θ ∈ ∂Ω(e1). From Proposition 2, this is equivalent to LΩ(θ; e1) = 0.

Let us now determine the margin of LΩ, i.e., the smallest m such that me1 ∈ ∂Ω(e1). From Lemma 1, this is
equivalent to m ≥ mp1 − Ω(p) for any p ∈ △d, i.e., −Ω(p)(1− p1) ≤ m. Note that by Proposition 1 the “most
competitive” p’s are sorted as e1, so we may write p1 = ‖p‖∞ without loss of generality. The margin of LΩ is
the smallest possible such margin, given by (9).

C.6 Proof of Proposition 7

Let us start by showing that conditions 1 and 2 are equivalent. To show that 2 ⇒ 1, take an arbitrary p ∈ △d.
From Fenchel-Young duality and the Danskin’s theorem, we have that ∇(−H)∗(θ) = p ⇒ θ ∈ ∂(−H)(p),
which implies the subdifferential set is non-empty everywhere in the simplex. Let us now prove that 1 ⇒ 2. Let
Ω = −H, and assume that Ω has non-empty subdifferential everywhere in △d. We need to show that for any
p ∈ △d, there is some θ ∈ R

d such that p ∈ argminp′∈△d Ω(p′) − 〈θ,p′〉. The Lagrangian associated with this
minimization problem is:

L(p,µ, λ) = Ω(p)− 〈θ + µ,p〉+ λ(1⊤p− 1).

The KKT conditions are:




0 ∈ ∂pL(p,µ, λ) = ∂Ω(p)− θ − µ+ λ1
〈p,µ〉 = 0
p ∈ △d, µ ≥ 0.

For a given p ∈ △d, we seek θ such that (p,µ, λ) are a solution to the KKT conditions for some µ ≥ 0 and
λ ∈ R.

We will show that such θ exists by simply choosing µ = 0 and λ = 0. Those choices are dual feasible and
guarantee that the slackness complementary condition is satisfied. In this case, we have from the first condition
that θ ∈ ∂Ω(p). From the assumption that Ω has non-empty subdifferential in all the simplex, we have that
for any p ∈ △d we can find a θ ∈ R

d such that (p,θ) are a dual pair, i.e., p = ∇Ω∗(θ), which proves that
∇Ω∗(Rd) = △d.

Next, we show that condition 1⇒ 3. Since ∂(−H)(p) 6= ∅ everywhere in the simplex, we can take an arbitrary
θ ∈ ∂(−H)(ek). From Lemma 1, item 2, we have that θ′ ∈ ∂(−H)(ek) for θ′k = θk and θ′j = minℓ θℓ; since
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(−H)∗ is shift invariant, we can without loss of generality have θ′ = mek for some m > 0, which implies from
Proposition 6 that LΩ has a margin.

Let us show that, if −H is separable, then 3⇒ 1, which establishes equivalence between all conditions 1, 2, and 3.
From Proposition 6, the existing of a separation margin implies that there is somem such thatmek ∈ ∂(−H)(ek).

Let H(p) =
∑d

i=1 h(pi), with h : [0, 1] → R+ concave. Due to assumption A.1, h must satisfy h(0) = h(1) = 0.
Without loss of generality, suppose p = [p̃;0k], where p̃ ∈ relint(△d−k) and 0k is a vector with k zeros. We will
see that there is a vector g ∈ R

d such that g ∈ ∂(−H)(p), i.e., satisfying

−H(p′) ≥ −H(p) + 〈g,p′ − p〉, ∀p′ ∈ △d. (19)

Since p̃ ∈ relint(△d−k), we have p̃i ∈]0, 1[ for i ∈ {1, . . . , d− k}, hence ∂(−h)(p̃i) must be nonempty, since −h is
convex and ]0, 1[ is an open set. We show that the following g = (g1, . . . , gd) ∈ R

d is a subgradient of −H at p:

gi =

{
∂(−h)(p̃i), i = 1, . . . , d− k
m, i = d− k + 1, . . . , d.

By definition of subgradient, we have

−ψ(p′i) ≥ −ψ(p̃i) + ∂(−h)(p̃i)(p
′
i − p̃i), for i = 1, . . . , d− k. (20)

Furthermore, since m upper bounds the separation margin of H, we have from Proposition 6 that m ≥
H([1−p′

i,p
′

i,0,...,0])
1−max{1−p′

i
,p′

i
} =

h(1−p′

i)+h(p′

i)
min{p′

i
,1−p′

i
} ≥

h(p′

i)
p′

i

for any p′i ∈]0, 1]. Hence, we have

−ψ(p′i) ≥ −ψ(0)−m(p′i − 0), for i = d− k + 1, . . . , d. (21)

Summing all inequalities in Eqs. (20)–(21), we obtain the expression in Eq. (19), which finishes the proof.

C.7 Proof of Proposition 8

Define Ω = −H. Let us start by writing the margin expression (9) as a unidimensional optimization problem.
This is done by noticing that the max-generalized entropy problem constrained to max(p) = 1 − t gives p =[
1− t, t

d−1 , . . . ,
t

d−1

]
, for t ∈

[
0, 1− 1

d

]
by a similar argument as the one used in Proposition 4. We obtain:

margin(LΩ) = sup
t∈[0,1− 1

d ]

−Ω
([

1− t, t
d−1 , . . . ,

t
d−1

])

t
.

We write the argument above as A(t) = −Ω(e1+tv)
t , where v := [−1, 1

d−1 , . . . ,
1

d−1 ]. We will first prove that A is

decreasing in [0, 1− 1
d ], which implies that the supremum (and the margin) equals A(0). Note that we have the

following expression for the derivative of any function f(e1 + tv):

(f(e1 + tv))′ = v⊤∇f(e1 + tv).

Using this fact, we can write the derivative A′(t) as:

A′(t) =
−tv⊤∇Ω(e1 + tv) + Ω(e1 + tv)

t2
:=

B(t)

t2
.

In turn, the derivative B′(t) is:

B′(t) = −v⊤∇Ω(e1 + tv)− t(v⊤∇Ω(e1 + tv))′ + v⊤∇Ω(e1 + tv)

= −t(v⊤∇Ω(e1 + tv))′

= −tv⊤∇∇Ω(e1 + tv)v

≤ 0,

where we denote by ∇∇Ω the Hessian of Ω, and used the fact that it is positive semi-definite, due to the convexity
of Ω. This implies that B is decreasing, hence for any t ∈ [0, 1], B(t) ≤ B(0) = Ω(e1) = 0, where we used the
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fact ‖∇Ω(e1)‖ <∞, assumed as a condition of Proposition 7. Therefore, we must also have A′(t) = B(t)
t2 ≤ 0 for

any t ∈ [0, 1], hence A is decreasing, and supt∈[0,1−1/d]A(t) = limt→0+A(t). By L’Hôpital’s rule:

lim
t→0+

A(t) = lim
t→0+

(−Ω(e1 + tv))′

= −v⊤∇Ω(e1)

= ∇1Ω(e1)−
1

d− 1

∑

j≥2

∇jΩ(e1)

= ∇1Ω(e1)−∇2Ω(e1),

which proves the first part.

If Ω is separable, then ∇jΩ(p) = −h′(pj), in particular ∇1Ω(e1) = −h′(1) and ∇2Ω(e1) = −h′(0), yielding

margin(LΩ) = h′(0)− h′(1). Since h is twice differentiable, this equals −
∫ 1

0
h′′(t)dt, completing the proof.


