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to give the relation between λ and ν to ensure the recovery of an optimal rate of convergence when εk → 0. In
particular, if

λ ∈]τ2=3, τ0[, τ =
ν

‖x0 − x∗‖
,

then we asymptotically recover the rate in equation (6). The estimation of τ may be hard, but, in practice, to
ensure good numerical convergence, it suffices to set λ = O

�
‖RTR‖

�
, where the constant used is usually small

(e.g. λ = 10−8‖RTR‖).

6.4 Numerical Range of Chambolle-Pock’s Operator

Figure 6: Field values for the Sonar dataset (Gorman and Sejnowski, 1988) with σ = 4, τ = 1/‖ATA‖. The
dataset has been scaled such that ‖ATA‖ = 1. Left: µ = 10−3, right: µ = 10−1. The smaller numerical range
on the right means faster convergence.
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Figure 7: Plot of the re(Op) = 1 frontier with degree p = 5 for the Sonar dataset (Gorman and Sejnowski, 1988)
for different values of τ and σ. White color represents values for which re(Op) ≤ 1 (converging) and black color
represents values re(Op) > 1 (not converging). Left: µ = 10−3. Right: µ = 10−1.
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6.5 Additional Numerical Results

6.5.1 Smooth Problems

We used binary classification datasets, available at UCI Machine learning repository1, in the experiments.

Figure 8 shows the performance of different variants of the primal-dual algorithms on ridge regression problems
for two different regularization constants on Sonar dataset. We observe that there is no significant difference
in the performance of the method with the momentum term (θ) as compared to the one with no momentum
term. We also observe that although the choice of the steplength parameters mentioned before have consistent
performance across different problems, the improvements obtained with RNA are not very significant. However,
choosing σ = τ = 1/‖A‖ and applying RNA to the PDGM has consistently outperformed all other variants. This
is in consistent with theoretical observations made in Section 4 that one can find optimal steplength parameters
for which RNA is stable and obtains the optimal performance.

0 200 400 600 800 1000

Iterations

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

P
r
i
m
a
l
 
L
o
s
s

PDGM
PDGM + Momentum
PDGM + RNA
PDGM (σ = τ = 1/‖A‖)
PDGM (σ = τ = 1/‖A‖) + RNA

0 100 200 300 400 500 600 700

Iterations

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

P
r
i
m
a
l
 
L
o
s
s

PDGM
PDGM + Momentum
PDGM + RNA
PDGM (σ = τ = 1/‖A‖)
PDGM (σ = τ = 1/‖A‖) + RNA

Figure 8: Quadratic loss on the Sonar dataset. Left : µ = 10−2. Right : µ = 101. Comparison of online RNA
with other variants of primal-dual gradient methods.

Figures 9, 10 and 11 compare the performance of primal-dual algorithms with other well know algorithms on
ridge regression problems. We observe that Nesterov’s accelerated gradient method and primal-dual gradient
method consistently outperformed gradient descent as suggested by the theory as these methods achieve the
optimal rates. The RNA variants of gradient descent and primal-dual methods are competitive and outperform
their base algorithms.

1http://archive.ics.uci.edu/ml/index.php
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Figure 9: Quadratic loss on the Madelon dataset. Left : µ = 10−2. Right : µ = 102. Comparison of online RNA
on primal-dual gradient methods with other first-order algorithms.
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Figure 10: Quadratic loss on the Sonar dataset. Left : µ = 10−2. Right : µ = 101. Comparison of online RNA
on primal-dual gradient methods with other first-order algorithms.
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Figure 11: Quadratic loss on the Mushrooms dataset. Left : µ = 10−2. Right : µ = 102. Comparison of online
RNA on primal-dual gradient methods with other first-order algorithms.
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Figures 12 and 13 show the performance of the methods on logistic regression problems on Madelon and Sonar
datasets respectively. We observe that the RNA variants have substantially improved the performance of the
base algorithms. The L-BFGS method with Armijo backtracking line-search has the optimal performance across
different problems and the RNA variants are competitive to this method.
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Figure 12: Logistic loss on the Madelon dataset. Left: µ = 10−2. Right: µ = 102. Comparison of online RNA
on primal-dual gradient methods with other first-order algorithms.
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Figure 13: Logistic loss on the Sonar dataset. Left: µ = 10−3. Right: µ = 101. Comparison of online RNA on
primal-dual gradient methods with other first-order algorithms.

Figure 14 compares the performance of offline, restart and online versions of RNA on primal-dual gradient
methods on the Sonar dataset. We observe that the improvement in the performance is more pronounced in the
online version of RNA as compared to the offline version.
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Figure 14: Logistic loss on the Sonar dataset. Left : µ = 10−3. Right : µ = 101. Comparison of offline, restart
and online variants of RNA on primal-dual gradient methods.

6.5.2 Non-Smooth Problems

Figure 15: Images used in the experiments. Left: True data. Middle: Noisy data with Gaussian noise ζ = 0.1.
Right: Noisy data with Gaussian noise ζ = 0.05

Table 1 reports the number of iterations required for the distance between the primal function value and the
optimal primal function value to be below certain accuracy. We observe that the PDGM + RNA has consistently
outperformed the PDGM and its momentum variant for all accuracies.

ζ = 0.1, µ = 8 ζ = 0.05, µ = 16

ε = 10−2 ε = 10−4 ε = 10−6 ε = 10−2 ε = 10−4 ε = 10−6

PDGM 488 1842 7146 257 943 3706

PDGM + Momentum 377 1744 6813 226 921 3879

PDGM + offlineRNA 221 1151 5801 141 671 3241

Table 1: Number of iterations required for the primal accuracy to be below ε on the images shown in Figure 15
using primal-dual gradient methods.


