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Figure 4: Quadratic loss on the Madelon dataset (Guyon, 2003). Top: µ = 10−2. Bottom: µ = 102. Left:
Iterations. Right: Time. Comparison of online RNA with other variants of primal-dual gradient methods.
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Figure 5: Logistic loss on the Madelon dataset (Guyon, 2003). Top: µ = 10−2. Bottom: µ = 102. Left:
Iterations. Right: Time. Comparison of offline, restart and online variants of RNA on primal-dual gradient
methods.

6.1 Theorems and Proofs

Theorem 6.1 (Johnson, 1974) For any real 2 by 2 matrix[
a b
c d

]
the boundary of the numerical range is an ellipse whose axes are the line segments joining the points x to y and
w to z respectively where,

x =
1

2
(a+ d− ((a− d)2 + (b+ c)2)1/2)

w =
a+ d

2
− i
∣∣∣∣b− c2

∣∣∣∣
y =

1

2
(a+ d+ ((a− d)2 + (b+ c)2)1/2)

z =
a+ d

2
+ i

∣∣∣∣b− c2

∣∣∣∣
are the points in the complex plane.
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Theorem 6.2 (Fischer and Freund, 1991, Th. 2) Let k ≥ 5, r > 1 and c ∈ R. The polynomial

Tk,κ(z) = Tk(z)/Tk(1− κ)

is the unique solution of problem (12) if either

|1− κ| ≥ 1

2

(
r
√
2 + r−

√
2
)

or

|1− κ| ≥ 1

2ar

(
2a2r − 1 +

√
2a4r − a2r + 1

)
where ar = (r + 1/r)/2.

Theorem 6.3 The numerical range of operator O is given as the convex hull of the numerical ranges of the
operators Oj, i.e.

W (O) = Co{W (O1),W (O2), · · · ,W (On)} (24)

Proof. Let v1, v2, · · · , vn be eigen vectors associated with eigen values λ1, λ2, · · · , λn of the matrix A. We can
write

A =

n∑
j=0

λjvjv
T
j I =

n∑
j=0

vjv
T
j

Let t ∈W (O) ⊂ C. By definition of the numerical range, there exists z ∈ C2n with z∗z = 1 and

t = z∗
[

0 A
−βI (1 + β)A

]
z

= z∗
[

0
∑n
j=1 λjvjv

T
j

−β
∑n
j=1 vjv

T
j (1 + β)

∑n
j=1 λjvjv

T
j

]
z

=

n∑
j=0

z∗
([

0 λj
−β (1 + β)λj

]
⊗ vjvTj

)
vec([z1, z2])

=

n∑
j=0

z∗ vec

(
vjv

T
j [z1, z2]

[
0 λj
−β (1 + β)λj

]T)

and since vjv
T
j vjv

T
j = vjv

T
j , this last term can be written

t =

n∑
j=0

Tr

(
vjv

T
j [z1, z2]

[
0 λj
−β (1 + β)λj

]T
[z1, z2]∗vjv

T
j

)

=

n∑
j=0

Tr(vjv
T
j )

(
[vTj z1, v

T
j z2]

[
0 λj
−β (1 + β)λj

]T
[z∗1vj , z

∗
2vj ]

T

)

Now, let wj = [z∗1vj , z
∗
2vj ]

T , and

yj =
wTj Ojwj

‖wj‖22
and by the definition of the numerical range, we have yj ∈W (Oj). Therefore,

t =

n∑
j=0

(
wTj Ojwj

‖wj‖22

)
‖wj‖22

hence
t ∈ Co(W (O1),W (O2), · · · ,W (On)).
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We have shown that if t ∈ W (O) then t ∈ Co(W (O1),W (O2), · · · ,W (On)). We can show the converse by
following the above steps backwards. That is, if t ∈ Co(W (O1),W (O2), · · · ,W (On)) then we have,

t =

n∑
j=0

θj

(
wTj Ojwj

‖wj‖22

)

where θj > 0,
∑n
j=0 θj = 1 and wj ∈ C2. Now, let

z =

n∑
j=0

vec(vjw
T
j )θ

1/2
j

‖wj‖

and we have,

t =

n∑
j=0

[z∗1vjz
∗
2vj ]Oj

[
vTj z1
vTj z2

]

wherein we used the fact that vTj vk = 0 for any j 6= k and vTj vj = 1 in computing wTj = [z∗1vjz
∗
2vj ]. We also note

that z∗z = 1 by the definition of z and rewriting the sum in the matrix form we can show that t ∈W (O) which
completes the proof.

6.2 Online RNA

In this section, we develop the online-RNA algorithm, which injects the extrapolated point built by RNA directly
inside the algorithm. This means accelerating and restarting the algorithm at each step, thus improving its rate
of convergence.

This modification of RNA procedure was introduced in (Scieur et al., 2018), and consist of coupling the algorithm
g(x) with the RNA step as follow, {

xk+1 = g(yk),

yk+1 =
∑k+1
i=1 cixi,

(25)

where coefficients ci are computed using RNA algorithm 1 with residues xk+1 − yk instead of xk+1 − xk.

6.3 Extension to nonlinear functions

It is possible to extend our results on quadratic functions to nonlinear functions, as done in (Scieur et al., 2016)
and (Scieur et al., 2017). Convergence of RNA in the general case is essentially obtained via a perturbation
analysis of the quadratic case. Indeed, at a step k, consider the following perturbed linear iteration

g(xk) = A(xk − x∗) + x∗ + εk (26)

where εk corresponds to any kind of perturbation (e.g. non-linear or stochastic residual noise), and A corresponds
to the Hessian of the operator g(x) at the fixed-point x∗ = g(x∗). This perturbed linear iteration corresponds
to a perturbation of (3), and includes for example, SGD+momentum steps on a non-linear function f(x), where
εk is the sum of the second order term in Taylor series expansion of the SGD+momentum operator with the
stochastic noise induced by the SGD step at iteration k.

Given our analysis of the linear case, all perturbation results of (Scieur et al., 2016) and (Scieur et al., 2017) still
apply. Assuming bounded perturbation in expectation, i.e.,

E[‖εk‖] ≤ ν ∀k

where ν typically bounds the deterministic perturbation arising due to the second order Taylor term and the
variance of a SGD step, then, one can derive the global bound of Proposition 5.2 in (Scieur et al., 2017). This
bound is difficult to analyze as it depends on the value of a so-called regularized Chebyshev polynomial, which
is still unknown (but this time, it lies on the imaginary plane rather than the real line). However, it is possible
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to give the relation between λ and ν to ensure the recovery of an optimal rate of convergence when εk → 0. In
particular, if

λ ∈]τ2/3, τ0[, τ =
ν

‖x0 − x∗‖
,

then we asymptotically recover the rate in equation (6). The estimation of τ may be hard, but, in practice, to
ensure good numerical convergence, it suffices to set λ = O

(
‖RTR‖

)
, where the constant used is usually small

(e.g. λ = 10−8‖RTR‖).

6.4 Numerical Range of Chambolle-Pock’s Operator
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Figure 6: Field values for the Sonar dataset (Gorman and Sejnowski, 1988) with σ = 4, τ = 1/‖ATA‖. The
dataset has been scaled such that ‖ATA‖ = 1. Left: µ = 10−3, right: µ = 10−1. The smaller numerical range
on the right means faster convergence.
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Figure 7: Plot of the re(Op) = 1 frontier with degree p = 5 for the Sonar dataset (Gorman and Sejnowski, 1988)
for different values of τ and σ. White color represents values for which re(Op) ≤ 1 (converging) and black color
represents values re(Op) > 1 (not converging). Left: µ = 10−3. Right: µ = 10−1.
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6.5 Additional Numerical Results

6.5.1 Smooth Problems

We used binary classification datasets, available at UCI Machine learning repository1, in the experiments.

Figure 8 shows the performance of different variants of the primal-dual algorithms on ridge regression problems
for two different regularization constants on Sonar dataset. We observe that there is no significant difference
in the performance of the method with the momentum term (θ) as compared to the one with no momentum
term. We also observe that although the choice of the steplength parameters mentioned before have consistent
performance across different problems, the improvements obtained with RNA are not very significant. However,
choosing σ = τ = 1/‖A‖ and applying RNA to the PDGM has consistently outperformed all other variants. This
is in consistent with theoretical observations made in Section 4 that one can find optimal steplength parameters
for which RNA is stable and obtains the optimal performance.
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Figure 8: Quadratic loss on the Sonar dataset. Left : µ = 10−2. Right : µ = 101. Comparison of online RNA
with other variants of primal-dual gradient methods.

Figures 9, 10 and 11 compare the performance of primal-dual algorithms with other well know algorithms on
ridge regression problems. We observe that Nesterov’s accelerated gradient method and primal-dual gradient
method consistently outperformed gradient descent as suggested by the theory as these methods achieve the
optimal rates. The RNA variants of gradient descent and primal-dual methods are competitive and outperform
their base algorithms.

1http://archive.ics.uci.edu/ml/index.php
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Figure 9: Quadratic loss on the Madelon dataset. Left : µ = 10−2. Right : µ = 102. Comparison of online RNA
on primal-dual gradient methods with other first-order algorithms.
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Figure 10: Quadratic loss on the Sonar dataset. Left : µ = 10−2. Right : µ = 101. Comparison of online RNA
on primal-dual gradient methods with other first-order algorithms.
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Figure 11: Quadratic loss on the Mushrooms dataset. Left : µ = 10−2. Right : µ = 102. Comparison of online
RNA on primal-dual gradient methods with other first-order algorithms.
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Figures 12 and 13 show the performance of the methods on logistic regression problems on Madelon and Sonar
datasets respectively. We observe that the RNA variants have substantially improved the performance of the
base algorithms. The L-BFGS method with Armijo backtracking line-search has the optimal performance across
different problems and the RNA variants are competitive to this method.
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Figure 12: Logistic loss on the Madelon dataset. Left: µ = 10−2. Right: µ = 102. Comparison of online RNA
on primal-dual gradient methods with other first-order algorithms.
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Figure 13: Logistic loss on the Sonar dataset. Left: µ = 10−3. Right: µ = 101. Comparison of online RNA on
primal-dual gradient methods with other first-order algorithms.

Figure 14 compares the performance of offline, restart and online versions of RNA on primal-dual gradient
methods on the Sonar dataset. We observe that the improvement in the performance is more pronounced in the
online version of RNA as compared to the offline version.
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Figure 14: Logistic loss on the Sonar dataset. Left : µ = 10−3. Right : µ = 101. Comparison of offline, restart
and online variants of RNA on primal-dual gradient methods.

6.5.2 Non-Smooth Problems

Figure 15: Images used in the experiments. Left: True data. Middle: Noisy data with Gaussian noise ζ = 0.1.
Right: Noisy data with Gaussian noise ζ = 0.05

Table 1 reports the number of iterations required for the distance between the primal function value and the
optimal primal function value to be below certain accuracy. We observe that the PDGM + RNA has consistently
outperformed the PDGM and its momentum variant for all accuracies.

ζ = 0.1, µ = 8 ζ = 0.05, µ = 16

ε = 10−2 ε = 10−4 ε = 10−6 ε = 10−2 ε = 10−4 ε = 10−6

PDGM 488 1842 7146 257 943 3706

PDGM + Momentum 377 1744 6813 226 921 3879

PDGM + offlineRNA 221 1151 5801 141 671 3241

Table 1: Number of iterations required for the primal accuracy to be below ε on the images shown in Figure 15
using primal-dual gradient methods.


