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Abstract

Machine learning has witnessed tremendous
success in solving tasks depending on a sin-
gle hyperparameter. When considering si-
multaneously a finite number of tasks, multi-
task learning enables one to account for the
similarities of the tasks via appropriate reg-
ularizers. A step further consists of learning
a continuum of tasks for various loss func-
tions. A promising approach, called Para-
metric Task Learning, has paved the way
in the continuum setting for affine models
and piecewise-linear loss functions. In this
work, we introduce a novel approach called
Infinite Task Learning: its goal is to learn
a function whose output is a function over
the hyperparameter space. We leverage tools
from operator-valued kernels and the associ-
ated Vector-Valued Reproducing Kernel Hil-
bert Space that provide an explicit control
over the role of the hyperparameters, and
also allows us to consider new type of con-
straints. We provide generalization guaran-
tees to the suggested scheme and illustrate
its efficiency in cost-sensitive classification,
quantile regression and density level set es-
timation.

1 INTRODUCTION

Several fundamental problems in machine learning
and statistics can be phrased as the minimization
of a loss function described by a hyperparameter.
The hyperparameter might capture numerous aspects
of the problem: (i) the tolerance w. r. t. outliers
as the ϵ-insensitivity in Support Vector Regression
(Vapnik et al., 1997), (ii) importance of smoothness
or sparsity such as the weight of the l2-norm in
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Tikhonov regularization (Tikhonov et al., 1977), l1-
norm in LASSO (Tibshirani, 1996), or more general
structured-sparsity inducing norms (Bach et al., 2012),
(iii) Density Level-Set Estimation (DLSE), see for ex-
ample one-class support vector machines One-Class
Support Vector Machine (OCSVM, Schölkopf et al.,
2000), (iv) confidence as examplified by Quantile Re-
gression (QR, Koenker et al., 1978), or (v) importance
of different decisions as implemented by Cost-Sensitive
Classification (CSC, Zadrozny et al., 2001).
In various cases including QR, CSC or DLSE, one
is interested in solving the parameterized task for sev-
eral hyperparameter values. Multi-Task Learning (Ev-
geniou and Pontil, 2004) provides a principled way of
benefiting from the relationship between similar tasks
while preserving local properties of the algorithms: ν-
property in DLSE (Glazer et al., 2013) or quantile
property in QR (Takeuchi, Le, et al., 2006).
A natural extension from the traditional multi-task set-
ting is to provide a prediction tool being able to deal
with any value of the hyperparameter. In their sem-
inal work, (Takeuchi, Hongo, et al., 2013) extended
multi-task learning by considering an infinite number
of parametrized tasks in a framework called Paramet-
ric Task Learning (PTL). Assuming that the loss is
piecewise affine in the hyperparameter, the authors are
able to get the whole solution path through paramet-
ric programming, relying on techniques developed by
Hastie et al. (2004).1

In this paper, we relax the affine model assumption
on the tasks as well as the piecewise-linear assumption
on the loss, and take a different angle. We propose
Infinite Task Learning (ITL) within the framework of
function-valued function learning to handle a contin-
uum number of parameterized tasks. For that purpose
we leverage tools from operator-valued kernels and the
associated Vector-Valued Reproducing Kernel Hilbert
Space (vv-RKHS, Pedrick, 1957). The idea is that

†Both authors contributed equally to this work.
1Alternative optimization techniques to deal with

countable or continuous hyperparameter spaces could in-
clude semi-infinite (Stein, 2012) or bi-level programming
(Wen et al., 1991).
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the output is a function on the hyperparameters —
modelled as scalar-valued Reproducing Kernel Hilbert
Space (RKHS)—, which provides an explicit control
over the role of the hyperparameters, and also enables
us to consider new type of constraints. In the studied
framework each task is described by a (scalar-valued)
RKHS over the input space which is capable of deal-
ing with nonlinearities. The resulting ITL formulation
relying on vv-RKHS specifically encompasses existing
multi-task approaches including joint quantile regres-
sion (Sangnier et al., 2016) or multi-task variants of
density level set estimation (Glazer et al., 2013) by
encoding a continuum of tasks.
Our contributions can be summarized as follows:
• We propose ITL, a novel vv-RKHS-based scheme to

learn a continuum of tasks parametrized by a hyper-
parameter and design new regularizers.

• We prove excess risk bounds on ITL and illustrate its
efficiency in quantile regression, cost-sensitive classi-
fication, and density level set estimation.

The paper is structured as follows. The ITL problem is
defined in Section 2. In Section 3 we detail how the re-
sulting learning problem can be tackled in vv-RKHSs.
Excess risk bounds is the focus of Section 4. Numeri-
cal results are presented in Section 5. Conclusions are
drawn in Section 6. Details of proofs are given in the
supplement.

2 FROM PARAMETERIZED TO
INFINITE TASK LEARNING

After introducing a few notations, we gradually define
our goal by moving from single parameterized tasks
(Section 2.1) to ITL (Section 2.3) through multi-task
learning (Section 2.2).

Notations: S is the indicator function of set S.
We use the

∑n,m
i,j=1 shorthand for

∑n
i=1

∑m
j=1. |x|+=

max(x, 0) denotes positive part. F (X; Y) stands for
the set of X → Y functions. Let Z be Hilbert space
and L(Z) be the space of Z → Z bounded linear
operators. Let K : X × X → L(Z) be an operator-
valued kernel, i. e.

∑n
i,j=1⟨zi, K(xi, xj)zj⟩Z ! 0 for

all n ∈ N∗ and x1, . . . , xn ∈ X and z1, . . . , zn ∈ Z
and K(x, z) = K(z, x)∗ for all x, z ∈ X. K gives rise
to the Vector-Valued Reproducing Kernel Hilbert Spa-
ce HK = span { K(·, x)z | x ∈ X, z ∈ Z } ⊂ F (X; Z),
where span {·} denotes the closure of the linear span
of its argument. For futher details on vv-RKHS the
reader is referred to (Carmeli et al., 2010).

2.1 Learning Parameterized Tasks

A supervised parametrized task is defined as follows.
Let (X, Y) ∈ X × Y be a random variable with joint
distribution PX,Y which is assumed to be fixed but un-
known; we also assume that Y ⊂ R. We have access
to n independent identically distributed (i. i. d.) ob-
servations called training samples: S := ((xi, yi))ni=1 ∼
P⊗n
X,Y . Let Θ be the domain of hyperparameters, and

vθ:Y × Y → R be a loss function associated to θ ∈ Θ.
Let H ⊂ F (X; Y) denote our hypothesis class; through-
out the paper H is assumed to be a Hilbert space with
inner product ⟨·, ·⟩H. For a given θ, the goal is to
estimate the minimizer of the expected risk

Rθ(h) := EX,Y [vθ(Y, h(X))] (1)

over H, using the training sample S. This task can
be addressed by solving the regularized empirical risk
minimization problem

min
h∈H

RθS(h) + Ω(h), (2)

where RθS(h) := 1
n

∑n
i=1 vθ(yi, h(xi)) is the empirical

risk and Ω : H → R is a regularizer. Below we give
three examples.

Quantile Regression: In this setting θ ∈ (0, 1).
For a given hyperparameter θ, in Quantile Regression
the goal is to predict the θ-quantile of the real-valued
output conditional distribution PY|X. The task can be
tackled using the pinball loss (Koenker et al., 1978)
defined in Eq. (3) and illustrated in Fig. S.3.

vθ(y, h(x)) = |θ− R−(y− h(x))||y− h(x)|, (3)
Ω(h) = λ

2 ∥h∥
2
H, λ > 0.

Cost-Sensitive Classification: Our next example
considers binary classification (Y = {−1, 1 }) where a
(possibly) different cost is associated with each class,
as it is often the case in medical diagnosis. The sign of
h ∈ H yields the estimated class and in cost-sensitive
classification one takes

vθ(y, h(x)) =
∣∣ 1

2 (θ+ 1) − {−1 }(y)
∣∣|1 − yh(x)|+, (4)

Ω(h) = λ
2 ∥h∥

2
H, λ > 0.

The θ ∈ [−1, 1] hyperparameter captures the trade-
off between the importance of correctly classifying the
samples having −1 and +1 labels. When θ is close to
−1, the obtained h focuses on classifying well class −1,
and vice-versa. Typically, it is desirable for a physician
to choose a posteriori the value of the hyperparameter
at which he wants to predict. Since this cost can rarely
be considered to be fixed, this motivates to learn one
model giving access to all hyperparameter values.
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Density Level-Set Estimation: Examples of pa-
rameterized tasks can also be found in the unsuper-
vised setting. For instance in outlier detection, the
goal is to separate outliers from inliers. A classical
technique to tackle this task is OCSVM (Schölkopf
et al., 2000). OCSVM has a free parameter θ ∈ (0, 1],
which can be proven to be an upper bound on the frac-
tion of outliers. When using a Gaussian kernel with
a bandwidth tending towards zero, OCSVM consis-
tently estimates density level sets (Vert et al., 2006).
This unsupervised learning problem can be empirically
described by the minimization of a regularized empiri-
cal risk RθS(h, t) + Ω(h), solved jointly over h ∈ H and
t ∈ R with

vθ(t, h(x)) = −t + 1
θ
|t− h(x)|+, Ω(h) = 1

2∥h∥
2
H.

2.2 Solving a Finite Number of Tasks as
Multi-Task Learning

In all the aforementioned problems, one is rarely inter-
ested in the choice of a single hyperparameter value
(θ) and associated risk

(
RθS
)
, but rather in the joint

solution of multiple tasks. The naive approach of solv-
ing the different tasks independently can easily lead
to inconsistencies. A principled way of solving many
parameterized tasks has been cast as a MTL problem
(Evgeniou, Micchelli, et al., 2005) which takes into ac-
count the similarities between tasks and helps provid-
ing consistent solutions. For example it is possible to
encode the similarities of the different tasks in MTL
through an explicit constraint function (Ciliberto et
al., 2017). In the current work, the similarity between
tasks is designed in an implicit way through the use
of a kernel on the hyperparameters. Moreover, in con-
trast to MTL, in our case the input space and the
training samples are the same for each task; a task is
specified by a value of the hyperparameter. This set-
ting is sometimes refered to as multi-output learning
(Álvarez et al., 2012).
Formally, assume that we have p tasks described by
parameters (θj)pj=1. The idea of multi-task learning
is to minimize the sum of the local loss functions R

θj

S ,
i. e.

arg min
h

∑p

j=1
R
θj

S (hj) + Ω(h),

where the individual tasks are modelled by the real-
valued hj functions, the overall Rp-valued model is
the vector-valued function h: x (→ (h1(x), . . . , hp(x)),
and Ω is a regularization term encoding similarities
between tasks.
It is instructive to consider two concrete examples:
• In joint quantile regression one can use the regu-

larizer to encourage that the predicted conditional

quantile estimates for two similar quantile values are
similar. This idea forms the basis of the approach
proposed by Sangnier et al. (2016) who formulates
the joint quantile regression problem in a vector-
valued Reproducing Kernel Hilbert Space with an
appropriate decomposable kernel that encodes the
links between the tasks. The obtained solution
shows less quantile curve crossings compared to esti-
mators not exploiting the dependencies of the tasks
as well as an improved accuracy.

• A multi-task version of DLSE has recently been pre-
sented by Glazer et al. (2013) with the goal of obtain-
ing nested density level sets as θ grows. Similarly to
joint quantile regression, it is crucial to take into ac-
count the similarities of the tasks in the joint model
to efficiently solve this problem.

2.3 Towards Infinite Task Learning

In the following, we propose a novel framework called
Infinite Task Learning in which we learn a function-
valued function h ∈ F (X; F (Θ; Y)). Our goal is to be
able to handle new tasks after the learning phase and
thus, not to be limited to given predefined values of the
hyperparameter. Regarding this goal, our framework
generalizes the Parametric Task Learning approach in-
troduced by Takeuchi, Hongo, et al. (2013), by allow-
ing a wider class of models and relaxing the hypothesis
of piece-wise linearity of the loss function. Moreover
a nice byproduct of this vv-RKHS based approach is
that one can benefit from the functional point of view,
design new regularizers and impose various constraints
on the whole continuum of tasks, e. g.,
• The continuity of the θ (→ h(x)(θ) function is a

natural desirable property: for a given input x, the
predictions on similar tasks should also be similar.

• Another example is to impose a shape constraint in
QR: the conditional quantile should be increasing
w. r. t. the hyperparameter θ. This requirement
can be imposed through the functional view of the
problem.

• In DLSE, to get nested level sets, one would want
that for all x ∈ X, the decision function θ (→
R+(h(x)(θ) − t(θ)) changes its sign only once.

To keep the presentation simple, in the sequel we are
going to focus on ITL in the supervised setting; unsu-
pervised tasks can be handled similarly.
Assume that h belongs to some space H ⊆
F (X; F (Θ; Y)) and introduce an integrated loss func-
tion

V(y, h(x)) :=
∫

Θ
v(θ, y, h(x)(θ))dµ(θ), (5)
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where the local loss v: Θ × Y× Y → R denotes vθ seen
as a function of three variables including the hyperpa-
rameter and µ is a probability measure on Θ which en-
codes the importance of the prediction at different hy-
perparameter values. Without prior information and
for compact Θ, one may consider µ to be uniform. The
true risk reads then

R(h) := EX,Y [V(Y, h(X))] . (6)

Intuitively, minimizing the expectation of the integral
over θ in a rich enough space corresponds to search-
ing for a pointwise minimizer x (→ h∗(x)(θ) of the
parametrized tasks introduced in Eq. (1) with, for in-
stance, the implicit space constraint that θ (→ h∗(x)(θ)
is a continuous function for each input x. We show in
Proposition S.7.1 that this is precisely the case in QR.
Interestingly, the empirical counterpart of the true
risk minimization can now be considered with a much
richer family of penalty terms:

min
h∈H

RS(h) + Ω(h), RS(h) := 1
n

∑n

i=1
V(yi, h(xi)). (7)

Here, Ω(h) can be a weighted sum of various penalties
• imposed directly on (θ, x) (→ h(x)(θ), or
• integrated constraints on either θ (→ h(x)(θ) or x (→

h(x)(θ) such as
∫

X

Ω1(h(x)(·))dP(x) or
∫

Θ
Ω2(h(·)(θ))dµ(θ)

which allow the property enforced by Ω1 or Ω2 to
hold pointwise on X or Θ respectively.

It is worthwhile to see a concrete example before turn-
ing to the numerical solution (Section 3): in quan-
tile regression, the monotonicity assumption of the
θ (→ h(x)(θ) function can be encoded by choosing Ω1
as

Ω1(f) = λnc

∫

Θ
|−(∂f)(θ)|+dµ(θ).

Many different models (H) could be applied to solve
this problem. In our work we consider Reproducing
Kernel Hilbert Spaces as they offer a simple and prin-
cipled way to define regularizers by the appropriate
choice of kernels and exhibit a significant flexibility.

3 SOLVING THE PROBLEM IN
RKHSs

This section is dedicated to solving the ITL problem
defined in Eq. (7). In Section 3.1 we focus on the ob-
jective (Ṽ). The applied vv-RKHS model family is
detailed in Section 3.2 with various penalty examples
followed by representer theorems, giving rise to com-
putational tractability.

3.1 Sampled Empirical Risk

In practice solving Eq. (7) can be rather challenging
due to the integral over θ. One might consider different
numerical integration techniques to handle this issue.
We focus here on Quasi Monte Carlo (QMC) methods2

as they allow (i) efficient optimization over vv-RKHSs
which we will use for modelling H (Proposition 3.1),
and (ii) enable us to derive generalization guarantees
(Proposition 4.1). Indeed, let

Ṽ(y, h(x)) :=
∑m

j=1
wjv(θj, y, h(x)(θj)) (8)

be the QMC approximation of Eq. (5). Let wj =
m−1F−1(θj), and (θj)mj=1 be a sequence with val-
ues in [0, 1]d such as the Sobol or Halton sequence
where µ is assumed to be absolutely continuous w. r. t.
the Lebesgue measure and F is the associated cdf.
Using this notation and the training samples S =
((xi, yi))ni=1, the empirical risk takes the form

R̃S(h) := 1
n

∑n

i=1
Ṽ(yi, h(xi)) (9)

and the problem to solve is

min
h∈H

R̃S(h) + Ω(h). (10)

3.2 Hypothesis class (H)

Recall that H ⊆ F (X; F (Θ; Y)), in other words h(x)
is a Θ (→ Y function for all x ∈ X. In this work we
assume that the Θ (→ Y mapping can be described
by an RKHS HkΘ associated to a kΘ: Θ × Θ → R
scalar-valued kernel defined on the hyperparameters.
Let kX:X × X → R be a scalar-valued kernel on the
input space. The x (→ (hyperparameter (→ output)
relation, i. e. h:X → HkΘ is then modelled by
the Vector-Valued Reproducing Kernel Hilbert Spa-
ce HK = span { K(·, x)f | x ∈ X, f ∈ HkΘ }, where
the operator-valued kernel K is defined as K(x, z) =
kX(x, z)I, and I = IHkΘ

is the identity operator on
HkΘ .
This so-called decomposable Operator-Valued Kernel
has several benefits and gives rise to a function space
with a well-known structure. One can consider ele-
ments h ∈ HK as mappings from X to HkΘ , and also
as functions from (X×Θ) to R. It is indeed known that
there is an isometry between HK and HkX

⊗HkΘ , the
RKHS associated to the product kernel kX⊗kΘ. The
equivalence between these views allows a great flexi-
bility and enables one to follow a functional point of
view (to analyse statistical aspects) or to leverage the

2See Section S.10.1 of the supplement for a discussion
on other integration techniques.
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tensor product point of view (to design new kind of
penalization schemes). Below we detail various regu-
larizers before focusing on the representer theorems.
• Ridge Penalty: For QR and CSC, a natural reg-

ularization is the squared vv-RKHS norm

ΩRIDGE(h) = λ
2 ∥h∥

2
HK

, λ > 0. (11)

This choice is amenable to excess risk analysis (see
Proposition 4.1). It can be also seen as the counter-
part of the classical (multi-task regularization term
introduced by Sangnier et al. (2016), compatible
with an infinite number of tasks. ∥·∥2

HK
acts by

constraining the solution to a ball of a finite radius
within the vv-RKHS, whose shape is controlled by
both kX and kΘ.

• L2,1-penalty: For DLSE, it is more adequate to
apply an L2,1-RKHS mixed regularizer:

ΩDLSE(h) = 1
2

∫

Θ
∥h(·)(θ)∥2

HkX
dµ(θ) (12)

which is an example of a Θ-integrated penalty. This
Ω choice allows the preservation of the θ-property
(see Fig. 2), i. e. that the proportion of the outliers
is θ.

• Shape Constraints: Taking the example of QR it
is advantageous to ensure the monotonicity of the
estimated quantile function Let ∂Θh denotes the
derivative of h(x)(θ) with respect to θ. Then one
should solve

arg min
h∈HK

R̃S(h) + ΩRIDGE(h)

s. t. ∀(x,θ) ∈ X× Θ, (∂Θh)(x)(θ) ! 0.

However, the functional constraint prevents a
tractable optimization scheme. To mitigate this bot-
tleneck, we penalize if the derivative of h w. r. t. θ
is negative:

Ωnc(h) := λnc

∫

X

∫

Θ
|−(∂Θh)(x)(θ)|+dµ(θ)dP(x). (13)

When P := PX this penalization can rely on the
same anchors and weights as the ones used to ap-
proximate the integrated loss function:

Ω̃nc(h) = λnc
∑n,m

i,j=1
wj|−(∂Xh)(xi)(θj)|+. (14)

Thus, one can modify the overall regularizer in QR
to be

Ω(h) := ΩRIDGE(h) + Ω̃nc(h). (15)

3.3 Representer Theorems

Apart from the flexibility of regularizer design, the
other advantage of applying vv-RKHS as hypothesis

class is that it gives rise to finite-dimensional represen-
tation of the ITL solution under mild conditions. The
representer theorem Proposition 3.1 applies to CSC
when λnc = 0 and to QR when λnc > 0.
Proposition 3.1 (Representer). Assume that for
∀θ ∈ Θ, vθ is a proper lower semicontinuous convex
function with respect to its second argument. Then

arg min
h∈HK

R̃S(h) + Ω(h), λ > 0

with Ω(h) defined as in Eq. (15), has a unique solution
h∗, and ∃ (αij)

n,m
i,j=1 , (βij)

n,m
i,j=1 ∈ R2nm such that ∀x ∈

X

h∗(x) =
n∑

i=1
kX(x, xi)

(
m∑

j=1
αijkΘ(·, θj) + βij(∂2kΘ)(·, θj)

)

.

Sketch of the proof. First, we prove that the func-
tion to minimize is coercive, convex, lower semicontin-
uous, hence it has a unique minimum. Then HK is
decomposed into two orthogonal subspaces and we use
the reproducing property to get the finite representa-
tion.

For DLSE, we similarly get a representer theorem with
the following modelling choice. Let kb : Θ × Θ → R
be a scalar-valued kernel (possibly different from kθ),
Hkb the associated RKHS and t ∈ Hkb . Assume
also that Θ ⊆ [ϵ, 1] where ϵ > 0.3 Then, learning a
continuum of level sets boils down to the minimization
problem

arg min
h∈HK,t∈Hkb

R̃S(h, t) + Ω̃(h, t), λ > 0, (16)

where Ω̃(h, t) = 1
2
∑m

j=1 wj∥h(·)(θj)∥2
HkX

+ λ
2 ∥t∥

2
Hkb

,
R̃S(h, t) = 1

n

∑n,m
i,j=1

wj

θj

(
|t(θj) − h(xi)(θj)|+ − t(θj)

)
.

Proposition 3.2 (Representer). Assume that kΘ is
bounded: supθ∈Θ kΘ(θ,θ) < +∞. Then the minimiza-
tion problem described in Eq. (16) has a unique so-
lution (h∗, t∗) and there exist (αij)

n,m
i,j=1 ∈ Rn×m and

(βj)
m
j=1 ∈ Rm such that for ∀(x,θ) ∈ X× [ϵ, 1],

h∗(x)(θ) =
∑n,m

i,j=1
αijkX(x, xi)kΘ(θ,θj),

t∗(θ) =
∑m

j=1
βjkb(θ,θj).

Sketch of the proof. First we show that the infimum
exists, and that it must be attained in some subspace of
HK×Hkb over which the objective function is coercive.
By the reproducing property, we get the claimed finite
decomposition.

Remarks:
3We choose Θ ⊆ [ϵ, 1], ϵ > 0 rather than Θ ⊆ [0, 1]

because the loss might not be integrable on [0, 1].
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Table 1: Quantile Regression on 20 UCI datasets. Reported: 100×value of the pinball loss, 100×crossing loss
(smaller is better). p.-val.: outcome of the Mann-Whitney-Wilcoxon test of JQR vs. ∞-QR and Independent
vs. ∞-QR. Boldface: significant values w. r. t. ∞-QR.

dataset JQR IND-QR ∞-QR

(pinball p.-val.) (cross p.-val.) (pinball p.-val.) (cross p.-val.) pinball cross

CobarOre 159 ± 24 9 · 10−01 0.1 ± 0.4 6 · 10−01 150 ± 21 2 · 10−01 0.3 ± 0.8 7 · 10−01 165 ± 36 2.0 ± 6.0
engel 175 ± 555 6 · 10−01 0.0 ± 0.2 1 · 10+00 63 ± 53 8 · 10−01 4.0 ± 12.8 8 · 10−01 47 ± 6 0.0 ± 0.1

BostonHousing 49 ± 4 8 · 10−01 0.7 ± 0.7 2 · 10−01 49 ± 4 8 · 10−01 1.3 ± 1.2 1 · 10−05 49 ± 4 0.3 ± 0.5
caution 88 ± 17 6 · 10−01 0.1 ± 0.2 6 · 10−01 89 ± 19 4 · 10−01 0.3 ± 0.4 2 · 10−04 85 ± 16 0.0 ± 0.1

ftcollinssnow 154 ± 16 8 · 10−01 0.0 ± 0.0 6 · 10−01 155 ± 13 9 · 10−01 0.2 ± 0.9 8 · 10−01 156 ± 17 0.1 ± 0.6
highway 103 ± 19 4 · 10−01 0.8 ± 1.4 2 · 10−02 99 ± 20 9 · 10−01 6.2 ± 4.1 1 · 10−07 105 ± 36 0.1 ± 0.4
heights 127 ± 3 1 · 10+00 0.0 ± 0.0 1 · 10+00 127 ± 3 9 · 10−01 0.0 ± 0.0 1 · 10+00 127 ± 3 0.0 ± 0.0
sniffer 43 ± 6 8 · 10−01 0.1 ± 0.3 2 · 10−01 44 ± 5 7 · 10−01 1.4 ± 1.2 6 · 10−07 44 ± 7 0.1 ± 0.1

snowgeese 55 ± 20 7 · 10−01 0.3 ± 0.8 3 · 10−01 53 ± 18 6 · 10−01 0.4 ± 1.0 5 · 10−02 57 ± 20 0.2 ± 0.6
ufc 81 ± 5 6 · 10−01 0.0 ± 0.0 4 · 10−04 82 ± 5 7 · 10−01 1.0 ± 1.4 2 · 10−04 82 ± 4 0.1 ± 0.3

BigMac2003 80 ± 21 7 · 10−01 1.4 ± 2.1 4 · 10−04 74 ± 24 9 · 10−02 0.9 ± 1.1 7 · 10−05 84 ± 24 0.2 ± 0.4
UN3 98 ± 9 8 · 10−01 0.0 ± 0.0 1 · 10−01 99 ± 9 1 · 10+00 1.2 ± 1.0 1 · 10−05 99 ± 10 0.1 ± 0.4

birthwt 141 ± 13 1 · 10+00 0.0 ± 0.0 6 · 10−01 140 ± 12 9 · 10−01 0.1 ± 0.2 7 · 10−02 141 ± 12 0.0 ± 0.0
crabs 11 ± 1 4 · 10−05 0.0 ± 0.0 8 · 10−01 11 ± 1 2 · 10−04 0.0 ± 0.0 2 · 10−05 13 ± 3 0.0 ± 0.0

GAGurine 61 ± 7 4 · 10−01 0.0 ± 0.1 3 · 10−03 62 ± 7 5 · 10−01 0.1 ± 0.2 4 · 10−04 62 ± 7 0.0 ± 0.0
geyser 105 ± 7 9 · 10−01 0.1 ± 0.3 9 · 10−01 105 ± 6 9 · 10−01 0.2 ± 0.3 6 · 10−01 104 ± 6 0.1 ± 0.2
gilgais 51 ± 6 5 · 10−01 0.1 ± 0.1 1 · 10−01 49 ± 6 6 · 10−01 1.1 ± 0.7 2 · 10−05 49 ± 7 0.3 ± 0.3
topo 69 ± 18 1 · 10+00 0.1 ± 0.5 1 · 10+00 71 ± 20 1 · 10+00 1.7 ± 1.4 3 · 10−07 70 ± 17 0.0 ± 0.0

mcycle 66 ± 9 9 · 10−01 0.2 ± 0.3 7 · 10−03 66 ± 8 9 · 10−01 0.3 ± 0.3 7 · 10−06 65 ± 9 0.0 ± 0.1
cpus 7 ± 4 2 · 10−04 0.7 ± 1.0 5 · 10−04 7 ± 5 3 · 10−04 1.2 ± 0.8 6 · 10−08 16 ± 10 0.0 ± 0.0

• Models with bias: it can be advantageous to add a
bias to the model, which is here a function of the hy-
perparameter θ: h(x)(θ) = f(x)(θ) + b(θ), f ∈ HK,
b ∈ Hkb , where kb : Θ × Θ → R is a scalar-valued
kernel. This can be the case for example if the kernel
on the hyperparameters is the constant kernel, i. e.
kΘ(θ,θ ′) = 1 (∀θ,θ ′ ∈ Θ), hence the model f(x)(θ)
would not depend on θ. An analogous statement
to Proposition 3.1 still holds for the biased model if
one adds a regularization λb∥b∥2

Hkb
, λb > 0 to the

risk.
• Relation to JQR: In ∞-QR, by choosing kΘ to

be the Gaussian kernel, kb(x, z) = { x }(z), µ =
1
m

∑m
j=1 δθj , where δθ is the Dirac measure concen-

trated on θ, one gets back Sangnier et al. (2016)’s
Joint Quantile Regression (JQR) framework as a
special case of our approach. In contrast to the
JQR, however, in ∞-QR one can predict the quan-
tile value at any θ ∈ (0, 1), even outside the (θj)mj=1
used for learning.

• Relation to q-OCSVM: In DLSE, by choosing
kΘ(θ,θ ′) = 1 (for all θ , θ ′ ∈ Θ) to be the constant
kernel, kb(θ,θ ′) = { θ }(θ ′), µ = 1

m

∑m
j=1 δθj , our

approach specializes to q-OCSVM (Glazer et al.,
2013).

• Relation to Kadri et al. (2016): Note that Opera-
tor-Valued Kernels for functional outputs have also
been used in (Kadri et al., 2016), under the form of

integral operators acting on L2 spaces. Both kernels
give rise to the same space of functions; the bene-
fit of our approach being to provide an exact finite
representation of the solution (see Proposition 3.1).

• Efficiency of the decomposable kernel: this kernel
choice allows to rewrite the expansions in Propo-
sitions 3.1 and 3.2 as a Kronecker products and
the complexity of the prediction of n ′ points for
m ′ quantile becomes O(m ′mn + n ′nm) instead of
O(m ′mn ′n).

4 Excess Risk Bounds

Below we provide a generalization error analysis to the
solution of Eq. (10) for QR and CSC (with Ridge reg-
ularization and without shape constraints) by stabil-
ity argument (Bousquet et al., 2002), extending the
work of Audiffren et al. (2013) to Infinite-Task Learn-
ing. The proposition (finite sample bounds are given
in Corollary S.9.6) instantiates the guarantee for the
QMC scheme.
Proposition 4.1 (Generalization). Let h∗ ∈ HK be
the solution of Eq. (10) for the QR or CSC problem
with QMC approximation. Under mild conditions on
the kernels kX, kΘ and PX,Y , stated in the supplement,
one has

R(h∗) " R̃S(h∗) + OPX,Y

( 1√
λn

)
+ O

( log(m)√
λm

)
. (17)

Sketch of the proof. The error resulting from sam-



Romain Brault, Alex Lambert, Zoltán Szabó, Maxime Sangnier, Florence d’Alché-Buc

pling PX,Y and the inexact integration is respectively
bounded by β-stability (Kadri et al., 2016) and QMC
results.4

(n,m) Trade-off: The proposition reveals the inter-
play between the two approximations, n (the number
of training samples) and m (the number of locations
taken in the integral approximation), and allows to
identify the regime in λ = λ(n,m) driving the excess
risk to zero. Indeed by choosing m = √

n and dis-
carding logarithmic factors for simplicity, λ ≫ n−1 is
sufficient. The mild assumptions imposed are: bound-
edness on both kernels and the random variable Y, as
well as some smoothness of the kernels.

5 Numerical Examples

In this section we provide numerical examples illustrat-
ing the efficiency of the proposed ITL approach.5 We
used the following datasets in our experiments:
• Quantile Regression: we used (i) a sine synthetic

benchmark (Sangnier et al., 2016): a sine curve at
1Hz modulated by a sine envelope at 1/3Hz and
mean 1, distorted with a Gaussian noise of mean
0 and a linearly decreasing standard deviation from
1.2 at x = 0 to 0.2 at x = 1.5. (ii) 20 standard regres-
sion datasets from UCI. The number of samples var-
ied between 38 (CobarOre) and 1375 (Height). The
observations were standardised to have unit variance
and zero mean for each attribute.

• Density Level-Set Estimation: The Wilt database
from the UCI repository with 4839 samples and 5
attributes, and the Spambase UCI dataset with 4601
samples and 57 attributes served as benchmarks.

Additional experiments related to the CSC problem
are provided in Section S.10.5.

Note on Optimization: There are several ways to
solve the non-smooth optimization problems associ-
ated to the QR, DLSE and CSC tasks. One could
proceed for example by duality—as it was done in JQR
Sangnier et al. (2016)—, or apply sub-gradient descent
techniques (which often converge quite slowly). In or-
der to allow unified treatment and efficient solution
in our experiments we used the L-BFGS-B (Zhu et
al., 1997) optimization scheme which is widely pop-
ular in large-scale learning, with non-smooth exten-
sions (Keskar et al., 2017; Skajaa, 2010). The tech-
nique requires only evaluation of objective function
along with its gradient, which can be computed auto-
matically using reverse mode automatic differentiation
(as in Abadi et al. (2016)). To benefit from from the
available fast smooth implementations (Fei et al., 2014;
Jones et al., 2001), we applied an infimal convolution

(see Section S.10.3 of the supplementary material) on
the non-differentiable terms of the objective. Under
the assumtion that m = O(√n) (see Proposition 4.1),
the complexity per L-BFGS-B iteration is O(n2√n).
An experiment showing the impact of increasing m on
a synthetic dataset is provided in Fig. S.4.

QR: The efficiency of the non-crossing penalty is il-
lustrated in Fig. 1 on the synthetic sine wave dataset
described in Section 5 where n = 40 and m = 20
points have been generated. Many crossings are visi-
ble on the right plot, while they are almost not noti-
cible on the left plot, using the non-crossing penalty.
Concerning our real-world examples, to study the ef-
ficiency of the proposed scheme in quantile regression
the following experimental protocol was applied. Each
dataset (Section 5) was splitted randomly into a train-
ing set (70%) and a test set (30%). We optimized the
hyperparameters by minimizing a 5-folds cross valida-
tion with a Bayesian optimizer6 (For further details
see Section S.10.4). Once the hyperparameters were
obtained, a new regressor was learned on the whole
training set using the optimized hyperparameters. We
report the value of the pinball loss and the crossing
loss on the test set for three methods: our technique
is called ∞-QR, we refer to Sangnier et al. (2016)’s
approach as JQR, and independent learning (abbrevi-
ated as IND-QR) represents a further baseline.
We repeated 20 simulations (different random training-
test splits); the results are also compared using a
Mann-Whitney-Wilcoxon test. A summary is provided
in Table 1. Notice that while JQR is tailored to pre-
dict finite many quantiles, our ∞-QR method esti-
mates the whole quantile function hence solves a more
challenging task. Despite the more difficult problem
solved, as Table 1 suggest that the performance in
terms of pinball loss of ∞-QR is comparable to that
of the state-of-the-art JQR on all the twenty studied
benchmarks, except for the ‘crabs’ and ‘cpus’ datasets
(p.-val. < 0.25%). In addition, when considering the
non-crossing penalty one can observe that ∞-QR out-
performs the IND-QR baseline on eleven datasets (p.-
val. < 0.25%) and JQR on two datasets. This il-
lustrates the efficiency of the constraint based on the
continuum scheme.

DLSE: To assess the quality of the estimated
model by ∞-OCSVM, we illustrate the θ-property

4The QMC approximation may involve the Sobol se-
quence with discrepancy m−1 log(m)s (s = dim(Θ)).

5The code is available at https://bitbucket.org/
RomainBrault/itl.

6We used a Gaussian Process model and minimized the
Expected improvement. The optimizer was initialized us-
ing 27 samples from a Sobol sequence and ran for 50 itera-
tions.

https://bitbucket.org/RomainBrault/itl
https://bitbucket.org/RomainBrault/itl
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Figure 1: Impact of crossing penalty on toy data. Left plot: strong non-crossing penalty (λnc = 10). Right
plot: no non-crossing penalty (λnc = 0). The plots show 100 quantiles of the continuum learned, linearly spaced
between 0 (blue) and 1 (red). Notice that the non-crossing penalty does not provide crossings to occur in the
regions where there is no points to enforce the penalty (e. g. x ∈ [0.13, 0.35]). This phenomenon is alleviated by
the regularity of the model.

(Schölkopf et al., 2000): the proportion of inliers
has to be approximately 1 − θ (∀θ ∈ (0, 1)).
For the studied datasets (Wilt, Spambase) we used
the raw inputs without applying any preprocess-
ing. Our input kernel was the exponentiated χ2 ker-
nel kX(x, z) := exp

(
−γX

∑d
k=1(xk − zk)2/(xk + zk)

)

with bandwidth γX = 0.25. A Gauss-Legendre
quadrature rule provided the integral approximation
in Eq. (8), with m = 100 samples. We chose the Gaus-
sian kernel for kΘ; its bandwidth parameter γΘ was
the 0.2−quantile of the pairwise Euclidean distances
between the θj’s obtained via the quadrature rule. The
margin (bias) kernel was kb = kΘ. As it can be seen
in Fig. 2, the θ-property holds for the estimate which
illustrates the efficiency of the proposed continuum ap-
proach for density level-set estimation.

6 Conclusion

In this work we proposed Infinite Task Learning, a
novel nonparametric framework aiming at jointly solv-
ing parametrized tasks for a continuum of hyperpa-
rameters. We provided excess risk guarantees for the
studied ITL scheme, and demonstrated its practical ef-
ficiency and flexibility in various tasks including cost-
sensitive classification, quantile regression and density
level set estimation.

0.0 0.2 0.4 0.6 0.8 1.0
✓

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

po
rt

io
n

of
in

lie
rs

Dataset: wilt

Train

Test

Oracle Train

0.0 0.2 0.4 0.6 0.8 1.0
✓

P
ro

po
rt

io
n

of
in

lie
rs

Dataset: spambase

Train

Test

Oracle Train

Figure 2: Density Level-Set Estimation: the θ-
property is approximately satisfied.
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