Appendices

A Detailed Proofs of Theorem 1

A. 1 Proof of Lemma 1

Proof of Lemma 1 Define that $R(s)=\sum_{t=1}^{s} \max _{k \in \mathcal{K}} X_{k, t}-X_{A_{t}, t}$, then we have that $\mathcal{R}(T)=\mathbb{E}[R(T)]$.

$$
\begin{align*}
\mathcal{R}(T) & =\mathbb{E}[R(T)] \\
& =\mathbb{E}\left[R(T) \mathbb{I}\left\{\tau_{1} \leq T\right\}\right]+\mathbb{E}\left[R(T) \mathbb{I}\left\{\tau_{1}>T\right\}\right] \tag{10}\\
& \leq T \cdot \mathbb{P}\left(\tau_{1} \leq T\right)+\mathbb{E}\left[R(T) \mathbb{I}\left\{\tau_{1}>T\right\}\right]
\end{align*}
$$

Define $N_{k}(t)$ as the number of times arm k has been selected by the Algorithm 2 in the first t steps, i.e., $N_{k}(t)=$ $\sum_{i=1}^{t} \mathbb{I}\left(A_{i}=k\right)$. No false alarm is raised and we do not restart the UCB algorithm if the evnet $\left\{\tau_{1}>T\right\}$ happens. Therefore, we have the following equation:

$$
\mathbb{E}\left[R(T) \mathbb{I}\left\{\tau_{1}>T\right\}\right]=\sum_{\Delta_{k}^{(1)}>0} \Delta_{k}^{(1)} \cdot \mathbb{E}\left[N_{k}(T) \mathbb{I}\left\{\tau_{1}>T\right\}\right]
$$

Thus, it remains to show an upper bound for $\mathbb{E}\left[N_{k}(T) \mathbb{I}\left\{\tau_{1}>T\right\}\right]$. By the definition of Algorithm 2 , we have that for any $k \in \mathcal{K}$

$$
\begin{align*}
& N_{k}(T) \mathbb{I}\left\{\tau_{1}>T\right\} \\
= & \sum_{t=1}^{T} \mathbb{I}\left\{A_{t}=k, \tau_{1}>T, N_{k}(t)<l\right\} \\
+ & \sum_{t=1}^{T} \mathbb{I}\left\{A_{t}=k, \tau_{1}>T, N_{k}(t) \geq l\right\} \\
\leq & l+\sum_{t=1}^{T} \mathbb{I}\left\{t \bmod \lfloor K / \gamma\rfloor=k, N_{k}(t) \geq l\right\} \tag{11}\\
& +\sum_{t=1}^{T} \mathbb{I}\left\{k=\underset{\tilde{k} \in \mathcal{K}}{\operatorname{argmax}} \mathrm{UCB}_{\tilde{k}}, N_{k}(t) \geq l\right\} \\
\leq & l+\lceil T \gamma / K\rceil+\sum_{t=1}^{T} \mathbb{I}\left\{k=\underset{\tilde{k} \in \mathcal{K}}{\operatorname{argmax}} \mathrm{UCB}_{\tilde{k}}, N_{k}(t) \geq l\right\},
\end{align*}
$$

where the first inequality is due to the fact that if the event $\left\{A_{t}=k, \tau_{1}>T\right\}$ happens, then we do not restart the UCB algorithm before time T and the selection of the k th arm is based on either the uniform sampling or the largest UCB index in a stochastic bandit setting. Setting $l=\left\lceil 8 \log T /\left(\Delta_{k}^{(1)}\right)^{2}\right\rceil$ and following the same argument as in the proof of Theorem 1 of Auer et al., 2002a, we have that

$$
\mathbb{E}\left[N_{k}(T) \mathbb{I}\left\{\tau_{1}>T\right\}\right] \leq \frac{T \gamma}{K}+\frac{8 \log T}{\left(\Delta_{k}^{(1)}\right)^{2}}+1+\frac{\pi^{2}}{3}+K
$$

Summing over $k \in \mathcal{K}$ we prove the result.

A. 2 Proof of Lemma 2

Proof of Lemma 2 Define $\tau_{k, 1}$ as the first detection time of the k th arm. Then, $\tau_{1}=\min _{k \in \mathcal{K}}\left\{\tau_{k, 1}\right\}$ since Algorithm 2 is designed to reinitialize the UCB algorithm if a change is detected on any of the K arms. Using the union bound, we have
that

$$
\mathbb{P}\left(\tau_{1} \leq T\right) \leq \sum_{k=1}^{K} \mathbb{P}\left(\tau_{k, 1} \leq T\right)
$$

Define that for any $k \in \mathcal{K}$ and $t \geq w$

$$
\begin{equation*}
S_{k, t}=\left|\sum_{i=t-w / 2+1}^{i=t} Z_{k, i}-\sum_{i=t-w+1}^{t-w / 2} Z_{k, i}\right| \tag{12}
\end{equation*}
$$

Then, for any $k \in \mathcal{K}, \tau_{k, 1}$ is given by

$$
\tau_{k, 1}=\inf \left\{t \geq w: S_{k, t}>b\right\}
$$

Let \mathbb{Z}^{+}be the set of all positive integers. Define that for any $0 \leq j \leq w-1$ the stopping times

$$
\tau_{k, 1}^{(j)}=\inf \left\{t=j+n w, n \in \mathbb{Z}^{+}: S_{k, t}>b\right\}
$$

We have that $\tau_{k, 1}=\min \left\{\tau_{1}^{(0)}, \ldots, \tau_{1}^{(w-1)}\right\}$. Note that under the stationary environment, for any $0 \leq j \leq w-1, \tau_{k, 1}^{(j)}$ is a random variable with the geometric distribution

$$
\mathbb{P}\left(\tau_{k, 1}^{(j)}=n w+j\right)=p(1-p)^{n-1}
$$

where $p=\mathbb{P}\left(S_{k, w}>b\right)$. Therefore, considering union bound we have that for any $k \in \mathcal{K}$

$$
\mathbb{P}\left(\tau_{k, 1} \leq T\right) \leq w\left(1-(1-p)^{\lfloor T / w\rfloor}\right)
$$

The remaining task is to find an upper bound for p. Note that for any $k \in \mathcal{K}, S_{k, w}$ is a random variable with zero mean. We have by the McDiarmid's inequality and the union bound that

$$
p \leq 2 \cdot \exp \left(-\frac{2 b^{2}}{w}\right)
$$

Combining the above analysis we conclude the result.

A. 3 Proof of Lemma 3

Proof of Lemma 3 Assume that $\delta_{\tilde{k}}^{(1)} \geq 2 b / w+c$ for some $\tilde{k} \in \mathcal{K}$. Since the uniformly sampling scheme (step 2-4 of Algorithm 2) guarantees that in any time interval with length larger than $L / 2$ each arm is sampled at least $w / 2$ times, conditioning on $\left\{\tau_{1}>\nu_{1}\right\}$, we have that

$$
\begin{align*}
& \mathbb{P}\left(\nu_{1}<\tau_{1} \leq \nu_{1}+L / 2 \mid \tau_{1}>\nu_{1}\right) \\
\geq & \mathbb{P}\left(S_{\tilde{k}, w}>b\right) \\
\geq & 1-2 \exp \left(-\frac{\left(w\left|\delta_{\tilde{k}}^{(1)}\right| / 2-b\right)^{2}}{w}\right) \tag{13}\\
\geq & 1-2 \exp \left(-\frac{w c^{2}}{4}\right)
\end{align*}
$$

where $S_{k, t}$ is defined in 12 and we use McDiarmid's inequality in the second inequality.

A. 4 Proof of Lemma4

Proof of Lemma 4 First, define that $N=\left\lceil b / \delta_{\tilde{k}}^{(1)}\right\rceil \cdot\lceil K / \gamma\rceil$, we obtain a simple upper bound for the EDD as follows.

$$
\begin{aligned}
& \mathbb{E}\left[\tau_{1}-\nu_{1} \mid \nu_{1}<\tau_{1} \leq \nu_{1}+L / 2\right] \\
= & \sum_{i=1}^{L / 2} \mathbb{P}\left(\tau_{1} \geq \nu_{1}+i \mid \nu_{1}<\tau_{1} \leq \nu_{1}+L / 2\right) \\
\leq & N+\sum_{i=N}^{L / 2}\left(\mathbb{P}\left(\tau_{1} \geq \nu_{1}+i \mid \nu_{1}<\tau_{1} \leq \nu_{1}+L / 2\right)\right) .
\end{aligned}
$$

Since the uniformly sampling scheme guarantees that we have at least $i /\lceil K / \gamma\rceil$ samples from each arm within i time steps, we use McDiarmid's inequality and Lemma 3 to have that

$$
\begin{aligned}
& \sum_{i=N}^{L / 2}\left(\mathbb{P}\left(\tau_{1} \geq \nu_{1}+i \mid \nu_{1}<\tau_{1} \leq \nu_{1}+L / 2\right)\right) \\
= & \sum_{i=N}^{L / 2} \frac{\mathbb{P}\left(\nu_{1}+i \leq \tau_{1} \leq \nu_{1}+L / 2 \mid \tau_{1}>\nu_{1}\right)}{\mathbb{P}\left(\nu_{1} \leq \tau_{1} \leq \nu_{1}+L / 2 \mid \tau_{1}>\nu_{1}\right)} \\
\leq & \frac{1}{1-2 \exp \left(-w c^{2} / 4\right)} \cdot \sum_{i=N}^{L / 2} 2 \exp \left(-\frac{\left(i /\lceil(K / \gamma)\rceil \delta_{\tilde{k}}^{(1)}-b\right)^{2}}{w}\right) \\
\leq & \frac{\lceil K / \gamma\rceil}{1-2 \exp \left(-w c^{2} / 4\right)} \cdot \sum_{j=\left\lceil b / \delta_{\tilde{k}}^{(1)}\right\rceil}^{w / 2} 2 \exp \left(-\frac{\left(j \delta_{\tilde{k}}^{(1)}-b\right)^{2}}{w}\right)
\end{aligned}
$$

Define $q=\left\lceil(w / 2) \cdot \delta_{\tilde{k}}^{(1)}\right\rceil-b$ and we have $q>1$ from the assumption that $\delta_{\tilde{k}}^{(1)}>2 b / w+c$. Combining the above analysis, we have that

$$
\begin{aligned}
& \left(1-2 \exp \left(-w c^{2} / 4\right)\right) \cdot \mathbb{E}\left[\tau_{1}-\nu_{1} \mid \nu_{1}<\tau_{1} \leq \nu_{1}+L / 2\right] \\
\leq & N+\lceil K / \gamma\rceil \cdot \sum_{j=\left\lceil b / \delta_{\tilde{k}}^{(1)}\right\rceil}^{w / 2} 2 \exp \left(-\frac{\left(j \delta_{\tilde{k}}^{(1)}-b\right)^{2}}{w}\right) \\
\leq & N+2\lceil K / \gamma\rceil \cdot\left(1+\int_{1}^{q} \exp \left(-\frac{l^{2}}{w}\right) d l\right) \\
\leq & N+2\lceil K / \gamma\rceil \cdot \\
& {\left[1+\sqrt{w}\left(1-\frac{1}{\sqrt{w}}+\int_{1}^{q / \sqrt{w}} \exp \left(-u^{2}\right) d u\right)\right] } \\
\leq & N+2\lceil K / \gamma\rceil \cdot\left(\sqrt{w}+\sqrt{w} \int_{1}^{q / \sqrt{w}} u \exp \left(-u^{2}\right) d u\right) \\
\leq & \left(\left\lceil b / \delta_{\tilde{k}}^{(1)}\right\rceil+3 \sqrt{w}\right) \cdot\lceil K / \gamma\rceil
\end{aligned}
$$

where we transform l into $u=l / \sqrt{w}$ in the third inequality and we use the fact that $\exp \left(-u^{2}\right) \leq u \exp \left(-u^{2}\right), u \geq 1$ in the fourth inequality. On the other hand, by the definition of the conditioning event we also have that

$$
\left(1-2 \exp \left(-w c^{2} / 4\right)\right) \cdot \mathbb{E}\left[\tau_{1}-\nu_{1} \mid \nu_{1}<\tau_{1} \leq \nu_{1}+L / 2\right] \leq L / 2
$$

Combining the above analysis we conclude the result.

A. 5 Proof of Theorem 1

Proof of Theorem 1$]$ Recall that $L=w\lceil K / \gamma\rceil$. Algorithm 2 guarantees that in any time interval with length larger than L each arm is sampled at least w times. Define events $F_{i}=\left\{\tau_{i}>\nu_{i}\right\}, 1 \leq i \leq M-1$. Define events $D_{i}=\left\{\tau_{i} \leq\right.$ $\left.\nu_{i}+L / 2\right\}, 1 \leq i \leq M-2$ and event $D_{M-1}=\left\{\tau_{M-1} \leq T\right\}$. Therefore, the event $F_{i} D_{i}$ is the good event where the i th change can be detected correctly and efficiently. Define that $R(s)=\sum_{t=1}^{s} \max _{k \in \mathcal{K}} X_{k, t}-X_{A_{t}, t}$, then we have that $\mathcal{R}(T)=\mathbb{E}[R(T)]$. Equipped with the sequence of good events, we have that

$$
\begin{aligned}
\mathcal{R}(T)=\mathbb{E}[R(T)] & \leq \mathbb{E}\left[R(T) \mathbb{I}\left\{F_{1}\right\}\right]+T \cdot\left(1-\mathbb{P}\left(F_{1}\right)\right) \\
& \leq \mathbb{E}\left[R\left(\nu_{1}\right) \mathbb{I}\left\{F_{1}\right\}\right]+\mathbb{E}\left[R(T)-R\left(\nu_{1}\right)\right]+1 \\
& \leq \tilde{C}_{1}+\gamma \nu_{1}+\mathbb{E}\left[R(T)-R\left(\nu_{1}\right)\right]+1
\end{aligned}
$$

Above, the second inequality is due to Lemma 2 that $\mathbb{P}\left(F_{1}\right) \geq 1-1 / T$ provided that $b=\left[w \log \left(2 K T^{2}\right) / 2\right]^{1 / 2}$ and the third inequality is due to the bound in the end of Lemma 1 which is the bound for the UCB algorithm in a stochastic bandit setting.

The next step is to bound $\mathbb{E}\left[R(T)-R\left(\nu_{1}\right)\right]$. Using the law of total expectation, we have that

$$
\begin{aligned}
& \mathbb{E}\left[R(T)-R\left(\nu_{1}\right)\right] \\
\leq & \mathbb{E}\left[R(T)-R\left(\nu_{1}\right) \mid F_{1} D_{1}\right]+T \cdot\left(1-\mathbb{P}\left(F_{1} D_{1}\right)\right) \\
\leq & \mathbb{E}\left[R(T)-R\left(\nu_{1}\right) \mid F_{1} D_{1}\right]+2
\end{aligned}
$$

where the last inequality is due to Lemma 3 that we have $\mathbb{P}\left(D_{1} \mid F_{1}\right) \geq 1-1 / T$ provided that $c=2 \sqrt{\log (2 T) / w}$ and the fact that $\mathbb{P}\left(F_{1} D_{1}\right)=\mathbb{P}\left(D_{1} \mid F_{1}\right) \cdot \mathbb{P}\left(F_{1}\right)$ for any probability measure \mathbb{P}.
Therefore, the remaining task is to bound $\mathbb{E}\left[R(T)-R\left(\nu_{1}\right) \mid F_{1} D_{1}\right]$. Denote $\tilde{\mathbb{E}}$ as the expectation according to the piecewise-stationary bandit starts from the second segment. Further splitting the regret, we have that

$$
\begin{aligned}
& \mathbb{E}\left[R(T)-R\left(\nu_{1}\right) \mid F_{1} D_{1}\right] \\
& \leq \mathbb{E}\left[R(T)-R\left(\tau_{1}\right) \mid F_{1} D_{1}\right]+\mathbb{E}\left[R\left(\tau_{1}\right)-R\left(\nu_{1}\right) \mid F_{1} D_{1}\right] \\
& \leq \tilde{\mathbb{E}}\left[R\left(T-\nu_{1}\right)\right]+\mathbb{E}\left[\tau_{1}-\nu_{1} \mid F_{1} D_{1}\right] \\
& \leq \tilde{\mathbb{E}}\left[R\left(T-\nu_{1}\right)\right]+\min \left(L / 2,\left(\left\lceil b / \delta^{(1)}\right\rceil+3 \sqrt{w}\right) \cdot\lceil K / \gamma\rceil\right) /(1-1 / T)
\end{aligned}
$$

where the second inequality is due to the renewal property given that the whole algorithm restarts in the time interval between ν_{1} and $\nu_{1}+L / 2$ and the last inequality is due to Lemma 4 by setting $c=2 \sqrt{\log (2 T) / w}$.
Combining the above analysis, we bound the regret in a recursive manner as follows (assuming $T \geq 2$):

$$
\begin{aligned}
& \mathbb{E}[R(T)] \leq \tilde{\mathbb{E}}\left[R\left(T-\nu_{1}\right)\right]+\tilde{C}_{1} \\
& +\gamma \nu_{1}+2 \min \left(L / 2,\left(\left\lceil b / \delta^{(1)}\right\rceil+3 \sqrt{w}\right) \cdot\lceil K / \gamma\rceil\right)+3
\end{aligned}
$$

The recursive manner means that we can apply the same method to bound $\tilde{\mathbb{E}}\left[R\left(T-\nu_{1}\right)\right]$, by conditioning on the event $D_{2} F_{2}$. Repeating this procedure $M-1$ times, we obtain that

$$
\begin{aligned}
\mathbb{E}[R(T)] & \leq \sum_{i=1}^{M} \tilde{C}_{i}+\gamma T \\
& +\sum_{i=1}^{M-1} \frac{2 K \cdot \min \left(\frac{w}{2},\left\lceil\frac{b}{\delta(i)}\right\rceil+3 \sqrt{w}\right)}{\gamma}+3 M
\end{aligned}
$$

