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Appendix A More Preliminaries

A.1 Convexity and Lipschitz Continuity

Let X ⊆ Rd be a convex set, that is, for any x, y ∈ X and any λ ∈ [0, 1], λx+ (1− λ)y ∈ X. We say f : X → R
is a convex function if for any λ ∈ [0, 1] and for any x, y ∈ X

λf(x) + (1− λ)f(y) ≥ f(λx+ (1− λ)y).

An equivalent definition of convexity is the following [21]. f is convex if and only if

f(x) ≥ f(y) +∇f(y)>(x− y) ∀x, y ∈ X.

Here ∇f(y) denotes any element in the subdifferential of f at y.
We say f : X → R is strongly convex with parameter β > 0 if and only if

f(x) ≥ f(y) +∇f(y)>(x− y) +
β

2
||x− y||2 ∀x, y ∈ X.

We say f is G-Lipschitz continuous with respect to a norm || · || if for every x, y ∈ X, |f(x)− f(y)| ≤ G||x− y||.
Lemma 5. [27] [Ch. 2]Let f : X → R be a convex function. Then, f is G-Lipschitz over X with respect to a
norm || · || if and only if for all x ∈ X and for all ∇f(x) ∈ ∂f(x) we have that ||∇f(x)||∗ ≤ G, where || · ||∗
denotes the dual norm.

Throughout this paper, whenever we say f is G-Lipschitz we mean f is G-Lipschitz with respect to || · ||2 unless
otherwise stated.

A.2 From OCO to to Bandit Feedback

We present a result from that allows us to transform regret bounds from OCO into expected regret bounds for
Online Bandit Optimization.

Lemma 6. [16][Ch. 6] Let u be a fixed point in X. Let f1, ..., fT : X → R be a sequence of differentiable
functions. Let A be a first order algorithm that ensures RegretT (A) ≤ BA(∇f1(x1), ...,∇fT (xT )) in the full
information setting. Define {xt} as: x1 ← A(∅) , xt ← A(g1, ..., gt−1) where each gt satisfies:

E[gt|x1, f1, ..., xt, ft] = ∇ft(xt)

Then, for every u ∈ X:

E[

T∑
t=1

ft(xt)]−
T∑
t=1

ft(u) ≤ E[BA(g1, ...gT )]

Moreover, Online Gradient Descent is a first order Algorithm [16][Ch. 6].

A.3 Some Useful Concentration Results

In this section we present results on how quickly random functions uniformly concentrate around their mean.

Lemma 7. [26][Theorem 5] Let F̂ (x) = 1
N

∑N
n=1 f(x, ξn) where f(·, ξ) is L-Lipschitz with function values

bounded by R and the set where it is defined has diameter B. Let F (x) := Eξ[f(x, ξ)]. Then

P (sup
x∈X
|F (x)− F̂ (x)| ≥ ε) ≤ O(d2(

LB

ε
)d exp(− Nε2

128LR
)). (7)

This result implies the following two lemmas.

Lemma 8. With probability at least 1− δ, for any x ∈ X, over a sample size N

|F (x)− F̂ (x)| ≤ Õ(

√
LRd ln( 1

δ )

N
).
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Proof. Setting the right hand side of (7) equal to δ and solving for ε gives

ε =

√
128LR[2 ln( d√

δ
) + d ln(LB) + d ln( 1

ε )]

N

Since we must bound ε by above, we now bound ln( 1
ε ). Using the previous equality we have

ln(
1

ε
) =

1

2
ln(

N

128LR[2 ln( d√
δ
) + d ln(LBε )]

)

since ln(LBε ) is large and in the denominator, we have

ln(
1

ε
) ≤ 1

2
ln(

N

256LR ln( d√
δ
)
)

this implies1

ε ≤

√
128LR[2 ln( d√

δ
) + d ln(LB) + d 1

2 ln( N
256LR ln( d√

δ
)
)]

N

=

√
κLRd ln( dLBN√

δ256LR ln( dδ )
)

N

= Õ(

√
LRd ln( 1

δ )

N
)

Lemma 9.

E[sup
x∈X
|F (x)− F̂ (x)|] ≤ Õ(

√
LRd√
N

)

Proof. Recall that for a nonnegative random variable X it holds that E[X] =
∫∞

0
P (X > t)dt. We have from (7)

P (sup
x∈Z
|F (x)− F̂ (x)| > ε) ≤ O(d2(

LB

ε
)d exp(− Nε2

128LR
))

= exp[−(
Nε2

128LR
+ d ln(ε)− 2 ln(d)− d ln(LB))]

Let λ(ε) = aε2 + d ln(ε) with a := N
128LR and notice that when ε ≥

√
d
2a the second derivative of λ(·) is

nonnegative and therefore the function is convex in that domain thus we can lower bound it with its first order

Taylor approximation at
√

d
2a .

λ(ε) ≥ 2
√

2adε− 2d+
d

2
+
d

2
ln(

d

2a
)

Therefore, for ε ≥
√

d
2a

P (sup
x∈Z
|F (x)− F̂ (x)| > ε) ≤ exp[−(2

√
2adε− 2d+

d

2
+
d

2
ln(

d

2a
)− 2 ln(d)− d ln(LB))]

≤ exp[−(2
√

2adε− 2d+
d

2
ln(

d

2a
)− 2 ln(d)− d ln(LB))]

≤ exp[−(2
√

2adε− 2d− d

2
ln(2a)− 2 ln(d)− d ln(LB))]

= exp[−(2
√

2adε) + θ]

1Throughout the paper we let κ be some universal constant that may change from line to line.
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where θ := 2d+ d
2 ln(2a) + 2 ln(d) + d ln(LB). We have

E[sup
x∈X
|F (x)− F̂ (x)|] ≤

∫ ∞
0

min[1, exp[−(2
√

2adε) + θ]]dε

=

∫ ε′

0

dε+

∫ ∞
ε′

exp[−2
√

2adε+ θ]dε ε′ =
θ

2
√

2ad

= ε′ +
exp[θ − 2

√
2adε′]

2
√

2ad

=
1

2
√

2ad
[θ + 1]

=

√
128LR

2
√

2dN
[2d+

d

2
ln(2a) + 2 ln(d) + d ln(LB) + 1]

= Õ(

√
LRd√
N

)

A.4 Conditional Value at Risk

Proof of Theorem 1. For any fixed x ∈ X, we define φ(z) := z + 1
αEξ∼P [f(x, ξ) − z]+ and φ̂(z) = 1

N

∑N
n=1 z +

1
α [f(x, ξn)− z]+. By Lemma 8 we know that with probability at least 1− δ for all z ∈ [0, 1]

|φ(z)− φ̂(z)| ≤ O(

√
LR ln(N/δ)

N
)

and it is easy to see that L,R are both O( 1
α ).

It remains to show that A := {XA = supz |φ(z) − φ̂(z)| ≤ ε} implies B := {XB = |CV aRα[F ](x) −
̂CV aRα[F ](x)| ≤ ε}. Indeed, we have that for any z ∈ Z

φ(z)− ε ≤ φ̂(z)

Therefore, if z̄ = arg minz∈Z φ̂(z) we have:

CV aRα[F ](x)− ε ≤ φ(z̄)− ε ≤ φ̂(z̄) = ĈV aRα[F ](x)

The other side of the inequality follows by applying the same type of argument to φ̂(z) ≤ φ(z) + ε.

Remark 1. We make one last remark about the proof above. We showed that A =⇒ B therefore P (B′) ≤
P (A′). Since for a nonnegative random variable X we can write E[X] =

∫
P (X > ε)dε we can conclude that

E[XB ] ≤ E[XA], or which is the same, E[|CV aRα[F ](x)− ̂CV aRα[F ](x)|] ≤ E[supz |φ(z)− φ̂(z)|].
Lemma 10. Let ξ be a random variable supported in Ξ with probability distribution P . Let f : X × Ξ→ R and
assume 0 ≤ f(x, ξ) ≤ 1 for all x ∈ X and ξ ∈ Ξ. If f(·, ξ) is G-Lipschitz then so is CV aRα[F ](x).

Proof. By Theorem 6.4 in [28] for any x ∈ X. We have

CV aRα[F ](x) = sup
ξ∈Θ

Eξ[f(x, ξ)]

where Θ is some family of probability distributions.

Since convex combinations of G-Lipschitz functions is G-Lipschitz we have that for any x1 ∈ X

Eξ∈Θ∗1
[f(x1, ξ)]− Eξ∈Θ∗1

[f(x2, ξ)] ≤ G||x1 − x2||
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where Θ∗1 is the probability distribution that maximizes Eξ∈Θ[f(x1, ξ)] (assuming it exists). Since

Eξ∈Θ∗1
[f(x1, ξ)]− Eξ∈Θ∗2

[f(x2, ξ)] ≤ Eξ∈Θ∗1
[f(x1, ξ)]− Eξ∈Θ∗1

[f(x2, ξ)]

by combining the two inequalities we have

CV aRα[F ](x1)− CV aRα[F ](x2) ≤ G||x1 − x2||

a symmetry argument yields the other side of the inequality, this concludes the proof.

Lemma 11. Let X be a convex set with diameter D||·|| that contains the origin, that is for all x1, x2 ∈ X,
||x1 − x2|| ≤ D||·||. Let Xδ := {x : x ∈ (1− δ)X}. For any x ∈ X let xδ := ΠXδ(x) where the projection is taken
with respect to any norm || · ||. Then

||x− xδ|| ≤ δD||·|| (8)

Proof. Notice (1− δ)x ∈ Xδ

||x− xδ|| ≤ ||x− (1− δ)x|| By definition of Π

≤ δ||x||
≤ δD||·|| since X contains the origin

Lemma 12. Let x = [x1, x2]>. Define ||x|| = ||x1||2 + ||x2||∞. Then

||x||∗ = max{||x1||2, ||x2||1}

Proof. By definition of dual norm we have

||x||∗ = max
||y||≤1

x>1 y1 + x>2 y2

= max
||y1||2+||y2||∞≤1

x>y

= max
c1+c2≤1

c1||x1||2 + c2||x2||1

= max{||x1||2, ||x2||1}

A.5 Analysis of Algorithm 1

Lemma 13. The function Lt(x, z) := z + 1
α [ft(x) − z]+ is jointly convex, GL-Lipschitz continuous with GL =

α−1(G+ 1) + 1, and the diameter of the set where it is defined DL ≤ DX + 1.

Proof. We first prove convexity. The function ft(x) − z is jointly convex since both ft(x) and −z are, and
addition preserves convexity. Point-wise supremum over convex functions preserves convexity and since any
constant function is convex we have that [ft(x) − z]+ is convex. Again, using the fact that addition preserves
convexity we get the desired claim.

To prove the second part of the claim we notice:

∇xLt(x, z) =

{
1
α∇ft(x) if ft(x)− z > 0

0 otherwise

∇zLt(x, z) =

{
1− 1

α if ft(x)− z > 0

1 otherwise
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Let ∇Lt := [∇xLt;∇yLt] and recall that a function f is G-Lipschitz continuous if and only if ||∇f || ≤ G. We
have that We have that

||Lt|| ≤ max{||[0̄; 1]||, ||[α−1∇f ; 1 + α−1]||}
≤ α−1(G+ 1) + 1 =: GL

Where the last inequality follows by simple algebra.

The fact that DL ≤ DX + 1 follows from the definition of the diameter of a set.

The key to prove Theorem 2 is to realize that Algorithm 1 is performing Online Gradient Descent using an
estimate of the gradient of the smoothened function L̂t as in [9].

Next we prove a lemma assuming that for every t = 1, ..., T ∇Lt := ∇Lt(xt, zt) is revealed and we update
according to

[xt+1, zt+1]> ← ΠX×Z([xt, zt]
> − η∇Lt) (9)

That is, we perform Zinkevich’s Online gradient Descent (OGD) on functions Lt [32]. Due to Lemma 6 we will
be able to use this guarantee when we have bandit feedback.

Lemma 14. Applying OGD on sequence of functions {Lt}Tt=1 guarantees: for every w = (x, z) ∈ W := X × Z.

T∑
t=1

Lt(wt)−
T∑
t=1

Lt(w) ≤ DL
2η

+
η

2

T∑
t=1

||∇Lt||2.

Proof. We follow Zinkevich’s proof. By properties of projections we have:

||wt+1 − w||2 ≤ ||wt − η∇Lt − w||2

= ||wt − w||2 + η2||∇Lt||2 − 2η∇L>t (wt − w)

Therefore:

2η∇L>t (wt − w) ≤ ||wt − w||
2 − ||wt+1 − w||2

η
+ η||∇Lt||2

Using convexity and summing up the inequalities above for every t we have:

2(

T∑
t=1

Lt(wt)−
T∑
t=1

Lt(w)) ≤
T∑
t=1

2η∇L>t (wt − w) (10)

≤
T∑
t=1

||wt − w||2 − ||wt+1 − w||2

η
+ η

T∑
t=1

||∇Lt||2 (11)

≤ DL
η

+ η

T∑
t=1

||∇Lt||2

Which yields the desired result.

Lemma 15. Let ỹt = (x̃t, z̃t) and y∗ = (x∗, z∗) := argminx,z∈X×Z
∑T
t=1 Eξ[Lt(x, z)], Algorithm 1 guarantees:

T∑
t=1

Eint[Lt(ỹt)]−
T∑
t=1

Lt(y∗) = O(
dDXGT

3/4

α
)
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Proof. Define y∗δ = ΠXδ [y
∗]. By Lemma 11 in the Appendix, it holds that ||y∗δ − y∗|| ≤ δDL. Using a similar

argument as in [9] we have:

Eint[
T∑
t=1

Lt(ỹt)−
T∑
t=1

Lt(y∗)]

≤ Eint[
T∑
t=1

Lt(yt)−
T∑
t=1

Lt(y∗)] + δGLT by Lemma 1 and ||yt − ỹt|| ≤ δ

≤ Eint[
T∑
t=1

Lt(yt)−
T∑
t=1

Lt(y∗δ )] + δGLT + δGLDLT

≤ Eint[
T∑
t=1

L̂t(yt)−
T∑
t=1

L̂t(y∗δ )] + 3δGLT + δGLDLT by Lemma 1

≤ η

2

T∑
t=1

Eint[||gt||2] +
D2
L

2η
+ 3δGLT + δDLGLT by Lemma 6

≤ η

2

(d+ 1)2

δ2

T∑
t=1

|z̃t +
1

α
[ft(x̃t)− z̃t]|2 +

D2
L

2η
+ 3δGLT + δDLGLT

≤ η

2

(d+ 1)2

δ2α2
T +

D2
L

2η
+ 3δGLT + δDLGLT

= O(
dDXGT

3/4

α
)

Where we chose η = O( DXα
dT 3/4 ) and δ = O( 1

T 1/4 ).

We are now ready to give a proof of Theorem 2.

Proof of Theorem 2. Notice that for all t, every x ∈ X and every z ∈ Z, we have:

Eξ∼P [Lt(x, z)] = z +
1

α
Eξ∼P [f(x, ξ)− z]+ ≥ CV aRα[F ](x).

The result then follows by taking Eξ∼P [·] in both sides of the result in Lemma 15 and interchanging the expec-
tations. The interchange can be done using Fubini’s Theorem since for every x ∈ X and for every z ∈ Z we have
that Lt(x, z) < O( 1

α ) almost surely.

We are now ready to prove Theorem 3. We assume ft is 1-Lipschitz continuous.

Proof of Theorem 3. Define concentration error CE = Cα[{ft(x∗)}Tt=1] − Cα[{ft(x̄)}Tt=1], where x̄ =
arg minx∈X Cα[{ft(x)}Tt=1], let x∗ = arg minx∈X Cα[F ](x), we have
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E[Cα[{ft(xt)}Tt=1]± Cα[{ft(x∗)}Tt=1]]−minx∈XCα[{ft(x)}Tt=1]

= E[min
y
y +

1

αT

T∑
t=1

max{ft(xt) + ft(x
∗)− ft(x∗)− y, 0} − Cα[{ft(x∗)}Tt=1]] + E[CE]

≤ E[min
y
y +

1

αT

T∑
t=1

max{ft(x∗) + |ft(xt)− ft(x∗)| − y, 0} − Cα[{ft(x∗)}Tt=1]] + E[CE]

≤ E[min
y
y +

1

αT

T∑
t=1

max{ft(x∗) + |ft(xt)− ft(x∗)| − y, |ft(xt)− ft(x∗)|} − Cα[{ft(x∗)}Tt=1]] + E[CE]

= E[min
y
y +

1

αT

T∑
t=1

max{ft(x∗)− y, 0}+
1

αT

T∑
t=1

+|ft(xt)− ft(x∗)| − Cα[{ft(x∗)}Tt=1]] + E[CE]

= E[
1

αT

T∑
t=1

|ft(xt)− f(x∗)|] + E[CE]

≤ 1

αT

T∑
t=1

Et[||xt − x∗||] + E[CE] since ft is 1-Lipschitz

≤ 1

αT

√
T

√√√√ T∑
t=1

Et[||xt − x∗||]2 + E[CE] by Cauchy Schwartz

≤ 1

αT

√
T

√√√√ T∑
t=1

Et[
2

β
[Cα[F ](xt)− Cα[F ](x∗)]] + E[CE] by strong convexity of Cα[F ](·) and KKT condition

=
1

αT

√
T

√√√√ 2

β
E[

T∑
t=1

Cα[F ](xt)− Cα[F ](x∗)] + E[CE]

= O(
d1/2

α3/2β1/2T 1/8
) + E[CE] by Theorem 2

We still need to bound the concentration error CE in expectation. Notice we can write

CE = [Cα[{ft(x∗)}Tt=1]− Cα[F ](x∗)] + [Cα[F ](x∗)− Cα[F ](x̄)] + [Cα[F ](x̄)− Cα[{ft(x̄)}Tt=1]

and the second term is nonpositive. To bound CE in expectation we apply Lemma 9 on functions φ(x, y) =
y + 1

α [f(x) − y]+ (notice L ≤ O( 1
α ) and R = O( 1

α )), by Remark 1 and the same reasoning as in the proof of

Lemma 9 we have E[|Cα[F ](x̄)−Cα[{ft(x̄)}Tt=1|] ≤ Õ(
√
d

α
√
T

). Thus E[CE] ≤ Õ(
√
d

α
√
T

). This finishes the proof.

A.6 Analysis of Algorithm 2 (1-D)

We proceed to formally analyze the algorithm following [2]. In this section, for ease of reading we refer to
quantity T R̄T as the regret. We work conditioned on E which is defined as the event that for every epoch and
for every round i, h(x) ∈ [LBγi(x), UBγi(x)] for x ∈ {xl, xc, xr}. We will first bound the regret in an epoch
and then bound the total number of epochs. We do the previous in the next sequence of lemmas. Notice that

by Theorem 1 we can obtain a γ-CI for h(x) that holds with probability at least 1 − 1
T 2 with only κ ln(T/(αγ))

α2γ2

samples. We first show that we never discard points that are near optimal.

Lemma 16. If epoch τ ends in round i, then the interval [lτ+1, rτ+1] contains every x ∈ [lτ , rτ ] such that
h(x) ≤ h(x∗) + γi. In particular, x∗ ∈ [lτ , rτ ] for all epochs τ .

Proof. Assume epoch τ terminates in round i through Case 1. Then, either LBγi(xl) ≥ UBγi(xr) + γi or
LBγi(xr) ≥ UBγi(xl) + γi. We assume the former occurs. It then holds that

h(xl) ≥ h(xr) + γi.
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We must show that the points in the working feasible region to the left of xl are not near optimal. That is,
for every x ∈ [lτ , lτ+1] = [lτ , xl] we have h(x) ≥ h(x∗) + γi. Pick x ∈ [lτ , xl] then, for some t ∈ [0, 1] we have
xl = tx+ (1− t)xr. Since h is convex we have

h(xl) ≤ th(x) + (1− t)h(xr)

which implies

h(x) ≥ h(xr) +
h(xl)− h(xr)

t

≥ h(xr) +
γi
t

≥ h(x∗) + γi

as required. If LBγi(xr) ≥ UBγi(xl) + γi had occurred the argument is analogous.

If epoch τ had terminated through case 2 then

max{LBγi(xl), LBγi(xr)} ≥ UBγi(xc) + γi.

We assume LBγi(xl) ≥ UBγi(xc) + γi, then

h(xl) ≥ h(xc) + γi.

The same argument as above with xc instead of xr guarantees h(xl) ≥ h(x∗) + γi. If LBγi(xr) ≥ UBγi(xc) + γi
had occurred the argument is analogous. The fact that x∗ ∈ [lτ , rτ ] for every epoch τ follows by induction.

We now show that if an epoch does not terminate in a given round i then the regret (T R̄T ) incurred in that
epoch was not too high.

Lemma 17. If epoch τ continues from round i to i+ 1 then the regret in round i is at most

κ ln(T/(αγi))

α2γi

Proof. The regret incurred in round i of epoch τ is

κ ln(T/(αγi))

α2γ2
i

[(h(xl)− h(x∗)) + (h(xc)− h(x∗)) + (h(xr)− h(x∗))]

It suffices to show that for every x ∈ {xl, xc, xr} it holds that

h(x) ≤ h(x∗) + 12γi.

The algorithm continues from round i to round i+ 1 if and only if

max{LBγi(xl), LBγi(xr)} < min{UBγi(xl), UBγi(xr)}+ γi

and

max{LBγi(xl), LBγi(xr)} < UBγi(xc) + γi.

This implies that h(xl), h(xc), and h(xr) are all contained in an interval of at most 3γi. There are two cases for
which the argument is essentially the same, either x∗ ≤ xc or x∗ > xc, we consider the former. Since by the
previous lemma we know that x∗ ∈ [lτ , rτ ], then there exists t ∈ [0, 1] such that x∗ = xc + t(xc − xr). Therefore

xc =
1

1 + t
x∗ +

t

1 + t
xr.

Since |xc − lτ | = wτ/2 and |xr − xc| = wτ/4 we have

t =
|x∗ − xc|
|xr − xc|

≤ |lτ − xc|
|xr − xc|

=
wτ/2

wτ/4
= 2
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Since h is convex

h(xc) ≤
1

1 + t
h(x∗) +

t

1 + t
h(xr)

therefore

h(x∗) ≥ (1 + t)
(
h(xc)−

t

1 + t
h(xr)

)
= h(xc) + (1 + t)(h(xc)− h(xr))

≥ h(xc)− (1 + t)|h(xc)− h(xr)|
≥ h(xr)− (1 + t)3γi

≥ h(xr)− 9γi

So, for all x ∈ {xl, xc, xr} it holds that

h(x) ≤ h(xr) + 3γi ≤ h(x∗) + 12γi.

We proceed to bound the regret in each epoch.

Lemma 18. If epoch τ ends in round i the regret incurred in the epoch is no more than

κ ln(T/(αγi))

α2γi
.

Proof. If i = 1, since h(x) is 1-Lipschitz and X = [0, 1] we have that for every x ∈ {xl, xc, xr} h(x)− h(x∗) ≤ 1.
Therefore the regret in epoch τ is

κ ln(T/(α2γ2
i ))

α2γ2
i

(
((h(xl)− h(x∗)) + (h(xc)− h(x∗)) + (h(xr)− h(x∗))

)
≤ 6κ ln(T/(α2γ2

i ))

α2γ1

If i ≥ 2, by the previous lemma we have that the regret incurred in round j with 1 ≤ j ≤ i− 1 is no more than

κ ln(T/(α2γ2
i ))

α2γj
.

For round i the regret incurred is at most

3 · 12γi−1
κ ln(T/(α2γ2

i ))

α2γ2
i

=
κ72 ln(T/(α2γ2

i ))

α2γi
.

It follows that the regret in epoch τ is

i−1∑
j=1

κ ln(T/(α2γ2
j ))

α2γj
+
κ ln(T/(α2γ2

i ))

α2γi

=

i−1∑
j=1

κ ln(T/(α2γ2
j ))

α2
· 2j +

κ ln(T/(α2γ2
i ))

α2γi

<
κ ln(T/(α2γ2

i ))

α2
· 2i +

κ ln(T/(α2γ2
i ))

α2γi

=
κ ln(T/(αγi))

α2γi
.
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We have bounded the regret that we incur in each epoch. We proceed to bound the number of epochs.

Lemma 19. The total number of epochs τ satisfies

τ ≤ κ log4/3(
α2T

ln(T )
).

Proof. The key is to observe that since the number of times we sample a point is bounded above by T then
γi ≥ (α2T/(κ ln(T )))−1/2 for every round and every epoch. Let γmin := (α2T/(κ ln(T )))−1/2 and let I :=
[x∗ − γmin, x∗ + γmin]. Since h is 1-Lipschitz, for any x ∈ I

h(x)− h(x∗) ≤ γmin.

By Lemma 16 we have that for any round τ ′ which ends in round i′

I ⊆ {x ∈ [0, 1] : f(x) < f(x∗) + γi′} ⊆ [lτ ′+1, rτ ′+1]

since γmin ≤ γi′ . The previous implies

2γmin ≤ rτ+1 − lτ+1 = wτ+1.

By the definitions of lτ ′+1, rτ ′+1 and wτ ′+1 we have that for any τ ′ ∈ {1, ..., τ}

wτ ′+1 ≤
3

4
wτ ′ .

Therefore,

2γmin ≤ wτ+1 ≤ (
3

4
)τw1 ≤ (

3

4
)τ

which yields the result.

We are now ready to prove Theorems 4 and 5 .

Proof of Theorem 4. The per epoch regret when epoch τ ends in round i is

κ ln(T/(αγi))

α2γi
≤ κ ln(T/(αγi))

α2γmin
≤ κ
√
T ln(T/(αγmin))

α
=
κ
√
T ln(T )

α
.

Using the previous lemma we know that the regret will not be more than

κ
√
T ln(T )

α
log4/3(

α2T

ln(T )
)

Recall we have been working conditioned on E . We need an upper bound on P (E ′). We know that after
κ ln(T/(αγ))

α2γi
queries we have

P (|ĥ(x)− h(x)| ≥ γi) ≤
1

T 2
.

Since there are at most T epochs a union bound gives

P (E ′) ≤ 1

T

which yields the desired result.
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Proof of Theorem 5. The proof is very similar to that of Theorem 3 with the difference that we have to bound
the concentration error CE := Cα[{ft(x∗)}Tt=1]−minx∈X Cα[{ft(x)}Tt=1] with high probability. As explained in
the proof of Theorem 3 we know

CE ≤ |Cα[{ft(x∗)}Tt=1]− Cα[F ](x∗)|+ |Cα[F ](x̄)− Cα[{ft(x̄)}Tt=1]|

where x̄ = arg minx∈X Cα[{ft(x)}Tt=1]. To bound CE with high probability we apply Lemma 8 with δ = 1/T on
functions φ(x, y) = y + 1

α [f(x) − y]+ (notice L ≤ O( 1
α ) and R = O( 1

α )), by the same reasoning as in the proof

of Theorem 1 we have that with probability at least 1− 1
T , |Cα[F ](x̄)− Cα[{ft(x̄)}Tt=1]| ≤ Õ( 1

α
√
T

) and thus by

a union bound we have that with probability at least 1 − 2
T , CE ≤ Õ( 1

α
√
T

). As in the proof of Theorem 3 we

have

RT ≤
√
T

αTβ1/2

√
T R̄T + CE.

Using Theorem 4 to bound R̄T , the argument in the previous paragraph to bound CE, and a union bound yields
the result.

A.7 Analysis of Algorithm 2 (d-D)

We first describe the algorithm informally. As in the special case from the previous section, Algorithm 2 proceeds
in epochs. Let the initial working feasible region be X0 = X. The goal is that at the end of every epoch τ we
will discard some portion of the working region Xτ and end up with a smaller region Xτ+1 which contains at
least one approximate optimum.

We now give a brief description of the algorithm. At the beginning of every epoch τ we apply an affine trans-
formation to the current working region Xτ such that the smallest ellipsoid that contains it is an Euclidean ball
of radius Rτ which we denote B(Rτ). We assume that R1 ≤ 1. Let rτ := Rτ/(c1d) for some c1 ≥ 1 so that
B(rτ ) ⊆ Xτ (such a construction is always possible see Lecture 1 p. 2 of [3] ). We refer to the enclosing ball
B(Rτ ) as Bτ . Every epoch will consist of several rounds where γi is halved in every round.
Let x0 be the center of Bτ . At the start of epoch τ , we build a simplex with center x0 contained in B(rτ ). We
will play the vertices of the simplex x1, ...., xd+1 enough times so that the CI’s at each vertex are of width γi and
hold with high probability. The algorithm will then choose point y1 for which ĥ(x)i is the largest, here ĥ denotes
the empirical estimate of h. By construction we are guaranteed that h(y1) ≥ h(xj)− γi for j = 1, ..., d+ 1.
The algorithm will now try to identify a region where the function value is high so that at the end of the epoch
we can discard it. It will do this by constructing pyramids with parameter γ̂ (always greater that γ) until a bad
region is found, if this does not happen for the current value of γ it means that the algorithm did not incur to
much regret (relative to how large γ was). The pyramid construction follows from Section 9.2.2 of [20]. The
pyramids have angle 2φ at the apex where cos(φ) = c2/d. The base of the pyramid has d vertices, z1, ..., zd such
that zi−x0 and y1− zi are orthogonal. The previous construction is always possible. Indeed, take a sphere with
diameter y1 − x0 and arrange z1, ...zd on its boundary such that the angle between y1 − x0 and y1 − zi is φ. We
now set γ̂ = 1 and play all the points y1, z1, ...zd, and the center of the pyramid enough times until all the CI’s
are of width γ̂. Let top and bottom be the vertices of the pyramid (including y1) with the largest and smallest

values for ĥ(x). Let ∆(·), ∆̄(·), be functions which are specified later. We then check for one of the following
cases:

1. If LBγ̂(top) ≥ UBγ̂(bottom) + ∆τ (γ̂) then we proceed depending on what the separation between the
CI’s of top and apex is.

(a) If LBγ̂(top) ≥ UBγ̂(apex) + γ̂, then with high probability

h(top) ≥ h(apex) + γ̂ ≥ h(apex) + γi.

We then build a new pyramid with apex equal to top, reset γ̂ = 1 and continue sampling on the new
pyramid.

(b) If LBγ̂(top) < UBγ̂(apex) + γ̂, then LBγ̂(apex) ≥ UBγ̂(bottom) + ∆(γ̂) − 2γ̂. We then conclude
the epoch and pass the current apex to the cone-cutting subroutine.
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2. If LBγ̂(top) < UBγ̂(bottom) + ∆τ (γ̂), then one of the following things happen:

(a) If UBγ̂(center) ≥ LBγ̂(bottom)− ∆̄τ (γ̂), then all the vertices of the pyramid and the center of the
pyramid have function values in an interval of size 2∆τ (γ̂) + 3γ̂. We can then set γ̂ = γ̂/2. If γ̂ < γi,
we start the next round with γi+1 = γi/2. Otherwise we continue sampling with the new γ̂.

(b) If UBγ̂(center) < LBγ̂(bottom) − ∆̄τ (γ̂). We conclude the epoch and pass the center and current
apex to the hat-raising subroutine.

Hat-Raising: This occurs whenever the pyramid satisfies LBγ̂(top) ≤ UBγ̂(bottom) + ∆τ (γ̂) and
UBγ̂(cent) ≤ LBγ̂(bottom) − ∆̄τ (γ̂). We will later show that if we move the apex a little from yi to y′i,
then the CI of y′i is above the CI of top and the new angle φ′ in not too much smaller than 2φ. In particular,
we will let y′i = yi + (yi − centeri).

Cone-cutting: This is the last step in a given epoch (notice this is the last step in the hat-raising subroutine).
This subroutine receives a pyramid with apex y and base z1, ..., zd with angle 2φ̄ at the apex such that cos(φ̄) ≤
1/2d. Define the cone

Kτ = {x : ∃λ > 0, α1, ..., αd > 0,

d∑
i=1

αi = 1 : x = y − λ
d∑
i=1

αi(zi − y)} (12)

which is centered at y and is the reflection of the pyramid around the apex. By construction Kτ has angle 2φ̄ at
the apex. Let B′τ+1 be the minimum volume ellipsoid that contains Bτ \ Kτ and let Xτ+1 = Xτ ∩ B′τ+1. Finally,
by applying an affine transformation to B′τ+1 we obtain Bτ+1.

Before proving that the algorithm achieves low regret we discuss the computational aspects of the algorithm. The
most computationally intensive steps are cone-cutting, and the isotropic transformation that transforms B′τ+1

into a sphere Bτ+1. These steps are analogous to the implementation of the ellipsoid algorithm. In particular,
there is an equation for B′τ+1 see [12]. The affine transformations can be computed via rank one matrix updates
and therefore the computation of inverses can be done efficiently.

We follow [2] for the analysis of the algorithm. The main difference in the analysis is that we must build estimates
of the CV aR of the random loss at every point instead of building them for the expected loss. Because of this,
we have to use different concentration results which directly affect how many times we must choose an action.

In this section we will first prove the correctness of the algorithm and then bound the regret. As in the 1-
dimensional case we work conditioned on E which is defined as the event that for every epoch and every round
i, h(x) ∈ [LBγi(x), UBγi(x)] for all x played in that round. We will assume that

∆τ (γ) =
(6c1d

4

c22
+ 3
)
γ and ∆̄τ (γ) =

(6c1d
4

c22
+ 5
)
γ (13)

and c1 ≥ 64, c2 ≤ 1/32.

A.7.1 Correctness of the Algorithm

In the next sequence of lemmas we show that whenever the cone-cutting procedure is carried out we do not
discard all the approximate optima of h. We also show that the hat-raising step does what we claim.

For the next two lemmas we assume that the distance from apex y of any Π built in epoch τ to the center of
B(rτ ) is at least rτ/d. That the previous is true will be shown later.

Lemma 20. Let Kτ be the cone that will be discarded in epoch τ through case 1b) in round i. Let bottom be
the lowest CI of pyramid Π. Assume the distance from the apex y to the center of B(rτ ) is at least rτ/d. Then
h(x) ≥ h(bottom) + γi ∀x ∈ Kτ .

Proof. Let x be a point in Kτ . By construction, there exists a point z in the base of the pyramid such that
x = αz + (1− α)y for some α ∈ (0, 1]. Using the convexity of h, the fact that z is in the base, and the fact that
we are in case 1b), we have the two following inequalities

h(z) ≤ h(top) ≤ h(y) + 3γ̂

h(y) ≥ h(bottom) + ∆τ (γ̂)− 2γ̂
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Algorithm 2 (X ⊂ Rd)
Input: X, constants c1 and c2, functions ∆τ (γ) and ∆̂τ (γ), and total number of time-steps T
Let X1 = X
for epoch τ = 1, 2, ... do

Round Xt so B(rτ ) ⊆ Xτ ⊆ R(Rτ ), Rτ is minimized and rτ := Rτ/(c1d). Let Bτ = B(Rτ ).
Build a simplex with vertices x1, ..., xd+1 on the surface of B(rτ ).
for round i = 1, 2, ... do

Let γi := 2−i

Play xj for each j = 1, ..., d+ 1, κ ln(T/(αγ))
α2γ2

i
times and build CI’s: [Ĉα[F ](xj)− γi, Ĉα[F ](xj) + γi]

Let y1 := arg maxxj LBγi(xj)
for pyramid k = 1, 2, ... do

Construct pyramid Πk with apex yk; let z1, ..., zd be the vertices of the base of Πk and z0 be the center
of Πk

loop

Play each of {yk, z0, z1, ..., zd}, κ ln(T/(αγ))
α2γ2

i
times and build CI’s

Let center := z0, apex := yk, top be the vertex v of Πk maximizing LBγ̂(v), bottom be the
vertex v of Πk minimizing LBγ̂(v)
if LBγ̂(top) ≥ UBγ̂(bot) + ∆τ (γ̂) and LBγ̂(top) ≥ UBγ̂(apex) + γ̂: (Case 1a) ) then

Let yk+1 := top, immediately continue to pyramid k + 1
else if LBγ̂(top) ≥ UBγ̂(bot) + ∆τ (γ̂) and LBγ̂(top) < UBγ̂(apex) + γ̂: (Case 1b) ) then

Set (Xτ+1,Bτ+1) = cone-cutting(Πk,Xτ ,Bτ ), proceed to epoch τ + 1
else if LBγ̂(top) < UBγ̂(bot) + ∆τ (γ̂) and UBγ̂(cent) ≥ LBγ̂(bot)− ∆̄τ (γ̂): (Case 2a) ) then

Let γ̂ := γ̂/2
if γ̂ < γi then

Start next round i+ 1
end if

else if LBγ̂(top) < UBγ̂(bot) + ∆τ (γ̂) and UBγ̂(cent) < LBγ̂(bot)− ∆̄τ (γ̂): (Case 2b) ) then
Set (Xτ+1,Bτ+1) = hat-raising(Πk,Xτ ,Bτ ) and proceed to epoch τ + 1

end if
end loop

end for
end for

end for

Algorithm cone-cutting

Input: pyramid Π with apex y, (rounded) feasible region Xτ for each epoch τ , enclosing ball Bτ
1. Let z1, ..., zd be the vertices of the base of Π, and φ the angle at its apex.
2. Define the cone Kτ = {x|∃λ > 0, α1, ..., αd > 0,

∑d
i=1 αi = 1, x = y − λ

∑d
i=1 αi(zi − y)}

3. Set B′τ+1 to be the minimum volume ellipsoid containing Bτ \ Kτ
4. Set Xτ+1 = Xτ ∩ B′τ+1

Output: Output: new feasible region X ′τ+1 and enclosing ellipsoid B′τ+1

Algorithm hat-raising

Input: pyramid Π with apex y, (rounded) feasible region Xτ for each epoch τ , enclosing ball Bτ
1. Let cent be the center of Π
2. Set y′ = y + (y − cent)
3. Set Π′ to be the pyramid with apex y′ and same base as Π
4. Set (Xτ+1,B′τ+1) = cone-cutting(Π′,Xτ ,Bτ )
Output: new feasible region X ′τ+1 and enclosing ellipsoid B′τ+1
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where γ̂ is the CI level used for the pyramid. Since h is convex we have

h(y) ≤ αh(z) + (1− α)h(x) ≤ α(h(y) + 3γ̂) + (1− α)h(x).

Which implies

h(x) ≥ h(y)− 3
α

1− α
γ̂ > h(bottom) + ∆τ (γ̂)− 3

α

1− α
γ̂ − 2γ̂.

We know α/(1−α) = ||y−x||/||y− z||. Since x ∈ B(Rτ ), ||y−x|| ≤ 2Rτ = 2c1drτ . Moreover, ||y− z|| is at least
the height of Π, which by Lemma ?? in the Appendix, is at least rτ c

2
2/d

3. Thus

α

1− α
=
||y − x||
||y − z||

≤ 2c1drτ
rτ c22/d

3
.

This implies

h(x) > h(bottom) + ∆τ (γ̂)− 2γ̂ − 6c1d
4

c22
γ̂ ≥ h(bottom) + γi

as required.

Lemma 21. Let Π′ be the pyramid built using the hat-raising procedure with apex y′ and the same base as Π in
round i of epoch τ . let K′τ be the cone to be removed. Assume the distance from y, the apex of Π to the center of
B(rτ ) is at least rτ/d. Then Π′ has angle φ̄ at the apex with cos φ̄ ≤ 2c2/d, height at most 2rτ c

2
1/d

2, and every
point x in K′τ satisfies h(x) ≥ h(x∗) + γi.

Proof. Let y′ = y + (y − center) be the apex of Π′. Let g be the height of Π (the shortest distance from the
apex to the base), let g′ be the height of Π′ and let b be the distance from any vertex in the base to the center
of the base. By Lemma ?? in the Appendix we have g′ < 2g ≤ 2rτ c

2
1/d

2. Since cosφ = g/
√
h2 + b2 = c2/d we

have cos φ̄ = g′/
√
g′2 + b2 ≤ 2g/

√
g2 + b2 = 2 cosφ = 2c2/d.

We now show that for all x ∈ K′τ we have h(x) ≥ h(x∗)+γ̂. Since h is convex we have h(y) ≤ (h(y)+h(center))/2
therefore h(y′) ≥ 2h(y)− h(center). Since we are in case 2b) we know h(center) ≤ h(y)− ∆̄τ (γ̂), so

h(y′) ≥ h(y) + ∆̄τ (γ̂). (14)

Since we are under case 2b) we have h(y) > h(top)−∆τ (γ̂)−2γ̂ > h(x)−∆τ (γ̂)−2γ̂ for all x ∈ Π. We therefore
have that for any z in the base of Π,

h(y′) > h(z) + ∆̄τ (γ̂)−∆τ (γ̂)− 2γ̂ ≥ h(z), (15)

where we used the settings of ∆τ (γ̂) and ∆̄τ (γ̂). Finally, for any x ∈ K′τ there exists α ∈ [0, 1) and z in the base
of Π′ such that y′ = αz + (1− α)x, by convexity we have h(y′) ≤ αh(z) + (1− α)h(x) ≤ αh(y′) + (1− α)h(x).
The previous implies h(x) ≥ h(y′) ≥ h(y) + ∆̄τ (γ̂) ≥ h(x∗) + γi.

A.7.2 Regret Analysis

As in the 1-dimensional case, to bound the total pseudo-regret (T R̄T ) we must bound the regret incurred in a
round and then bound the total number of epochs. In this section, for ease of reading we refer to quantity T R̄T
as the regret.

A.7.3 Bounding the regret incurred in a round.

We first bound the regret in round i if case 2a) takes place. As before, we let Π be a pyramid built by the algorithm
with angle φ, apex y, base z1, ..., zd and center center. recall that the pyramids built by the algorithm are such
that the distance from the center to the base is at least rτ c

2
2/d

3.
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Lemma 22. Suppose the algorithm reaches case 2a) in round i of epoch τ , assume x∗ ∈ B(Rτ ), where x∗

minimizes h. Let Π be the current pyramid and γ̂ be the current width of the CI. Assume the distance from the
apex of Π to the center of B(rτ ) is at least rτ/d. Then the regret incurred while playing on Π in round i is no
more than

κd ln(T/(αγ̂))

α2γ̂

(4d7c1
c32

+
d(d+ 2)

c2

)(12c1d
4

c22
+ 11

)
.

Proof. The proof follows by convexity. We will first bound the variation of h in the pyramid and then bound
the regret on the round depending on wether x∗ is in Π or not.
Since Π is a convex set we know that the function value on any point in Π is bounded above by the maximum
function value at the vertices. Case 2a) implies that for any vertex its function value is bounded above by
h(center) + ∆τ (γ̂) + ∆̄τ (γ̂) + 3γ̂. The previous implies that for all x ∈ Π we have

h(x) ≤ h(center) + ∆τ (γ̂) + ∆̂τ (γ̂) + 3γ̂.

We let δ := ∆τ (γ̂)+∆̂τ (γ̂)+3γ̂. Let x ∈ Π, let b be the a point in the base of Π such that center = αx+(1−α)b
for some α ∈ [0, 1]. We know that (1− α)/α = ||center− x||/||center− b||. Since the furthest x can be from
center is when x is a vertex, and the distance from center to b is at least the radius of the largest ball
inscribed in Π with center center, by Lemma ?? in the Appendix we have

1− α
α

=
||center− x||
||center− b||

≤ d(d+ 1)

c2

Since h is convex and we have a bound on all the function values over Π we have

h(center) ≤ αh(x) + (1− α)h(b) ≤ αh(x) + (1− α)(h(center) + δ).

This implies

h(x) ≥ h(center)− d(d+ 1)δ

c2
. (16)

Combining the previous two equations we have that for any x, x′ ∈ Π

|h(x)− h(x′)| ≤ d(d+ 2)δ

c2
.

Consider the case when x∗ ∈ Π . Since in a given round we sample d + 2 points in the pyramid, each of them
only κ ln(T/(αγ̂))/(α2γ̂2)) we have that the total regret incurred when sampling the pyramid is no more than

(d+ 2)(
d(d+ 2)δ

c2
)(
κ ln(T/(αγ̂))

α2γ̂2
).

We now consider the case where x∗ /∈ Π. Recall that we always have x∗ ∈ Bτ by Lemma 20. Thus we can write
b = αx∗ + (1− α)center, for some α ∈ [0, 1] where b is a point in some face of the current pyramid. We know
α = ||center− b||/||center− x∗||. Using the triangle inequality we have ||center− x∗|| ≤ 2Rτ = 2c1drτ . We
also know that ||center−b|| is at least the radius of the largest ball inscribed in Π which by ?? in the Appendix
is at least rτ c

2
2/(2d

4). Using the convexity of h and Equation (16) we have

h(center)− d(d+ 2)δ

c2
≤ h(b) ≤ αh(x∗) + (1− α)h(center).

Thus, ∀x ∈ Π we have

h(x∗) ≥ h(center)− d(d+ 1)δ

c2α
≥ h(center)− 4d7c1δ

c32
≥ h(x)− 4d7c1δ

c32
− d(d+ 2)δ

c2
.

Using the same argument as before we know that the regret incurred in the round while evaluating points in Π
is no more than

(d+ 2)(
4d7c1δ

c32
+
d(d+ 2)δ

c2
)(
κ ln(T/(αγ̂))

α2γ̂2
).

Plugging in ∆τ (γ̂) and ∆̄τ (γ̂) yields the result.
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Lemma 22 is important because it implies that whenever we sample from a pyramid using γ̂ we were in Case
2a) with 2γ̂ and the regret incurred is only poly(d)/γ̂. The exception is when we are in the first round, however
since h is 1-Lipschitz the previous claim holds trivially.

We now show that we only visit Case 1a) only a bounded number of times in every round. The intuition is that
every time Case 1a) occurs and we build a new pyramid its center will be closer to the center of B(Rτ ) and at
some point the pyramid will be inside the simplex we built at the beginning of the epoch for which we know h
at its vertices.

Lemma 23. At any round, the number of visits to Case 1a) is at most 2d2 ln(d)/c22, and every pyramid build by
the algorithm with apex y satisfies ||y − x0|| ≥ rτ/d.

Proof. By definition of Case 1a) top 6= y, without loss of generality we assume top = z1. By construction we
have

||z1 − x0|| = sin(φ)||y − x0||.

Since this holds every time we enter Case 1a), we know that the total number of visits k satisfies

||z1 − x0|| = (sin(φ))krτ

where rτ is the radius of the ball where the simplex is inscribed at the beginning of round τ . We also notice
that for a simplex of radius rτ the largest ball inscribed in it has radius rτ/d. Additionally, by construction
we have cos(φ) = c2/d and therefore sin(φ) =

√
1− c22/d ≤ 1 − c22/(2d2). Therefore, k = 2d2 ln(d)/c22 ensures

||z1 − x0|| ≤ rτ/d which implies that z1 lies inside the simplex we build at the beginning of round τ .

Let y1, ..., yk be the apexes of the pyramids built in round τ . By construction we have

h(z1) ≥ h(top) ≥ h(yk)γ ≥ h(yk−2)2γ ≥ ... ≥ h(y1) + kγ.

On the other hand, by definition of y1 we have h(y1) ≥ h(xi)− γ for all vertices of the simplex xi. Since z1 is in
the simplex and h is convex we have

h(y1) ≥ h(z1)− γ ≥ h(y1) + (k − 1)γ

which is a contradiction unless k ≤ 1. Therefore, if z1 is not in the simplex it must be the case that k ≤
2d2 ln(d)/c22.

Using the Lemma 23 we will bound the regret incurred in a round whenever it terminates in Case 2a).

Lemma 24. For any round with CI width of γ that terminates in Case 2a) the total regret incurred in the round
is no more than

κd ln(T/(αγ))

α2γ

(2d2 ln(d)

c22
+ 1
)(4d7c1

c32
+
d(d+ 2)

c2

)(12c1d
4

c22
+ 11

)
.

Proof. By Lemma 23 we have that for the given round, the total number of pyramids we have built is k ≤
2d2 ln(d)/c2. Then, by Lemma 22 we know that for any point in the k-th pyramid the instantaneous regret is no
more than

δ := κγd
(4d7c1

c32
+
d(d+ 2)

c2

)(12c1d
4

c22
+ 11

)
.

We now show that the regret for any point we played during the round is at most δ. Indeed, by construction yk is
top of the (k−1)-th pyramid. By definition of Case 1a) we know that for any x ∈ Πk−1 we have f(x) ≤ f(yk)+γ.
Using this reasoning, we get that the function value at any vertex of any pyramid we have built during the round
is also bounded by the function value at yk. Additionally, as in the proof of the previous lemma, the function
value at all the vertices of the simplex we built at the beginning of the epoch is also bounded by the function
value at yk. Since in every pyramid (and the initial simplex) we sample d + 2 points we know that the total
number of points we will play at is no more than (d+ 2)(2d2/(c22 ln(d)) + 1). To bound the total number of times
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we play a point we notice that for a CI with width γ̂ we play it κ ln(T/(αγ))/(α2γ̂2). Suppose γ = 2−i, since γ̂
is geometrically decreased to γ we know that the total number of plays at any point is bounded by

i∑
j=1

κ ln(T/(αγ))

α22−2j
≤ 4κ ln(T/(αγ))22i

α2
=

4κ ln(T/(αγ))

α2γ2

Putting everything together we get that the total regret incurred during the round is no more than

κd ln(T/(αγ))

α2γ

(2d2 ln(d)

c22
+ 1
)(4d7c1

c32
+
d(d+ 2)

c2

)(12c1d
4

c22
+ 11

)
.

Using Lemma 24 we will now bound the total regret incurred at any round.

Lemma 25. For any round that terminates in a CI with width γ, the total regret over the round is no more than

κd ln(T/(αγ))

α2γ

(2d2 ln(d)

c22
+ 1
)(4d7c1

c32
+
d(d+ 2)

c2

)(12c1d
4

c22
+ 11

)
.

Proof. We just need to bound the regret when the round ends in Case 1b) or 2b). By the definition of the
algorithm, whenever a round has level γ it must be the case that in the previous round the level was 2γ and thus
using the previous lemma we can bound the regret. The exception is in the first round when γ = 1, in this case
using the Lipschitz assumption we know that the instantaneous regret is no more than 1.

Because of the previous we have that the instantaneous regret at any point of the simplex we build is no more
than

2γ
(4d7c1

c32
+
d(d+ 2)

c2

)(12c1d
4

c22
+ 11

)
.

Now, if the algorithm was in Cases 1a), 1b) , or 2b) with level γ̂, then it must have been in Case 2a) with
level 2γ̂. And thus, using the bound on the regret whenever a round ends through Case 2a), we have that the
instantaneous regret on the vertices any pyramid is no more than

2γ̂
(4d7c1

c32
+
d(d+ 2)

c2

)(12c1d
4

c22
+ 11

)
,

and by using the same argument as in the proof of Lemma 24, the number of plays at a given point is bounded
above by κ ln(T/(αγ))/(α2γ̂2). Therefore, the total regret incurred at any pyramid built by the algorithm is no
more than

κd ln(T/(αγ̂))

α2γ

(4d7c1
c32

+
d(d+ 2)

c2

)(12c1d
4

c22
+ 11

)
.

Recalling the bound on the total number of pyramids built in any round yields the result.

Lemma 26. The regret in any epoch which ends in level γ is at most

κd ln(T/(αγ))

α2γ

(2d2 ln(d)

c22
+ 1
)(4d7c1

c32
+
d(d+ 2)

c2

)(12c1d
4

c22
+ 11

)
.

Proof. From Lemma 25 we know that on any round with level γ, the regret is bounded by C/γ where C is some
constant. Since γ is reduced geometrically, the net regret on an epoch where the largest level we encounter is γ
is bounded by

i∑
j=1

C

2−j
≤ 2C2i =

2C

γ
,

which yields the result.
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A.7.4 Bounding the Number of Epochs

To bound the number of epochs we must show that every time cone-cutting is performed we discard a
sufficiently large portion of the current ball. More specifically, we need to analyze the ratios of volumes of Bτ+1

and Bτ .

Lemma 27. Let Bτ be the smallest ball containing Xτ , let B′τ+1 be the minimum volume ellipsoid containing
Bτ \ Kτ . Then, for small enough constants c1, c2, vol(B′τ+1) ≤ ρ · vol(Bτ ) where ρ = exp(− 1

4(d+1) ).

Proof. This result is analogous to the volume reduction results for the ellipsoid method with a gradient oracle.
It is easy to see that it suffices to consider the intersection of Bτ with a half-space in order to understand the
set Bτ \ Kτ . This is because if we were to discard only the spherical cap instead of the whole cone then the
minimum enclosing ellipsoid would increase its volume.

The previous choices of c1, c2 guarantee that the distance from the center of Bτ to the origin is at most Rτ/(4(d+
1)). The previous is true because by construction the apex of cone Kτ is always contained in B(rτ ), and the
height of the cone is at most Rτ cos(φ̄) ≤ Rτ/(8(d + 1)) again by construction. Thus, if rτ ≤ Rτ/(32(d + 1)),
then the distance of the hyperplane to the origin is at most Rτ/(4(d+ 1)).
Therefore, B′τ+1 is the minimum volume ellipsoid that contains the intersection of Bτ with a hyperplane that
is at most Rτ/(4(d + 1)) from its center. Using Theorem 2.1 from [12] (with α = −1/(4(d + 1))) we get the
result.

Lemma 28. At any epoch with CI level γ, the instantaneous regret of any point in Kτ is at least γ.

Proof. Since every epoch terminates only through Cases 1b) or 2b) we only check the claim is true for these two
cases. If the epoch ends through Case 1b) the proof of Lemma 20 gives the result. If the epoch ends through
Case 2b), after hat-raising we now that the apex y′ of pyramid Π′ satisfies h(y′) ≥ h(zi) + γ for all vertices
z1, ..., zd of the pyramid. Writing y′ = αx + (1 − α)z with x in Kτ , z in the base of Π′ and α ∈ [0, 1], we can
conclude that h(x) ≥ h(x∗) + γ just as we did in the proof of Lemma 21.

We are now ready to bound the total number of epochs.

Lemma 29. The total number of epochs in the algorithm is no more than d ln(T )
ln(1/θ) where θ = exp(− 1

4(d+1) ).

Proof. Recall x∗ is the minimizer of h. Since h is 1-Lipschitz, any point inside a ball or radius 1/
√
T centered

around x∗ has instantaneous regret of at most 1/
√
T . The volume of this ball is T−d/2Vd, with Vd equal to the

volume of the unit ball in d-dimensions. Suppose the algorithm goes through k epochs. By Lemma 27 we know
that the volume of Xτ is bounded above by ρkVd. By the previous lemma we know that the instantaneous regret
of any point that was discarded had instantaneous regret at least 1/

√
T . This is because at any given epoch and

round we sample at κ ln(T/(αγ))
α2γ2 and this quantity can not be more than T . Because of the previous, any point

in the ball centered at x∗ with radius 1/
√
T is never discarded. Therefore the algorithms stops whenever

θkVd ≤ T−d/2Vd

implying k ≤ d ln(T )
ln(1/θ) .

We are now ready to prove Theorems 6 and 7.

Proof of Theorem 6. Using the bound on the regret incurred in an epoch and the fact that γ ≥ 1/
√
T we know

the total regret on an epoch is no more than

κd
√
T ln(T/α)

α2

(2d2 ln(d)

c22
+ 1
)(4d7c1

c32
+
d(d+ 2)

c2

)(12c1d
4

c22
+ 11

)
.

By the previous lemma we know the total number of epochs is no more than d ln(T )/ ln(1/θ). Thus the total
regret T R̄T is bounded above by

κd2
√
T ln(T/α) ln(T )

α2 ln(1/θ)

(2d2 ln(d)

c22
+ 1
)(4d7c1

c32
+
d(d+ 2)

c2

)(12c1d
4

c22
+ 11

)
.
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Recall that we were working conditioned on E . As in the proof of the 1-dimensional algorithm, we have P (E ′) ≤
1/T . Plugging in the value of θ above yields the result.

Proof of Theorem 7. The proof is almost the same as the one of Theorem 5 with two slight differences. First,
we use Theorem 6, instead of 4 to bound R̄T . Second, using the same argument as in the proof of Theorem 5

we get that with probability at least 1− 2
T , CE = Õ(

√
d

α
√
T

).

A.8 Analysis of Algorithm 3

The following algorithm, a generalization of Algorithm 1, will guarantee vanishing R̄ρT and RρT by exploiting the
Kusuoka representation of risk measure ρ.

Algorithm 3

Input: X ⊂ Rd, x1 ∈ X, z1 ∈ Z step size η, δ
for t = 1, ..., T do

Sample u ∼ Sd+N

Let u1
t = [u1; ...;ud] and u2

t = [ud+1; ...;ud+N ]
Play x̃t := xt + δu1, observe ft(x̃t)
Let z̃t = zt + δu2

Let g1
t := (d+N)

δ (Gt(x̃t, z̃t))u1
t

Let g2
t := (d+N)

δ (Gt(x̃t, z̃t))u2
t

Update xt+1 ← ΠXδ(xt − ηg1
t )

Update zt+1 ← ΠZδ(zt − ηg2
t )

end for

Notice that due to Lemma 1, gt := [g1
t ; g2

t ] is a one point gradient estimator of the smoothened version of G, Ĝ.

The proofs of Theorems 8 and 9 will be similar to that of Theorems 2 and 3, however we must be careful to
make sure we do not introduce unnecessary factors of N , d and 1

α .

Lemma 30. ||∇G|| ≤ N(G+ 1) + 1

Proof.

||∇G|| =

√√√√ d∑
i=1

(

N∑
n=1

µn∇xiLn)2 +

N∑
n=1

(µn∇znLn)2

≤

√√√√ d∑
i=1

(||µ||1||∇xiLn||∞)2 +

N∑
n=1

(µn∇znLn)2 ||.||∞ is over n=1,...,N

≤

√√√√ d∑
i=1

||∇xiLn||2∞ +

N∑
n=1

µn∇znL2
n since

N∑
n=1

µn = 1, and µi ≤ 1

≤

√√√√ d∑
i=1

||∇xiLn||2∞ +

N∑
n=1

µn(1 +N)2

≤

√√√√ d∑
i=1

||∇xiLn||2∞ +

√√√√ N∑
n=1

µn(1 +N)2

≤

√√√√ d∑
i=1

||N∇xif ||2∞ +

√√√√ N∑
n=1

µn(1 +N)2

≤ NG+ (1 +N) since

N∑
n=1

µn = 1



Adrian Rivera Cardoso, Huan Xu

Lemma 31. Running online gradient descent on {Gt}Tt=1 ensures that for all x ∈ X and all z ∈ Z

2[

T∑
t=1

Gt(xt, zt)−
T∑
t=1

Gt(x, z)] ≤
||xT − x∗||2 +

∑d
n=1 µn||zt,n − z∗n||2

η
+

η[

T∑
t=1

(||∇xGt(xt, yt) +

N∑
n=1

µn|∇znL(xt, zt)|2)].

Proof.

2[

T∑
t=1

Gt(xt, zt)−
T∑
t=1

Gt(x, z)]

≤ 2

T∑
t=1

∇Gt(xt, zt)>([xt; zt]− [x; z])

= 2

T∑
t=1

∇xGt(xt, zt)>(xt − x) + 2

T∑
t=1

d∑
n=1

µn∇zL(xt, zt)(zt,n.zn)

≤ ||xT − x||
2

η
+

N∑
n=1

µn
||zT,n − zn||2

η
+ η[

T∑
t=1

(||∇xGt||+
d∑

n=1

µn(∇zLt,n)2)] by Equations 10 and 11

Lemma 32. Let y∗ = (x∗, z∗) ∈ arg minEξ[
∑T
t=1 Gt(x, z)]. With appropriate choice of parameters η, δ we have

Eint[
T∑
t=1

Gt(ỹt)]−
T∑
t=1

Gt(y∗) ≤ O(dN3/2T 3/4)

Proof. First we need a bound on
∑T
t=1 Gt(y∗δ )−

∑T
t=1 Gt(y∗), where y∗δ = ΠXδ×Zδ(y

∗). If G is Lipschitz L with
respect to some norm || · ||, by Lemma 5 we have ||∇G||∗ ≤ L. For any y = [x; z] with x ∈ X and z ∈ Z, let us
use ||y|| = ||x||2 + ||z||∞ with dual norm ||y||∗ = max{||x||2, ||z||1} (see Lemma 12 in the Appendix).

T∑
t=1

Gt(y∗δ )−
T∑
t=1

Gt(y∗) ≤ TL||y∗ − y∗δ ||

≤ δTLD||·||G by Lemma 11 in the Appendix

≤ O(δTGN).

The last inequality holds because of the following two facts, 1) ||∇G||∗ = max{||∇xG||2, ||∇zG||1} ≤
max{G,

∑N
n=1 µ[1 + N ]} ≤ G + 1 + N and 2) ||y1 − y2|| = ||x1 − x2||2 + ||z1 − z2||∞ ≤ DX + 2 := D

||·||
G .

Let Eint be the expectation taken with respect to the internal randomization of the algorithm. Following the
proof of Lemma 15 we have
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Eint[
T∑
t=1

Gt(ỹt)]−
T∑
t=1

Gt(y∗)

≤ Eint[
T∑
t=1

Gt(yt)]−
T∑
t=1

Gt(y∗) + δGGT G is GG-Lipschitz and ||y − ỹ|| ≤ δ

≤ Eint[
T∑
t=1

Gt(yt)]−
T∑
t=1

Gt(y∗δ ) + δGGT +O(δTGN)

≤ Eint[
T∑
t=1

Ĝt(yt)]−
T∑
t=1

Ĝt(y∗δ ) + 3δGGT + δDGGGT |G(y)− Ĝ(y)| < δGG

≤ ||xT − x
∗||22

2η
+

N∑
n=1

µn
||zt,n − z∗n||22

2η
+ Eint[2η[

T∑
t=1

(||g1
t ||2 +

d∑
n=1

µn(g2
t,n)2)]] + 3δGGT +O(δTGN)

reduction to bandit feedback and Lemma 31

≤ D2
X + 2

2η
+ 2ηEint[

T∑
t=1

(||g1
t ||22 +

d∑
n=1

µn(g2
t,n)2)] + 3δGGT +O(δTGN)

≤ D2
X + 2

2η
+ 2η

(d+N)2N2

δ2
T + 3δGGT +O(δTGN)

≤ O(dN3/2T 3/4)

where we chose η = O( 1
dN3/2T 3/4 ) and δ = O(N

1/2

T 1/4 ) and plugged in the bound on GG from Lemma 30.

Proof of Theorem 8. Take Eξ[·] on both sides of the result in Lemma 32 and interchange the expectations (this
can be done using Fubini’s Theorem and the uniform bound on Gt). Noting that for all x ∈ X and all z ∈ [0, 1]
(in particular for every (x̃t, z̃t)) we have

Eξ∼P [Ltn(x, z)] = z +
1

n/N
Eξ∼P [f(x, ξ)− z]+ ≥ CV aRn/N [F ](x),

it follows that since Gt(x, z) :=
∑N
n=1 µnLtn(x, z) we have Eξ∼P [Gt(x, z)] ≥ ρ[F ](x). Noting that

Eξ[
∑T
t=1 Gt(y∗)] = minx∈X ρ[F ](x) we get the desired result.

Proof of Theorem 9. We notice that strong convexity of f(·, ξ) implies strong convexity of ρ[F ](ξ) since each of
the Cαi [F ](·) in the Kusuoka representation of ρ[F ] is strongly convex. Let x∗ = argminx∈Xρ[F ](x). We follow
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the proof of Theorem 3. Let the concentration error CE = ρ[{ft(x∗)}Tt=1]−minx∈X ρ[{ft(x)}Tt=1].

E[ρ[{ft(xt)}]−min
x∈X

ρ[{ft(x)}]]

= E[ρ[{ft(xt)}]± ρ[{ft(x∗)}]−min
x∈X

ρ[{ft(x)}]]

= E[

N∑
n=1

µnCn/N [{ft(xt)}]− ρ[{ft(x∗)}]] + E[CE]

≤ E[
N

T

T∑
t=1

|ft(xt)− ft(x∗)|] + E[CE] as in the last line of the proof of Theorem 3

≤ N

T

T∑
t=1

Et[||xt − x∗||] + E[CE]

≤ N

T

√
T

√√√√ T∑
t=1

Et[||xt − x∗||2] + E[CE]

≤ N

T

√
T

√√√√ T∑
t=1

2

β
E[ρ[F ](xt)− ρ[F ](x∗)] + E[CE]

≤ O(
d1/2N7/4

β1/2T 1/8
) + E[CE]

The expectation of the concentration error can be bounded as in the proof of Theorem 3 by Õ(N
3/2
√
d√

T
). This

yields the result.

A.9 Analysis of Algorithm 4

Recall Algorithm 4 is the modification of Algorithm 2 where we sample Õ(N
2 ln(NT )
γ2 ) times a point (instead of

O( ln(T/(αγ))
α2γ2 )) to build a γ-CI. In this section we present the proofs of Theorems 10 and 11. We only need to

show that Õ(N
2 ln(NT )
γ2 ) samples are sufficient to build a γ-CI that holds with high probability. Afterwards it is

easy to verify that the proofs of Theorems 6 and 7 go through.

Lemma 33. To build a γ-CI for ρ[F ](x) that holds with probability at least 1 − 1
T 2 we need no more than

O(N ln (N) ln (
√
NT )

γ2 ) samples.

Proof. Notice that

|ρ[X]− ρ̂[X]| = |
N∑
n=1

µn(Cn/N [X]− Ĉn/N [X])| ≤
N∑
n=1

µn|Cn/N [X]− Ĉn/N |

Therefore, if we obtain γ-CI’s for each term |Cn/N [X] − Ĉn/N | that hold with probability at least 1 − 1
NT 2 a

union bound yields the result. From Theorem 1 we know that O(N
2 ln(
√
NT )

n2γ2 ) samples suffice to build a γ-CI for

Cn/N [X] that holds probability at least 1− 1
NT 2 . Summing up the number of samples, approximating the sum

with an integral and using a union bound yields the result.

We are now ready to prove the theorems.

Proof of Theorem 10. It is easy to see that the proof of Theorem 6 goes through if we set h(·) = ρ[F ](·) and we

replace everywhere the number of times we sample a point O( ln(T/(αγ))
α2γ2 ) with Õ(N

2 ln(T )
γ2 ).
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Proof of Theorem 11. The proof follows from almost the same reasoning as in the proof of Theorem 7. We have

ρ[{ft(xt)}Tt=1]−min
x∈X

ρ[{ft(x)}Tt=1]

≤ N

T

√
T

√√√√ 2

β

T∑
t=1

Cα[F ](xt)− Cα[F ](x∗) + CE

≤ O(
d8N3

β1/2T 1/4
) + CE (with probability at least 1− 1

T
)

where CE = ρ[F ](x∗)−minx∈X ρ[{ft(x)}] and x∗ = argminx∈Xρ[F ](x). Just as in the proof of Theorem 3 we

can bound CE with probability at least 1− 2
T by Õ(N

3/2
√
d√

T
). A union bound yields the result.
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