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Appendix A Additional Preliminaries

A.1 Convexity and Lipschitz Continuity

For a set X we define its diameter DX = supx,y∈X ‖x−y‖2. A set X ⊆ Rd is a convex set if for any x, y ∈ X
and any λ ∈ [0, 1], λx + (1 − λ)y ∈ X. For a function f : X → R, a subgradient of f at a point y, denoted
∇f(y), is a vector g ∈ Rd such that f(x) − f(y) ≥ g>(x − y) for all x ∈ X. The subdifferential of f at y,
denoted ∂f(y), is the set of all subgradients of f at y.

Definition 5 (Strongly convex function). Let X ⊆ Rd be a convex set. A function f : X → R is H-strongly
convex for H ≥ 0 if, f(x) ≥ f(y) +∇f(y)>(x− y) + H

2 ||x− y||
2
2 for all x, y ∈ X. If H = 0, we say that f is

convex.2

Note that every strongly convex function is also convex. For convex f , the subdifferential at every point
always exists and is a closed convex set.

Definition 6 (Lipschitz function). A function f : X → R is L-Lipschitz continuous with respect to a norm
|| · || if |f(x)− f(y)| ≤ L||x− y|| for every x, y ∈ X.

Lemma 9 gives an equivalence between Lipschiptzness of a convex function and properties of that function’s
subgradients.

Lemma 9 ([25]). Let f : X → R be a convex function. Then f is L-Lipschitz over X with respect to norm
|| · || if and only if for all x ∈ X and for all ∇f(x) ∈ ∂f(x) we have that ||∇f(x)||∗ ≤ L, where || · ||∗ denotes
the dual norm of || · ||.

Throughout the paper, we will say that a function f is L-Lipschitz to indicate that f is L-Lipschitz with
respect to the L2 norm || · ||2, unless otherwise stated. We also note that the L2 norm is self-dual: (|| · ||2)∗ =
|| · ||2 [24].

A.2 Tree-Based Aggregation Protocol (TBAP)

The Tree-Based Aggregation Protocol is a tool for maintaining differentially private partial sums of vectors
arriving in an online sequence. At each time t, TBAP outputs a noisy sum of the input vectors up to time
t. This algorithm was first introduced by Chan et al. [7] and Dwork et al. [10], and adapted in its current
form by Smith and Thakurta [26].

The algorithm works by maintaining a complete binary tree, where the d-dimensional input vectors are
stored in the leaf nodes, and internal nodes in the tree store a noisy sum of all leaves in their sub-tree. At
each time t, TBAP receives input zt and updates the value of the t-th leaf node to be zt. The algorithm
also updates the value of each internal node affected by this change to be the updated sum plus noise drawn
according to a high-dimensional analog of Laplace noise. The algorithm then outputs a noisy partial sum vt
of the nodes in the tree that approximately sum to zt.

The sum at each internal node is (ε/ log2 T )-differentially private, and by construction each zt affects
only log2 T nodes of the tree. By the composition property of differential privacy [9], the entire tree is
ε-differentially private (Theorem 10).

Theorem 10 ([7, 10]). TBAP({zi}Ti=1, µ, ε) is ε-differentially private for any µ > 0 and any sequence of
vectors z1, . . . , zT that each have L2 norm at most µ.

In addition to being private, TBAP also provides partial sums vt =
∑t
i=1 zt that are accurate (with respect

to the L2 norm) up to additive O(dµ log2 T
ε ). This is because the L2 norm of the noise at each node is

Gamma distributed with standard deviation O(
√
dµ log T
ε ), and each partial sum is computed using at most

log T nodes in the tree.

2This is equivalent to the more commonly used definition that f is convex if for any λ ∈ [0, 1] and for any x, y ∈ X,
λf(x) + (1− λ)f(y) ≥ f(λx+ (1− λ)y).
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Algorithm 4 Tree Based Aggregation Protocol: TBAP({zi}Ti=1, µ, ε)

Input: Online sequence of vectors z1, ..., zT ∈ Rd, µ : L2−norm bound on each zi, privacy parameter ε.
Output: Sequence of noisy partial sums v1, . . . , vn ∈ R
Initialize a binary tree A of size 2dlog2 Te+1 − 1 with leaves z1, ..., zT
for t = 1, . . . , T do

Accept zt from the data stream.
Let P = {zt → · · · → root} be the path from zt to the root.
procedure Tree update

Let Λ be the first node in P that is left-child in A. Let PΛ = {zt → · · · → Λ}.
for all nodes α in path P do

α← α+ zt

if α ∈ PΛ then α← α+ γ where γ ∈ Rd is sampled by Pr[γ = γ̂] ∝ e−
‖γ̂‖2ε

µ(dlog2 Te+1)

end if
end for

end procedure
procedure Output private partial sum

Initialize vector vt ∈ Rd to zero. Let b be a (dlog2 T e+ 1)-bit binary representation of t.
for i = 1, . . . , [log2 T + 1] do

if bit bi = 1 then
if i-th node in P (denoted P (i)) is the left child in A, then v ← v + P (i)
else vt ← vt+left sibling P (i)
end if

end if
end for
return noisy partial sum vt

end procedure
end for

A.3 The Cost of Privacy in Online Convex Optimization

Theorem 5. Let {x̂t}Tt=1 be the non private iterates of RFTL and let {xt}Tt=1 be the private iterates i.e.
xt+1 = arg minx∈X v

>
t x+ H

2 ||x||
2 where vt is the private partial sum computed using TBAP{∇ft(xt), L, ε}.

It holds that

E[

T∑
t=1

ft(xt)] ≤ E[

T∑
t=1

ft(x̂t)] +
4nL2T ln1.5(T )

εH
.

Where the expectation is taken with respect to the randomness of TBAP.

Our proof follows a similar structure as that of Lemma 8 of [26]. However, we analyze a different algorithm,
so the proof details are different.

Proof. Let Jt = v>t x+ H
2 ||x||

2. Let ξt = vt −
∑t
τ=1∇ft(xt) be the noise added by TBAP to

∑t
τ=1∇ft(xt).

Notice that xt+1 = arg minx∈K Jt(x) + ξ>t x and x̂t = arg minx∈K Jt(x). Since Jt is H
2 -strongly convex we

have that

||x̂t+1 − xt+1|| ≤
2||ξt||
H

.

Since each ξt is formed in TBAP by adding at most dln(T ) + 1e vectors with norms drawn from a Gamma

distribution with scale n and shape (dln(T )+1e)G
ε we can upper bound E[||ξt||] by 4nG ln1.5(T )

ε .
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Since ft is L-Lipschitz continuous we have that

E[

T∑
t=1

ft(xt)] ≤ E[

T∑
t=1

ft(x̂t)] + E[L

T∑
t=1

2||ξt||
H

]

≤ E[

T∑
t=1

ft(x̂t)] +
4nL2T ln1.5(T )

εH
.

Appendix B Omitted Proofs

B.1 Full Information Setting

Theorem 6 (Privacy guarantee). SubmodPRFTL({fi}Ti=1,M,H,L, [n], ε) is ε-differentially private for any
sequence of functions f1, . . . , fT with bounded range [−M,M ] and for any M,H,L, n, T > 0.

Proof. By Theorem 10 we know that the output of TBAP, {vt}Tt=1, is ε-differentially private. By Theorem
3 we get that the sequence {xt}Tt=1 is ε-differentially private since the procedure xt+1 ← arg minx∈K v

>
t x+

H
2 ||x||

2
2 is simply post-processing of the vt’s. Computing the output {St}Tt=1 is further post-processing of the

sequence {xt}Tt=1, and Theorem 3 again yields the result.

Theorem 7 (Regret guarantee). SubmodPRFTL({fi}Ti=1,M,H,L, [n], ε) run with H = M
√
T and

||∇f̂t|| ≤ L = 4M for any sequence of submodular functions f1, . . . , fT : 2[n] → [−M,M ] for any M,n, T > 0
guarantees,

E[Regret(T )] ≤ O

(
nM2 ln1.5(T )

√
T

ε

)
,

where the expectation is taken over the randomness of TBAP and the sampling procedure used to choose St.

Proof. Let ETBAP [·] be the expectation taken with respect to the randomness of TBAP. No-

tice that E[
∑T
t=1 ft(St)] = ETBAP [E[

∑T
t=1 ft(St)|TBAP ]] = ETBAP [E[

∑T−1
t=1 ft(St)|TBAP ]] +

ETBAP,τ1,...,τT−1
[E[fT (ST )|TBAP, τ1, ..., τT−1]] = ETBAP [E[

∑T−1
t=1 ft(St)|TBAP ]] + ETBAP [f̂T (xT )] by def-

inition of f̂ . Repeating the argument T − 1 more times we get E[
∑T
t=1 ft(St)] = ETBAP [

∑T
t=1 f̂t(x̂t)].

Now,

E[

T∑
t=1

ft(St)− min
S⊆[n]

T∑
t=1

ft(S)]

≤ E[

T∑
t=1

ft(St)−min
x∈K

T∑
t=1

f̂t(x)]

= ETBAP [

T∑
t=1

f̂t(xt)−min
x∈K

T∑
t=1

f̂t(x)]

≤ ETBAP [

T∑
t=1

f̂t(x̂t)−min
x∈K

T∑
t=1

f̂t(x)] +
4nL2T ln1.5(T )

εH
(by Theorem 5)

≤ 2

H

T∑
t=1

||∇f̂t(x̂t)||2 +
H

2
[||x||2 − ||x̂1||2] +

4nL2T ln1.5(T )

εH
(by Theorem 4)

≤ 2TL2

H
+
Hn

2
+

4nL2T ln1.5(T )

εH

Plugging in the bound on L from Lemma 2 and choosing H = M
√
T yields the result.
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B.2 Bandit Setting

Theorem 8 (Privacy guarantee). BanditSubmodPRFTL({fi}Ti=1,M,H,L, [n], ε, γ) is ε-differentially pri-
vate for any sequence of functions f1, . . . , fT with bounded range [−M,M ] and for any M,H,L, n, T, γ > 0.

Proof. By Theorem 10 we know that the output of TBAP, {vt}Tt=1, is ε-differentially private. Notice
that BanditSubmodPRFTL is running PRFTL on regularized functions ĝ>t x+ H

2 ‖x‖
2 thus by the same

reasoning as in Theorem 6, the sequence {xt}Tt=1 is ε-differentially private since the procedure xt+1 ←
arg minx∈K v

>
t x + H

2 ‖x‖
2
2 is simply post-processing of the vt’s. Since {St}Tt=1 is post-processing on the

sequence {xt}Tt=1, applying Theorem 3 again completes the proof.

Lemma 3. Let γ ∈ (0, 1). The random vector ĝt computed in BanditSubmodPRFTL is an unbiased

estimate of a subgradient of the Lovasz extension f̂t of submodular ft, evaluated at point xt. That is,

E [ĝt | xt] = ∇f̂t(xt).

Proof. Notice that conditioned on the randomness up to t− 1

ĝt =


− 1
ρ0
ft(B0)e(π−1(1)) with probability ρ0

2
ρi
ft(Bi)e(π

−1(i)) with probability ρi
2 for 1 ≤ i ≤ n− 1

− 2
ρi
ft(Bi)e(π

−1(i+ 1)) with probability ρi
2 for 1 ≤ i ≤ n− 1

1
ρn
ft(Bn)e(π−1(n)) with probability ρn

Therefore

Et[ĝt] = ρ0[− 1

ρ0
ft(B0)e(π−1(1))] +

ρ1

2
[

2

ρ1
ft(B1)e(π−1(1))− 2

ρ1
ft(B1)e(π−1(2))]

+ ...+
ρn−1

2
[

2

ρn−1
ft(Bn−1)e(π−1(n− 1))− 2

ρn−1
ft(Bn−1)e(π−1(n))] + ρn[

1

ρn
ft(Bn)e(π−1(n))]

= [ft(B1)− ft(B0)]e(π−1(1)) + [ft(B2)− ft(B1)]e(π−1(2)) + ...+ [ft(Bn)− ft(Bn−1)]e(π−1(n))

This means that Et[ĝt](π−1(i)) = f(Bi)− ft(Bi−1) for i = 1, ..., n. This concludes the proof since Et[ĝt](i) =
Et[ĝt](π−1[π(i)]) = ft(Bπ(i))− ft(Bπ(i)−1) = gt(i) for i = 1, ..., n.

Lemma 4. The random vector ĝt computed in BanditSubmodPRFTL satisfies the following bound on its
expected L2-norm,

E
[
‖ĝt‖2

]
≤ 16M2n2

γ
,

where the expectation is taken over the algorithm’s internal randomness up to time t.

Proof.

Et[||ĝt||2] = ρ0[− 1

ρ0
ft(B0)]2 +

n−1∑
i=1

ρi
2

[(
2

ρi
ft(Bi))

2 + (− 2

ρi
)ft(Bi)

2] + ρn[
1

ρn
ft(Bn)2]

≤ 4M2
n∑
i=0

1

ρi

= 4M2
n∑
i=0

1

(1− γ)µi + γ/(n+ 1)

=

n∑
i=0

n+ 1

(1− γ)µi(n+ 1) + γ
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≤ 4M2(n+ 1)2

γ

≤ 16M2n2

γ

The second to last inequality holds as long as γ ≤ 1 which will be ensured when we choose the parameters
of the algorithm.

Lemma 5 ([14]). For any submodular function ft : [n] → [−M,M ], let xt and St be the corresponding

iterates and sets as defined in BanditSubmodPRFTL, then E[ft(St)] ≤ E[f̂t(xt)] + 2γM . Where the
expectation is taken with respect to all the randomness of the algorithm.

The proof is identical to that of [14]. We present it here for completeness. Let Et be the expectation with
respect to the randomness of the algorithm in round t conditioned on the history up to time t− 1.

Proof. We know Et[ft(St)] =
∑n
i=0 ρift(Bi) and f̂t(xt) =

∑n
i=0 µif(Bi). Therefore,

Et[ft(St)]− f̂t(xt) =

n∑
i=0

(ρi − µi)ft(Bi)

≤ γ
n∑
i=0

[
1

n+ 1
+ µi

]
|ft(Bi)|

= γ

(
n

n+ 1
+ 1

)
M

≤ 2γM.

Taking expectation with respect to the randomness up to time t− 1 yields the result.

Lemma 6. Let {ĝt}Tt=1 be the sequence of one point gradient estimates generated by
BanditSubmodPRFTL({fi}Ti=1,M,H,L, [n], ε, γ). Then,

E

[
min
x∈K

T∑
t=1

ĝ>t x

]
≤ E

[
min
x∈K

T∑
t=1

∇f̂>t x

]
+

8Mn
√
T

√
γ

,

where the expectation is taken with respect to all the randomness of the algorithm.

Proof. Define αt = ∇f̂t − ĝt. Notice that with probability 1

|
T∑
t=1

ĝ>t x−
T∑
t=1

∇f̂>t x|

≤ ||x||2||
T∑
t=1

αt||2 (by Cauchy Schwartz)

Therefore, with probability 1

min
x∈K

T∑
t=1

ĝ>t x ≤ min
x∈K

T∑
t=1

∇f̂t(xt)>x+ ||
T∑
t=1

αt||2. (1)

The previous ensures that our regret bound holds against adaptive adversaries.
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We next proceed to bound E
[
‖
∑T
t=1 αt‖2

]2
. By Lemma 10 stated below, E[α>t αt′ ] = 0 for t 6= t′.

E

[∥∥∥∥∥
T∑
t=1

αt

∥∥∥∥∥
2

]2

≤ E

∥∥∥∥∥
T∑
t=1

αt

∥∥∥∥∥
2

2

 (by Jensen’s inequality)

=

T∑
t=1

E
[
‖αt‖22

]
+ 2

∑
t<t′

E
[
α>t αt′

]
=

T∑
t=1

E
[
‖∇f̂t(xt)− ĝt‖22

]
≤

T∑
t=1

E
[
2‖∇f̂t(xt)‖22 + 2‖ĝt‖22

]
≤ 4T · 16M2n2

γ

where the last line follows from Lemma 4, and the fact that if ‖ĝt‖2 ≤ G then ‖∇f̂t(xt)‖2 ≤ G by Jensen’s
inequality. Taking expectation on both sides of equation 1 yields the result

The following lemma was asserted without proof in [26]. We prove it here for completeness.

Lemma 10. Let αt = ∇f̂t(xt) − ĝt. Then, for t < t′ it holds that E[α>t αt′ ] = 0, where the expectation is
taken over the randomization of the algorithm used to build the estimates of the gradient {ĝt}Tt=1.

Proof.

E[α>t αt′ ] = E[(∇f̂t(xt)− ĝt)>(∇f̂t′(xt′)− ĝt′)]

= E[∇f̂t(xt)>∇f̂t′(xt′)]− E[∇f̂t(xt)>ĝt′ ]− E[∇f̂t′(xt′)>ĝt] + E[ĝ>t ĝt′ ]

= ∇f̂t(xt)>∇f̂t′(xt′)−∇f̂t(xt)>∇f̂t′(xt′)−∇f̂t′(xt′)>∇f̂t(xt) + E[ĝ>t ĝt′ ]

We now show that E[ĝ>t ĝt′ ] = ∇f̂t′(xt′)>∇f̂t(xt).

E[ĝ>t ĝt′ ] = E1,...t′−1[Et′ [ĝ>t ĝt′ |t = 1, ...t′ − 1]]

= E1,...t′−1[ĝ>t Et′ [ĝt′ |t = 1, ...t′ − 1]]

= E1,...t′−1[ĝ>t ∇f̂t′(xt′)]

= ∇f̂>t (xt)∇f̂t′(xt′)

Lemma 7. Let {ĝt}Tt=1 and {xt}Tt=1 be the sequences generated by
BanditSubmodPRFTL({fi}Ti=1,M,H,L, [n], ε, γ). Then,

E[

T∑
t=1

ĝ>t xt] = E[

T∑
t=1

∇f̂>t xt],

where the expectation is taken with respect to all the randomness of the algorithm.
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Proof.

E[

T∑
t=1

ĝ>t xt]

= E[

T−1∑
t=1

ĝ>t xt] + E[ĝ>T xT ]

= E[

T−1∑
t=1

ĝ>t xt] + E[E[ĝ>T xT |τ = 1, ..., T − 1]]

= E[

T−1∑
t=1

ĝ>t xt] + E[x>T E[ĝT |τ = 1, ..., T − 1]]

= E[

T−1∑
t=1

ĝ>t xt] + E[x>T E[ĝT |τ = 1, ..., T − 1]]

= E[

T−1∑
t=1

ĝ>t xt] + E[x>T∇f̂T ] by Lemma 3.

Repeating the argument T − 1 more times yields the result.

Lemma 8. Let {xt}Tt=1 be the sequence generated by BanditSubmodPRFTL({fi}Ti=1,M,H,L, [n], ε, γ).
Let x̂t be the non private iterate of the algorithm, that is x̂t+1 =

∑t
τ=1 ĝ

>
τ x+ H

2 ||x||
2. Then,

E[

T∑
t=1

ĝ>t xt] ≤ E[

T∑
t=1

ĝ>t x̂t] +
64n3M2T ln1.5(T )

εγH
,

where the expectation is taken with respect to the randomness of the algorithm.

Proof. We follow the proof of Lemma 8 in [26].

Let Jt = v>t x + H
2 ||x||

2. Let ξt = vt −
∑t
τ=1 ĝt be the noise added by TBAP to

∑t
τ=1 ĝt. Notice that

xt+1 = arg minx∈K Jt(x) + ξ>t x and x̂t = arg minx∈K Jt(x). Since Jt is H-strongly convex we have that

||x̂t+1 − xt+1|| ≤
2||ξt||
H

.

Since each ξt is formed in TBAP by adding at most dln(T ) + 1e vectors with norms drawn from a Gamma

distribution with scale n and shape (dln(T )+1e)4Mn√
γε we can upper bound E[||ξt||] by 16n ln1.5(T )Mn

ε
√
γ .

Since ĝ>t is 4Mn√
γ -Lipschitz continuous (by Lemma 4, concavity of

√
·, and Jensen’s inequality) we have that,

E[

T∑
t=1

ĝ>t xt] ≤ E[

T∑
t=1

ĝ>t x̂t] + E[
4Mn
√
γ

T∑
t=1

2||ξt||
H

]

≤ E[

T∑
t=1

ĝ>t x̂t] +
64n3M2T ln1.5(T )

εγH
.

Theorem 9 (Regret guarantee). BanditSubmodPRFTL({fi}Ti=1,M,H,L, [n], ε, γ) run with H = MT 2/3,

L = 4Mn√
γ , and γ = n3/2

T 1/3 for any sequence of submodular functions f1, . . . , fT : 2[n] → [−M,M ] for any

M,n, T > 0 guarantees,

E[Regret(T )] ≤ Õ
(
MnT 2/3

ε

)
,

where the expectation is taken with respect to all the internal randomness of the algorithm.
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Proof of Theorem 9.

E

[
T∑
t=1

ft(St)− min
S⊆[n]

T∑
t=1

ft(S)

]

≤ E

[
T∑
t=1

ft(St)−min
x∈K

T∑
t=1

f̂t(x)

]

≤ E

[
T∑
t=1

f̂t(xt)−
T∑
t=1

f̂t(x)

]
+ 2γMT (for any x ∈ K by Lemma 5)

≤ E

[
T∑
t=1

∇f̂>t (xt − x)

]
+ 2γMT (since f̂t is convex)

≤ E

[
T∑
t=1

∇f̂>t xt

]
− E

[
min
x∈K

T∑
t=1

ĝ>t x

]
+ 2γMT +

8Mn
√
T

√
γ

(by Lemma 6)

= E

[
T∑
t=1

ĝ>t xt

]
− E

[
min
x∈K

T∑
t=1

ĝ>t x

]
+ 2γMT +

8Mn
√
T

√
γ

(by Lemma 7)

= E

[
T∑
t=1

ĝ>t x̂t

]
− E

[
min
x∈K

T∑
t=1

ĝ>t x

]
+ 2γMT +

8Mn
√
T

√
γ

+
64n3M2T ln1.5(T )

εγH
(by Lemma 8)

≤ E

[
2

H

T∑
t=1

||ĝt||22 +
H

2
[||x||22 − ||x1||22]

]
+ 2γMT +

8Mn
√
T

√
γ

+
64n3M2T ln1.5(T )

εγH
(for any x ∈ K by Theorem 4)

≤ 32M2n2T

Hγ
+ nH + 2γMT +

8Mn
√
T

√
γ

+
64n3M2T ln1.5(T )

εγH
(by Lemma 4)

Choosing γ = n3/2

T 1/3 , H = MT 2/3 yields the result.


	Appendix Additional Preliminaries
	Convexity and Lipschitz Continuity
	Tree-Based Aggregation Protocol (TBAP)
	The Cost of Privacy in Online Convex Optimization

	Appendix Omitted Proofs
	Full Information Setting
	Bandit Setting


