Differentially Private Online Submodular Minimization

Appendix A Additional Preliminaries

A.1 Convexity and Lipschitz Continuity

For a set X we define its diameter Dx = sup,, ,ex [z —yll2. A set X C R is a conver set if for any =,y € X
and any A € [0,1], Ax + (1 — A)y € X. For a function f : X — R, a subgradient of f at a point y, denoted
Vf(y), is a vector g € R? such that f(x) — f(y) > g'(z —y) for all z € X. The subdifferential of f at v,
denoted 9f(y), is the set of all subgradients of f at y.

Definition 5 (Strongly convex function). Let X C RY be a convex set. A function f: X — R is H-strongly
convex gorH >04f, f(z) > f(y)+ VW) (x—y)+ Lz —yl|} for allz,y € X. If H =0, we say that [ is
convex.

Note that every strongly convex function is also convex. For convex f, the subdifferential at every point
always exists and is a closed convex set.

Definition 6 (Lipschitz function). A function f: X — R is L-Lipschitz continuous with respect to a norm
-1 if | f () = fW)| < Ll|z —yl| for every =,y € X.

Lemma 9 gives an equivalence between Lipschiptzness of a convex function and properties of that function’s
subgradients.

Lemma 9 ([25]). Let f: X — R be a convez function. Then f is L-Lipschitz over X with respect to norm
[|-1] if and only if for all x € X and for all V f(x) € Of(x) we have that ||V f(x)||. < L, where || ||« denotes
the dual norm of || /.

Throughout the paper, we will say that a function f is L-Lipschitz to indicate that f is L-Lipschitz with
respect to the Ly norm || - ||2, unless otherwise stated. We also note that the Ly norm is self-dual: (||-||2). =

1112 [24].

A.2 Tree-Based Aggregation Protocol (TBAP)

The Tree-Based Aggregation Protocol is a tool for maintaining differentially private partial sums of vectors
arriving in an online sequence. At each time ¢, TBAP outputs a noisy sum of the input vectors up to time
t. This algorithm was first introduced by Chan et al. [7] and Dwork et al. [10], and adapted in its current
form by Smith and Thakurta [26].

The algorithm works by maintaining a complete binary tree, where the d-dimensional input vectors are
stored in the leaf nodes, and internal nodes in the tree store a noisy sum of all leaves in their sub-tree. At
each time t, TBAP receives input z; and updates the value of the ¢-th leaf node to be z;. The algorithm
also updates the value of each internal node affected by this change to be the updated sum plus noise drawn
according to a high-dimensional analog of Laplace noise. The algorithm then outputs a noisy partial sum v
of the nodes in the tree that approximately sum to z;.

The sum at each internal node is (e/log, T)-differentially private, and by construction each z; affects
only log, T nodes of the tree. By the composition property of differential privacy [9], the entire tree is
e-differentially private (Theorem 10).

Theorem 10 ([7, 10]). TBAP({z:}2_,, i, €) is e-differentially private for any u > 0 and any sequence of
vectors z1, ..., zr that each have Lo norm at most p.

In addition to being private, TBAP also provides partial sums vy = 22:1 z¢ that are accurate (with respect
to the Ly norm) up to additive O(M). This is because the Ly norm of the noise at each node is

Gamma, distributed with standard deviation O(M), and each partial sum is computed using at most
log T nodes in the tree.

2This is equivalent to the more commonly used definition that f is convex if for any A € [0, 1] and for any =,y € X,
M)+ X=X fy) = fAz+ (1= Ny).
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Algorithm 4 Tree Based Aggregation Protocol: TBAP({z;}7 1, i1, €)

Input: Online sequence of vectors z1, ..., zr € R%, pu: Ly—norm bound on each z;, privacy parameter e.
Output: Sequence of noisy partial sums vy,...,v, € R

Initialize a binary tree A of size 2M1°82T1+1 _ 1 with leaves 21, ..., 21
fort=1,..., Tdo
Accept z; from the data stream.
Let P = {z — --- — root} be the path from z; to the root.
procedure TREE UPDATE
Let A be the first node in P that is left-child in A. Let Py = {z; — --- — A}.
for all nodes « in path P do

o — o+ 2
I5llpe
if a € Py then a «+ a + 7 where v € R is sampled by Pr[y = 4] ¢~ gz 77D
end if
end for

end procedure
procedure OUTPUT PRIVATE PARTIAL SUM
Initialize vector v; € RY to zero. Let b be a ([log, T'] + 1)-bit binary representation of t.
fori=1,...,[log, T + 1] do
if bit b; = 1 then
if i-th node in P (denoted P(7)) is the left child in A, then v < v + P(i)
else v; + v, +left sibling P(i)
end if
end if
end for
return noisy partial sum v,
end procedure
end for

A.3 The Cost of Privacy in Online Convex Optimization

Theorem 5. Let {#;}1_, be the non private iterates of RFTL and let {x;}I_, be the private iterates i.e.
Typ1 = argmingex v @ + &||z||? where v, is the private partial sum computed using TBAP{N fy(x¢), L, €}.
It holds that

= n 2 n1.5
EY filx)] <E[D fuldn)] + %Hm

Where the expectation is taken with respect to the randomness of TBAP.

Our proof follows a similar structure as that of Lemma 8 of [26]. However, we analyze a different algorithm,
so the proof details are different.

Proof. Let J, = v] x4+ Z||z||?. Let & = v, — 23:1 V fi(x¢) be the noise added by TBAP to Z::I V fi(xy).
Notice that 2,41 = argmin, e Ji(z) + & = and &, = argmin, ¢y Jy(x). Since J; is Z-strongly convex we
have that

. 2
[[Zt41 — 2o < %

Since each & is formed in TBAP by adding at most [In(T) + 1] vectors with norms drawn from a Gamma

distribution with scale n and shape w we can upper bound E[||&]]] by M
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Since f; is L-Lipschitz continuous we have that

T

th o) <Eth w2l 206

2115
E[Z fe(@4)] + b ) ZI;‘IH (T)

Appendix B  Omitted Proofs

B.1 Full Information Setting

Theorem 6 (Privacy guarantee). SUBMODPRFTL({f;}L,, M, H, L, [n], €) is e-differentially private for any
sequence of functions f1,..., fr with bounded range [—M, M| and for any M,H,L,n,T > 0.

Proof. By Theorem 10 we know that the output of TBAP, {v;}1_,, is e-differentially private. By Theorem
3 we get that the sequence {x;}]_; is e-differentially private since the procedure 441 < arg mingex v;r T+
H||z||3 is simply post-processing of the v;’s. Computing the output {S;}7_; is further post-processing of the

sequence {z;}7_;, and Theorem 3 again yields the result. O
Theorem 7 (Regret guarantee). SUBMODPRFTL({fi} . ,, M, H,L,[n],e) run with H = M~T and
IV fil| < L =4M for any sequence of submodular functions fi, ..., fr: 2" — [=M, M] for any M,n,T > 0
guarantees,

E{Regret(T)] < O <nM2 1n1'5(T)\/T> |

€

where the expectation is taken over the randomness of TBAP and the sampling procedure used to choose Sy.

Proof. Let Erpap[] be the expectation taken with respect to the randommness of TBAP. No-
tice that E[Y,_, fu(S)] = ErpaplE[ L, f(S)ITBAP)] = ErpaplE[X, fu(S)ITBAP] +
Erpaprm,...ri [BUT(ST)TBAP, 71, .. mr1]] = ErpaplE[Y i) f(S)|TBAP)) + Erpap|fr(vr)] by def-
inition of f. Repeating the argument T — 1 more times we get E[Zz;l fe(Sy)] = ETBAP[ZZ; Fi(@)].
Now,

T T
=ErparY_ filz)) —min Y fi(z)]

=1 M

T T

. , N 4nL2TIn*5(T
< I[-ETB,M:[;::1 (Ty) — gg}rcl;ft(x)] + T() (by Theorem 5)
AnL2T In*>(T)

< 2y 2
< HZHVft M=+ [Hrll |12111%] + I (by Theorem 4)

oTL?> Hn  4nL*TW"5(T)
< +
H 2 cH

Plugging in the bound on L from Lemma 2 and choosing H = M+/T yields the result. O
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B.2 Bandit Setting

Theorem 8 (Privacy guarantee). BANDITSUBMODPRFTL({f;}L,, M, H, L,[n],¢,7) is e-differentially pri-
vate for any sequence of functions f1,..., fr with bounded range [—M, M| and for any M,H,L,n,T,~v > 0.

Proof. By Theorem 10 we know that the output of TBAP, {v;}]_,, is e-differentially private. Notice
that BANDITSUBMODPRFTL is running PRFTL on regularized functions g z 4+ £ ||2[|? thus by the same
reasoning as in Theorem 6, the sequence {z;}Z ; is e-differentially private since the procedure ;i +
arg minge g v @ + Z||z(|3 is simply post-processing of the vy’s. Since {S;}{_, is post-processing on the
sequence {z;}7_,, applying Theorem 3 again completes the proof. O

Lemma 3. Let v € (0,1). The random vector §, computed in BANDITSUBMODPRFTL is an unbiased
estimate of a subgradient of the Lovasz extension f; of submodular f;, evaluated at point x;. That is,

E [ge | 7] = V fe(x).

Proof. Notice that conditioned on the randomness up to ¢t — 1

fi(Bo)e(m=1(1)) with probability pg
. —ft( De(m (i) with probability & for 1 <i<n—1
gt =

fe(Bi)e(r (i

+1)) with probability % for1<i<n-—1
)

th( w)e(rL(n) with probability p,

Therefore

M@A=po[—p—10ft(Bo>e<f1<1>>]+ ft<Bl)< <1>>—%ft<31>e<f1<2>>1
Pty 2 ~i(Bar)elr ! (n = 1)) -

- i e(m (n
2 pn_ pnilft(Bn—l)e(ﬂ' (n))]—!—pn[pnft(Bn)( (n))]
B0 — F{Bletr(0) + [B) — Bl @) + o+ [(Ba) — BB el 1)

This means that E[g¢](7~1(i)) = f(B;) — fi(B;_1) for i = 1,...,n. This concludes the proof since E.[g;](i) =
E[ge) (7 (0)]) = fe(Br(i)) — fe(Bry—1) = gt( ) fori=1,..,n. O

Lemma 4. The random vector §; computed in BANDITSUBMODPRFTL satisfies the following bound on its
expected Lo-norm,

R 16 M2n?
E [[13:/”] < ——,
Y
where the expectation is taken over the algorithm’s internal randommness up to time t.

Proof.
E(llg]”] = p [**ft (Bo)]? Zz pz )2+ (= )ft( )]+pn[p1 fe(Bn)?)

§4MQZ;

“MZ 1 ul+v/<n+1>

n

_ n+1
_Z(l—v)ui(n+1)+v

=0
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< 4M?(n +1)2
Y
16M?n?
S -
Y

The second to last inequality holds as long as v < 1 which will be ensured when we choose the parameters
of the algorithm. O

Lemma 5 ([14]). For any submodular function f; : [n] — [—-M, M], let x; and Sy be the corresponding
iterates and sets as defined in BANDITSUBMODPRFTL, then E[fi(S;)] < E[fi(x¢)] + 2vM. Where the
expectation is taken with respect to all the randomness of the algorithm.

The proof is identical to that of [14]. We present it here for completeness. Let E; be the expectation with
respect to the randomness of the algorithm in round ¢ conditioned on the history up to time t — 1.

Proof. We know Eq[f;(Sy)] = S0 pife(Bi) and fi(x;) = 327 pif (B;). Therefore,

=0
n
! ( 1T )
<2vM
Taking expectation with respect to the randomness up to time t — 1 yields the result. O

Lemma 6. Let {g:}1, be the sequence of one point gradient estimates generated by
BANDITSUBMODPRFTL ({f:}L |, M, H, L, [n],€,7). Then,

8MnvVT
+
Nai

where the expectation is taken with respect to all the randomness of the algorithm.

E <E

T
min E gz
ek

t=1

T
min g Vi
zel P

Proof. Define ay =V ft — g¢. Notice that with probability 1
T T
D4 w = Vflal
t=1 t=1
T
< |]z||2]| ZatHg (by Cauchy Schwartz)
t=1
Therefore, with probability 1

T T T
. ~T . 7 T
< . 1
min ;—1 9 = < min ;—1 Vi) =+ ;_1 a2 (1)

The previous ensures that our regret bound holds against adaptive adversaries.
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2
We next proceed to bound E [|| Zthl at||2} . By Lemma 10 stated below, E[a, ay] = 0 for ¢t # ¢'.

2 2

E <E (by Jensen’s inequality)

T
pLY
t=1

T
P
t=1

2 2

Il
[M]=

E [[lo:]3] +2) E [0 ay]

t<t’/

~
Il
-

Il
M=

E {vat(iﬂt) - Qt”%]

ﬁ
Il
=

E (2019 fu(w) I3 + 2190113

M=

o~
I
=

16 M?n?
Y

INA
W

T

where the last line follows from Lemma 4, and the fact that if ||g¢]l2 < G then ||V fy(z¢)]2 < G by Jensen’s

inequality. Taking expectation on both sides of equation 1 yields the result

The following lemma was asserted without proof in [26]. We prove it here for completeness.

O

Lemma 10. Let o, = Vfi(x;) — §i. Then, for t < t' it holds that Ea; o] = 0, where the expectation is

taken over the randomization of the algorithm used to build the estimates of the gradient {g;}1_,.

Proof.

Eloy ow] = E[(V fe(xe) — §0) T (Vo (@) — gu)]
EV fu(2) TV fu ()] = B[V fu(w) " go] = BIV fu(2) . + E[g] o]
Vfilz) "V fo () = V fi(2) "V fo (@) = V(@) TV ful@e) + EG] 6]

We now show that E[j; gu] = V fur (24) TV i (4).

Elg gv] =E1, v—1[Ev[g) olt =1,..t' —1]]
=E1,..o-1[0{ Ev[gu[t = 1,..t' —1]]
=Er,..o1[00 Vo))
= vf;(xt)vft/(xt’)

Lemma 7.  Let {a:3E, and {z 35, be the sequences generated
BANDITSUBMODPRFTL ({f:}L,, M, H, L, [n],€,7). Then,

T T
E[Y 4 @) =E[)_Vflz),
t=1 t=1

where the expectation is taken with respect to all the randomness of the algorithm.
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Proof.

T
E[ZQ:%}
t=1
T-1
=E[>_ g/ x| + E[g7 z7]
t=1
T-1
—E[Y 47w + EE[gForlr = 1,... T — 1]
t=1
T—-1
=E[>_ 4 =] +ElzrE[gr|r = 1,...,T — 1]]
t=1
T—1
=E[>_ 4 w] +Elz7E[gr|r = 1,...,T — 1]]
t=1

Z i x:] + E[z-Vfr] by Lemma 3.

Repeating the argument 1" — 1 more times yields the result. O

Lemma 8. Let {z;}L, be the sequence generated by BANDITSUBMODPRFTL({fZ i1, M, H,L,[n],e).
Let 4 be the non private iterate of the algorithm, that is Ty1q1 = 2721 ol z+ &|z||2. Then,

., 64n3M2TIn'5(T)
Iy /e < By ol + LT

where the expectation is taken with respect to the randomness of the algorithm.

Proof. We follow the proof of Lemma 8 in [26].

Let J, = v/ oz + &||z[|?. Let & = v, — Zj—:l gt be the noise added by TBAP to Zj—:l gi- Notice that
Tyy1 = argming e Ji(z) + & @ and &, = argmin, ¢ Ji(x). Since J; is H-strongly convex we have that

2[|&:l
T

||55t+1 - $t+1|| <

Since each & is formed in TBAP by adding at most [In(7") 4+ 1] vectors with norms drawn from a Gamma

NI . ([In(T)+1])4M 16n1n*%(T)M
distribution with scale n and shape Tﬂ %
4Mn

Since g, is Nai -Lipschitz continuous (by Lemma 4, concavity of /-, and Jensen’s inequality) we have that,

d i AMn = 2||¢;
B3 o) < B34, mm[ﬁz”ﬁ“]

t=1

we can upper bound E[||&|]] by

T
- 64n3 M2T In*>(T
<E[Y gl + D,

put eyH
O
Theorem 9 (Regret guarantee). BANDITSUBMODPRFTL({fi}~,, M, H, L, [n],¢,7) run with H = MT?/3,
L = 4\]‘/%", and v = ;i—g for any sequence of submodular functions fi,..., fr : 2" — [—M, M] for any

M,n, T >0 guarantees,

E[Regret(T)] < O(

where the expectation is taken with respect to all the internal randomness of the algorithm.

MnT?/3 )

€
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Proof of Theorem 9.
T
E th(St — mln th ]
t=1 . A
<E Z Je(St) — gg}%zft(x)]
Li=1

T

[ T
SE 1D filw) =2 i
t=1

+2yMT (for any « € K by Lemma 5)

<E ZVftT(xt —x)

Lt=1

+2yMT (since f, is convex)

[T T
. MnvT
<E ZVftht -E minZﬁth +2'7MT+M (by Lemma 6)
Lt=1 vek i el
rT T
MnNT
=E th—rxt —-E minzg:x +2’yMT+M (by Lemma 7)
_t=1 rekiA val
r T
SMnyT  64n> M>TIn'5(T)
=E g, &1 | — E |mi 9y 2YMT by L 8
th un glel,gggtfv +2yMT + i + 7] (by Lemma 8)
SMnvT — 64n® M>T In"*(T)
<E g z||5 — ||z +2yMT + +
HZH llg + - el = Nl 3] + 29 ¥ —
8902n2T S8MnVT  64n3M>T In"(T
§7n+nH+2’yMT+ n\F+6n n () (by Lemma 4)
Hr Nal eyH

Choosing v = H = MT?/3 yields the result.

T1/37

(for any « € K by Theorem 4)
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