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S1 Detailed Description of Alternative Methods

In Section 3, we describe a number of alternative methods for identifying rationales for comparison with our

method. We use methods based on integrated gradients (Sundararajan et al., 2017), LIME (Ribeiro et al., 2016),

and feature perturbation. Note that integrated gradients is an attribution method which assigns a numerical score

to each input feature. LIME likewise assigns a weight to each feature using a local linear regression model for f

around x. In the perturbative approach, we compute the change in prediction when each feature is individually

masked, as in Equation 1 (of Section S4.4). Each of these feature orderings R is used to construct a rationale

using the FindSIS procedure (Section 3) for the “Suff. IG,” “Suff. LIME,” and “Suff. Perturb.” (sufficiency
constrained) methods.

Note that our text classification architecture (described in Section S4.2) encodes discrete words as 100-dimensional

continuous word embeddings. The integrated gradients method returns attribution scores for each coordinate of

each word embedding. For each word embedding xi P x (where each xi P R100
), we summarize the attributions

along the corresponding embedding into a single score yi using the L1 norm: yi “ ∞
d |xid| and compute the

ordering R by sorting the yi values.

We use an implementation of integrated gradients for Keras-based models from https://github.com/hiranumn/

IntegratedGradients. In the case of the beer review dataset (Section 4.1), we use the mean embedding

vector as a baseline for computing integrated gradients. In the case of TF binding (Section 4.2), we use the

r0.25, 0.25, 0.25, 0.25s uniform mean vector as the baseline reference value. As suggested in Sundararajan et al.

(2017), we verified that the prediction at the baseline and the integrated gradients sum to approximately the

prediction of the input.

For LIME and our beer reviews dataset, we use the approach described in Ribeiro et al. (2016) for textual data,

where individual words are removed entirely from the input sequence. In our TF binding dataset, LIME replaces

bases with the unknown N base (represented as the uniform-distribution r0.25, 0.25, 0.25, 0.25s). We use the

implementation of LIME at: https://github.com/marcotcr/lime. The LimeTextExplainer module is used

with default parameters, except we set the maximal number of features used in the regression to be the full input

length so we can order all input features.

Additionally, we explore methods in which we use the same ordering R by these alternative methods but select

the same number of input features in the rationale to be the median SIS length in the SIS-collection computed by

our method on each example: the “IG,” “LIME,” and “Perturb.” (length constrained) methods. In the TF binding

models, we use a baseline of zero vectors such that the integrated gradients result along the encoded sequence is

also one-hot. We compute the feature ordering based on the absolute value of the non-zero integrated gradient

attributions.

In TF binding data (Section 4.2), we add an additional method, “Top IG,” in which we compute integrated

gradients using an all-zeros baseline and order features by attribution magnitude (as in the length constrained

IG method). But, we select elements for the rationale by finding the minimum number of elements necessary

such that the sum of integrated gradients of those features equals ⌧ ´ fp0q, where 0 is the all-zeros baseline

for integrated gradients. Note that for the length constrained and Top IG methods, there is no guarantee of

sufficiency fpxSq • ⌧ for any input subset S.

S2 Details of the Transcription Factor Binding Analysis

S2.1 Dataset and Model

We use the motif occupancy datasets

1

from Zeng et al. (2016), where each dataset originates from a ChIP-seq

experiment from the ENCODE project (Consortium et al., 2012). Each of the 422 datasets studies a particular

transcription factor, containing between 600 and 700,000 (median 50,000) 101 base-pair DNA sequences (inputs)

each associated with a binary label based on whether the sequence is bound by the TF or not. Each dataset

also contains a test set ranging between 150 and 170,000 sequences (median 12,000). Here, the positive and

negative classes in each dataset are balanced, and we filter out all sequences containing the unknown base (N).

1available at http://cnn.csail.mit.edu

https://github.com/hiranumn/IntegratedGradients
https://github.com/hiranumn/IntegratedGradients
https://github.com/marcotcr/lime
http://cnn.csail.mit.edu
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Figure S1: Median area under the receiver operating

curve (AUC) for all 422 transcription factor binding

motif occupancy datasets. The validation set is held-out

at training but used to choose model parameters; the

test set is not seen until after training.

Figure S2: Thresholds ⌧ used for identifying sufficient

input subsets in TF binding datasets. In each dataset,

the threshold is defined as the 90th percentile of the

predictive test distribution.

The nucleotide occurring at base position (A, C, G, T) is encoded as a one-hot representation which is fed into the

CNN. Zeng et al. (2016) showed that convolutional neural network architectures outperform other models for this

TF binding prediction task.

For each of the 422 prediction tasks, we employ the best-performing “1layer_128motif” architecture from Zeng

et al. (2016), defined as follows:

1. Input: (101 x 4) sequence encoding

2. Convolutional Layer 1: Applies 128 kernels of window size 24, with ReLU activation

3. Global Max Pooling Layer 1: Performs global max pooling

4. Dense Layer 1: 32 neurons, with ReLU activation and dropout probability 0.5

5. Dense Layer 2: 1 neuron (output probability), with sigmoid activation

We hold out 1/8 of each train set for validation and minimize binary cross-entropy using the Adadelta optimizer

(Zeiler, 2012) with default parameter settings in Keras (Chollet et al., 2015). We train each model on each of the

422 datasets for 10 epochs (using batch size 128) with early-stopping based on validation loss. Figure S1 shows

the area under the receiver operating curve (AUC) over the 422 datasets, and we note that the performance of

our models closely resembles that in Zeng et al. (2016).

S2.2 Rationale length comparison between SIS and other methods

For each dataset, we define the sufficiency threshold ⌧ as the 90th percentile of the predictive distribution on all

test sequences. The distribution of thresholds is shown in Figure S2. We compute the complete set of sufficient

input subsets for each corresponding test sequence. Since A,C,G,T nucleotides all occur with similar frequency in

this data, our SIS analysis simply masks each base using a uniform embedding (r0.25, 0.25, 0.25, 0.25s). This is

also the standard strategy to represent unknown “N” nucleotides in DNA sequences that typically arise from issues

in read quality. We generally find that there is only a single SIS per example for the sequences in these datasets.

On each dataset, we compute the median rationale length (as number of bases in the rationale). The distribution

of median rationale length over all datasets by various methods is shown in Figure S3. Note that for the IG,

LIME, and Perturb. methods, rationale length was constrained to the length of the rationales produced by our

method. For the Top IG method, neither sufficiency or length constraints are enforced. We see that when the

sufficiency constraint is enforced in alternative methods (Suff. IG), the rationales are significantly longer than
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Figure S3: Length (number of bases) of rationales iden-

tified by various methods. Note that the sufficiency

constraint (fpxSq • ⌧) is only enforced for SIS and Suff.

IG. The lengths of IG, LIME, and Perturb. rationales

are constrained to the length of SIS rationales.

Figure S4: Prediction on rationale only (all other bases

masked) vs. rationale length (number of bases) for

various methods in the TF binding task.

those identified by SIS. Moreover, as shown in Figure S4, when the sufficiency constraint is not enforced (or

the rationale lengths are constrained to the length of SIS rationales) in alternative methods, the rationales have

significantly less predictive power, often not satisfying fpxSq • ⌧ .

S2.3 Evaluation of the quality of TF Rationales

Each rationale is padded with “N” (unknown) bases to the length of a full input sequence (101 bases) and optimally

aligned with the known motif

2

according to the likelihood criterion. The aligned motif is then also padded to the

same length, and we compute the divergence between between the rationale R and known motif M as:

DivpR,Mq “
ÿ

i

DKLpRi||Miq

where DKLpRi||Miq “ ∞
j Ripjq log Ripjq

Mipjq is the Kullback-Leibler divergence from Mi to Ri, and Mi and Ri are

distributions over bases (A, C, G, T) at position i. Note that as R and M become more dissimilar, DivpR,Mq
increases. We ensure Mij ° 0 @ i, j so DKL is always finite.

2A JASPAR motif is a n ˆ 4 right stochastic matrix M . The columns represent the ACGT DNA bases and the rows a
DNA sequence. It represents the marginal probability of the base j at position i being present with probability Mij . The
unknown base “N” receives uniform 1{4 probability for each of ACGT.
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S3 Details of the MNIST Analysis

S3.1 Dataset and Model

The MNIST database of handwritten digits contains 60k training images and 10k test images (LeCun et al., 1998).

All images are 28x28 grayscale, and we normalize them such that all pixel values are between 0 and 1. We use

the convolutional architecture provided in the Keras MNIST CNN example.

3

The architecture is as follows:

1. Input: (28 x 28 x 1) image, all values P r0, 1s
2. Convolutional Layer 1: Applies 32 3x3 filters with ReLU activation

3. Convolutional Layer 2: Applies 64 3x3 filters, with ReLU activation

4. Pooling Layer 1: Performs max pooling with a 2x2 filter and dropout probability 0.25

5. Dense Layer 1: 128 neurons, with ReLU activation and dropout probability 0.5

6. Dense Layer 2: 10 neurons (one per digit class), with softmax activation

The Adadelta optimizer (Zeiler, 2012) is used to minimize cross-entropy loss on the training set. The final model

achieves 99.7% accuracy on the train set and 99.1% accuracy on the held-out test set.

S3.2 Local Minima in Backward Selection

(a) (b) (c) (d)

Figure S5: (a) Prediction on remaining image as pixels are masked during backward selection, when our CNN

classifier is fed the MNIST digit in (b). The dashed line depicts the threshold ⌧ “ 0.7. (b) Original image (class

9). (c) SIS if backward selection were to terminate the first time prediction on remaining image drops below

0.7, corresponding to point C in (a) (CNN predicts class 9 with probability 0.700 on this SIS). (d) Actual SIS

produced by our FindSIS algorithm, corresponding to point D in (a) (CNN predicts class 9 with probability

0.704 on this SIS).

Figure S5 demonstrates an example MNIST digit for which there exists a local minimum in the backward selection

phase of our algorithm to identify the initial SIS. Note that if we were to terminate the backward selection as soon

as predictions drop below the decision threshold, the resulting SIS would be overly large, violating our minimality

criterion. It is also evident from Figure S5 that the smaller-cardinality SIS in (d), found after the initial local

optimum in (c), presents a more interpretable input pattern that enables better understanding of the core motifs

influencing our classifier’s decisions. To avoid suboptimal results, it is important to run a complete backward

selection sweep until the entire input is masked before building the SIS upward, as done in our SIScollection

procedure.

3
http://github.com/keras-team/keras/blob/master/examples/mnist_cnn.py

http://github.com/keras-team/keras/blob/master/examples/mnist_cnn.py
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Figure S6: Number of examples per digit in the test

set for which fpxq • ⌧ for the top class. The complete

set of sufficient input subsets is computed for all of

these examples.

Figure S7: Distributions of number of sufficient input

subsets identified per image, by digit.

S3.3 Energy Distance Between Image SIS

To cluster SIS from the image data, we compute the pairwise distance between two SIS subsets S1 and S2 as

the energy distance (Rizzo and Székely, 2016) between two distributions over the image pixel coordinates that

comprise the SIS, X1 and X2 P R2
:

DpX1, X2q “ 2 ¨ E ||X1 ´ X2|| ´ E ||X1 ´ X

1
1|| ´ E ||X2 ´ X

1
2|| • 0

Here, Xi is uniformly distributed over the pixels that are selected as part of the SIS subset Si, X
1
i is an i.i.d.

copy of Xi, and || ¨ || represents the Euclidean norm. Unlike a Euclidean distance between images, our usage of

the energy distance takes into account distances between the similar pixel coordinates that comprise each SIS.

The energy distance offers a more efficiently computable integral probability metric than the optimal transport

distance, which has been widely adopted as an appropriate measure of distance between images.

S3.4 SIS Clustering and Adversarial Analysis

We set the threshold ⌧ “ 0.7 for SIS to ensure that the model is confident in its class prediction (probability

of the predicted class is • 0.7). Almost all test examples initially have fpxq • ⌧ for the top class (Figure S6).

We identify all test examples that satisfy this condition and use SIS to identify all sufficient input subsets. The

number of sufficient input subsets per digit is shown in Figure S7.

We apply our SIScollection algorithm to identify sufficient input subsets on MNIST test digits (Section 4.3).

Examples of the complete SIS-collection corresponding to randomly chosen digits are shown in Figure S8. We also

cluster all the sufficient input subsets identified for each class (Section 4.4), depicting the results in Figure S9.

In Figure 8, we show an MNIST image of the digit 9, adversarially perturbed to 4, and the sufficient subsets

corresponding to the adversarial prediction. Although a visual inspection of the perturbed image does not

really reveal exactly how it has been manipulated, it becomes immediately clear from the SIS-collection for the

adversarial image. These sets shows that the perturbation modifies pixels in such a way that input patterns similar

to the typical SIS-collection for a 4 (Figure 7) become embedded in the image. The adversarial manipulation

was done using the Carlini-Wagner L2 (CW2) attack

4

(Carlini and Wagner, 2017b) with a confidence parameter

of 10. The CW2 attack tries to find the minimal change to the image, with respect to the L2 norm, that will

lead the image to be misclassified. Carlini and Wagner (2017a) demonstrate it to be one of the strongest extant

adversarial attacks.

4Implemented in the cleverhans library of Papernot et al. (2017)
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(a) Digit 0 (b) Digit 1

(c) Digit 2 (d) Digit 3

(e) Digit 4 (f) Digit 5

(g) Digit 6 (h) Digit 7

(i) Digit 8 (j) Digit 9

Figure S8: Visualization of SIS-collections identified from MNIST digits that are confidently classified by the

CNN. For each class, six examples were chosen randomly. For each example, we show the original image (left)

and the complete set of sufficient input subsets identified for that example (remaining images in each row). Each

individual SIS satisfies fpxSq • ⌧ for that class.
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(a) Digit 0 (b) Digit 1

(c) Digit 2 (d) Digit 3

(e) Digit 4 (f) Digit 5

(g) Digit 6 (h) Digit 7

(i) Digit 8 (j) Digit 9

Figure S9: Clustering all the SIS found for each digit under the CNN model (see Section 4.4). Each row contains

images drawn from one cluster. The bottom row (“Misc”) contains a sample of miscellaneous SIS not assigned to

any cluster by DBSCAN.
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S3.5 Understanding Differences Between MNIST Classifiers

We use SIS and our clustering procedure to understand and visualize differences in features learned by two

different models trained on the same MNIST digit classification task. In addition to the previously-described

CNN model (see Section S3.1), we also trained a simple multilayer perceptron (MLP) on the same task. The

MLP architecture is as follows:

1. Input: 784-dimensional (flattened) image, all values P r0, 1s
2. Dense Layer 1: 250 neurons, ReLU activation, and dropout probability 0.2

3. Dense Layer 2: 250 neurons, ReLU activation, and dropout probability 0.2

4. Dense Layer 3: 10 neurons (one per digit class), with softmax activation

As with the CNN, Adadelta (Zeiler, 2012) is used to minimize cross-entropy loss on the training set. The final

MLP model achieves 99.7% accuracy on the train set and 98.3% accuracy on the test set, which is close to the

performance of the CNN (see Section S3.1).

We apply the same procedure as in Section 4.3 to extract the SIS-collection from all applicable test images

using the MLP. To understand differences between the feature patterns that each model has learned to associate

with predicting each digit, we combine all SIS (from both models for a particular class) and run our clustering

procedure (see Section 4.4 and Figure 9). In the resulting clustering, we list what percentage of the SIS in each

cluster stem from the CNN vs. the MLP. Most clusters contain examples purely from a single model, indicating

the two models have learned to associate different feature patterns with the target class (Figure 9), which was

chosen to be the digit 4 in this case.

For further comparison, we include clustering results for the SIS extracted from the MLP as evidence for digits

4 and 7 (Figure S10). Additionally, Figure S11 shows all of the SIS extracted from example digits from these

classes applying our procedure on the MLP.

(a) Digit 4 (b) Digit 7

Figure S10: Clustering all the SIS identified by our method on digits 4 and 7 under the MLP model (see

Section 4.4). Each row contains images drawn from one cluster. The bottom row (“Misc”) contains a sample of

miscellaneous SIS not assigned to any cluster by DBSCAN. Compare to the SIS-clustering from our CNN model

(Figure S9).



S3.5 Understanding Differences Between MNIST Classifiers 11

(a) Digit 4 (b) Digit 7

Figure S11: Visualization of SIS-collections identified for MNIST digits 4 and 7 under the MLP model. For

each class, six examples were chosen randomly. For each example, we show the original image (left) and the

complete set of sufficient input subsets identified for that example (remaining images in each row). Note that

each individual SIS satisfies fpxSq • ⌧ for that class. Compare to the SIS extracted from our CNN (Figure S8).
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S4 Details of the Beer Reviews Sentiment Analysis

S4.1 Beer Reviews Data Description

Following Lei et al. (2016), we use a preprocessed version of the BeerAdvocate

5

dataset

6

which contains decorrelated

numerical ratings toward three aspects: aroma, appearance, and palate (each normalized to r0, 1s). Dataset

statistics can be found in Table S1. Reviews were tokenized by converting to lowercase and filtering punctuation,

and we used a vocabulary containing the top 10,000 most common words. McAuley et al. (2012) also provide a

subset of human-annotated reviews, in which humans manually selected full sentences in each review that describe

the relevant aspects. This annotated set was never seen during training and used solely as part of our evaluation.

S4.2 Model Architecture and Training

Long short-term memory (LSTM) networks are commonly employed for natural language tasks such as sentiment

analysis (Wang et al., 2016; Radford et al., 2017). We use a recurrent neural network (RNN) architecture with

two stacked LSTMs as follows:

1. Input/Embeddings Layer: Sequence with 500 timesteps, the word at each timestep is represented by a

(learned) 100-dimensional embedding

2. LSTM Layer 1: 200-unit recurrent layer with LSTM (forward direction only)

3. LSTM Layer 2: 200-unit recurrent layer with LSTM (forward direction only)

4. Dense: 1 neuron (sentiment output), sigmoid activation

With this architecture, we use the Adam optimizer (Kingma and Ba, 2015) to minimize mean squared error

(MSE) on the training set. We use a held-out set of 3,000 examples for validation (sampled at random from the

pre-defined test set from Lei et al. (2016)). Our test set consists of the remaining 7,000 test examples. Training

results are shown in Table S1.

Table S1: Summary and performance statistics (mean squared error (MSE) and Pearson correlation coefficient ⇢)

for beer reviews data and LSTM models.

Aspect Fold Size MSE Pearson ⇢

Appearance

Train 80,000 0.016 0.864

Validation 3,000 0.024 0.783

Test 7,000 0.023 0.801

Annotation 994 0.020 0.563

Aroma

Train 70,000 0.014 0.873

Validation 3,000 0.024 0.767

Test 7,000 0.025 0.756

Annotation 994 0.021 0.598

Palate

Train 70,000 0.016 0.835

Validation 3,000 0.029 0.680

Test 7,000 0.028 0.694

Annotation 994 0.016 0.592

5
https://www.beeradvocate.com/

6
http://snap.stanford.edu/data/web-BeerAdvocate.html

https://www.beeradvocate.com/
http://snap.stanford.edu/data/web-BeerAdvocate.html
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S4.3 Imputation Strategies: Mean vs. Hot-deck

In Section 3, we discuss the problem of masking input features. Here, we show that the mean-imputation approach

(in which missing inputs are masked with a mean embedding, taken over the entire vocabulary) produces a nearly

identical change in prediction to a nondeterministic hot-deck approach (in which missing inputs are replaced by

randomly sampling feature-values from the data). Figure S12 shows the change in prediction fpxztiuq ´ fpxq by

both imputation techniques after drawing a training example x and word xi P x (both uniformly at random) and

replacing xi with either the mean embedding or a randomly selected word (drawn from the vocabulary, based on

counts in the training corpus). This procedure is repeated 10,000 times. Both resulting distributions have mean

near zero (µ

mean-embedding

“ ´7.0e´4, µ
hot-deck

“ ´7.4e´4), and the distribution for mean embedding is slightly

narrower (�

mean-embedding

“ 0.013, �
hot-deck

“ 0.018). We conclude that mean-imputation is a suitable method

for masking information about particular feature values in our SIS analysis.

We also explored other options for masking word information, e.g. replacement with a zero embedding, replacement

with the learned <PAD> embedding, and simply removing the word entirely from the input sequence, but each

of these alternative options led to undesirably larger changes in predicted values as a result of masking, indicating

they appear more informative to f than replacement via the feature-mean.

Figure S12: Change in prediction (fpxztiuq ´ fpxq) after masking a randomly chosen word with mean imputation

or hot-deck imputation. 10,000 replacements were sampled from the aroma beer reviews training set.

S4.4 Feature Importance Scores

For each feature i in the input sequence, we quantify its marginal importance by individually perturbing only this

feature:

Feature Importancepiq “ prediction on original input ´ prediction with feature i masked (1)

Note that these marginal Feature Importance scores are identical to those of the Perturb. method described in

Section S1. The marginal Feature Importance scores are summarized in Table S2 and Figure S13. Compared to

the Suff. IG and Suff. LIME methods, our SIScollection technique produces rationales that are much shorter

and contain fewer irrelevant (i.e. not marginally important) features (Table S2, Figures S13 and S14). Note

that by construction, the rationales of the Suff. Perturb. method contain features with the greatest Feature

Importance, since this precisely how the ranking in Suff. Perturb. is defined.

S4.5 Additional Results for Aroma aspect

We apply our method to the set of reviews containing sentence-level annotations. Note that these reviews (and

the human annotations) were not seen during training. We choose thresholds ⌧` “ 0.85, ⌧´ “ 0.45 for strong

positive and strong negative sentiment, respectively, and extract the complete set of sufficient input subsets

using our method. Note that in our formulation above, we apply our method to inputs x where fpxq • ⌧ . For
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Table S2: Statistics for rationale length and feature importance in aroma prediction. For rationale length, median

and max indicate percentage of input text in the rationale. For marginal perturbed feature importance, we

indicate the median importance of features in rationales and features from the other (non-rationale) text. p-values

are computed using a Wilcoxon rank-sum test.

Method

Rationale Length (% of text) Marginal Perturbed Feature Importance

Med. Max p (vs. SIS) Med. (Rationale) Med. (Other) p (vs. SIS)

SIS 3.9% 17.3% – 0.0112 1.50e-05 –

Suff. IG 7.7% 89.7% 5e-26 0.0068 1.85e-05 3e-42

Suff. LIME 7.2% 84.0% 4e-23 0.0075 1.87e-05 1e-35

Suff. Perturb. 5.1% 18.3% 1e-06 0.0209 1.90e-05 1e-72

Figure S13: Importance of individual features in the

rationales for aroma prediction in beer reviews

Figure S14: Length of rationales for aroma prediction

the sentiment analysis task, we analogously apply our method for both fpxq • ⌧` and ´fpxq • ´⌧´, where

the model predicts either strong positive or strong negative sentiment, respectively. These thresholds were set

empirically such that they were sufficiently apart, based on the distribution of predictions (Figure S15). For most

reviews, SIScollection outputs just one or two SIS sets (Figure S16).

We analyzed the predictor output following the elimination of each feature in the BackSelect procedure (Section 3).

Figure S17 shows the LSTM output on the remaining unmasked text fpxSzti˚uq at each iteration of BackSelect,

for all examples. This figure reveals that only a small number of features are needed by the model in order to

make a strong prediction (most features can be removed without changing the prediction). We see that as those

final, critical features are removed, there is a rapid, monotonic decrease in output values. Finally, we see that

the first features to be removed by BackSelect are those which generally provide negative evidence against the

decision.

S4.6 Understanding Differences Between Sentiment Predictors

We demonstrate how our SIS-clustering procedure can be used to understand differences in the types of concepts

considered important by different neural network architectures. In addition to the LSTM (see Section S4.2), we

trained a convolutional neural network (CNN) on the same sentiment analysis task (on the aroma aspect). The

CNN architecture is as follows:

1. Input/Embeddings Layer: Sequence with 500 timesteps, the word at each timestep is represented by a

(learned) 100-dimensional embedding

2. Convolutional Layer 1: Applies 128 filters of window size 3 over the sequence, with ReLU activation

3. Max Pooling Layer 1: Max-over-time pooling, followed by flattening, to produce a p128, q representation

4. Dense: 1 neuron (sentiment output), sigmoid activation
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Figure S15: Predictive distribution on the annota-

tion set (held-out) using the LSTM model for aroma.

Vertical lines indicate decision thresholds (⌧` “ 0.85,
⌧´ “ 0.45) selected for SIScollection.

Figure S16: Number of sufficient input subsets for

aroma identified by SIScollection per example.

Figure S17: Prediction history on remaining (unmasked) text at each step of the BackSelect procedure, for

examples where aroma sentiment is predicted.

Figure S18: Beer reviews (aroma) in which human-selected sentences (underlined) are aligned well (top) and

poorly (bottom) with predictive model. Fraction of SIS in the human sentences corresponds accordingly. In the

bottom example (poor alignment between human-selection and predictive model), our procedure has surfaced

a case where the LSTM has learned features that diverge from what a human would expect (and may suggest

overfitting).
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Table S3: All clusters of sufficient input subsets extracted from reviews from the test set predicted to have positive

aroma by the LSTM. Frequency indicates the number of occurrences of the SIS in the cluster.

Cluster SIS #1 Freq. SIS #2 Freq. SIS #3 Freq. SIS #4 Freq.

C1
smell amazing

wonderful 2 nice wonderful nose 2 wonderful amazing 2 amazing amazing 2

C2
grapefruit mango

pineapple 2
pineapple grapefruit

pineapple
grapefruit

1 hops grapefruit
pineapple floyds 1 mango pineapple

incredible
1

C3
nice smell citrus

nice grapefruit taste 1 smell great complex
ripe taste 1 nice smell nice hop

smell pine taste 1 love nice nice smell
bliss taste

1

C4
fresh great fantastic

taste 1 rich great fantastic
hoped 1 fantastic cherries

fantastic 1 everyone great
snifters fantastic

1

C5 awesome bounds 1 awesome grapefruit
awesome 1 awesome awesome

pleasing 1 awesome nailed
nailed

1

C6 creme brulee brulee 3 creme brulee
decadent 1 incredible creme

brulee 1 creme brulee
exceptional

1

C7

oak vanilla
chocolate cinnamon

vanilla oak love
1 dose oak chocolate

vanilla acidic 1 vanilla figs oak
thinner great 1 chocolate aroma

oak vanilla dessert 1

Table S4: All clusters of sufficient input subsets extracted from reviews from the test set predicted to have

negative aroma by the LSTM. Frequency indicates the number of occurrences of the SIS in the cluster. Dashes

are used in clusters with under 4 unique SIS.

Cluster SIS #1 Freq. SIS #2 Freq. SIS #3 Freq. SIS #4 Freq.

C1 awful 15 skunky skunky 9 skunky t 7 skunky taste 6

C2 garbage 3 taste garbage 1 garbage avoid 1 garbage rice 1

C3 vomit 16 - - - - - -

C4 gross rotten 1 rotten forte 1 awkward rotten 1 rotten offputting 1

C5 rancid horrid 1 rancid t 1 rancid 1 rancid avoid 1

C6 rice t rice 2 rice rice 1 rice tasteless 1 budweiser rice 1
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Note that a new set of embeddings was learned with the CNN. As with the LSTM model, we use Adam (Kingma

and Ba, 2015) to minimize MSE on the training set. For the aroma aspect, this CNN achieves 0.016 (0.850),

0.025 (0.748), 0.026 (0.741), 0.014 (0.662) MSE (and Pearson ⇢) on the Train, Validation, Test, and Annotation

sets, respectively. We note that this performance is very similar to that from the LSTM (see Table S1).

We apply our procedure to extract the SIS-collection from all applicable test examples using the CNN, as in

Section 4.1. Figure 10a shows the predictions from one model (LSTM or CNN) when fed input examples that are

SIS extracted with respect to the other model (for reviews predicted to have positive sentiment toward the aroma

aspect). For example, in Figure 10a, “CNN SIS Preds by LSTM” refers to predictions made by the LSTM on the

set of sufficient input subsets produced by applying our SIScollection procedure on all examples x P X
test

for

which f

CNN

pxq • ⌧`.

7

Since the word embeddings are model-specific, we embed each SIS using the embeddings

of the model making the prediction (note that while the embeddings are different, the vocabulary is the same

across the models).

In Table 2, we show five example clusters (and cluster composition) resulting from clustering the combined set of

all sufficient input subsets extracted by the LSTM and CNN on reviews in the test set for which a model predicts

positive sentiment toward the aroma aspect. The complete clustering on reviews receiving positive sentiment

predictions is shown in Table S5 and in Table S6 for reviews receiving negative sentiment predictions.

Table S5: Joint clustering of the SIS extracted from beer reviews predicted to have positive aroma by LSTM or

CNN model. Frequency indicates the number of occurrences of the SIS in the cluster. Percentages quantify SIS

per cluster from the LSTM. Dashes are used in clusters with under 4 unique SIS.

Cluster SIS #1 Freq. SIS #2 Freq. SIS #3 Freq. SIS #4 Freq.

C1 (LSTM: 20%) rich chocolate 13 very rich 9 chocolate complex 5 smells rich 4

C2 (LSTM: 21%) great 248 amazing 119 wonderful 112 fantastic 75

C3 (LSTM: 47%) best smelling 23 pineapple mango 6 mango pineapple 6 pineapple
grapefruit

5

C4 (LSTM: 5%) excellent 42 excellent flemish
flemish 1 excellent excellent

phenomenal 1 - -

C5 (LSTM: 33%) oak chocolate 2
chocolate raisins

raisins oak
bourbon

1 chocolate oak 1 raisins chocolate 1

C6 (LSTM: 5%) goodness 19 watering goodness 1 - - - -

C7 (LSTM: 24%) pumpkin pie 25
huge pumpkin

aroma pumpkin
pie

1 aroma perfect
pumpkin pie taste 1

smell pumpkin
nutmeg cinnamon

pie
1

C8 (LSTM: 5%) jd 13 tremendous 8 tremendous jd 1 - -

C9 (LSTM: 40%) brulee 14 creme brulee
brulee 3 creme creme 1 creme brulee

amazing
1

C10 (LSTM: 0%) s wow 20 - - - - - -

C11 (LSTM: 0%) delicious 56 - - - - - -

C12 (LSTM: 0%) very nice 23 - - - - - -

C13 (LSTM: 70%) complex aroma 5 aroma complex
peaches complex 1

aroma complex
interesting
cherries

1 aroma complex 1

7For experiments involving clustering and/or comparing different models, we use examples drawn from the Test fold
(instead of Annotation fold, see Table S1) to consider a larger number of examples.
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Table S6: Joint clustering of the SIS extracted from beer reviews predicted to have negative aroma by LSTM or

CNN model. Frequency indicates the number of occurrences of the SIS in the cluster. Percentages quantify SIS

per cluster from the LSTM. Dashes are used in clusters with under 4 unique SIS.

Cluster SIS #1 Freq. SIS #2 Freq. SIS #3 Freq. SIS #4 Freq.

C1 (LSTM: 29%) not 247 no 105 bad 104 macro 94

C2 (LSTM: 100%) gross rotten 1 - - - - - -

C3 (LSTM: 100%) rotten garbage 1 - - - - - -

C4 (LSTM: 62%) vomit 26 - - - - - -

C5 (LSTM: 21%) budweiser 22 sewage budweiser 1 metal budweiser 1
budweiser
budweiser
budweiser

1

C6 (LSTM: 100%) garbage rice 1 - - - - - -

C7 (LSTM: 3%) n’t 19 adjuncts 14 n’t adjuncts 1 - -

C8 (LSTM: 0%) faint 82 - - - - - -

C9 (LSTM: 0%) adjunct 42 - - - - - -
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S4.7 Results for Appearance and Palate aspects

For posterity, we include results here from repeating the analysis in our paper for the two other non-aroma aspects

measured in the beer reviews data: appearance and palate.

Figure S19: Change in appearance prediction (fpxztiuq ´ fpxq) after masking a randomly chosen word with mean

imputation or hot-deck imputation. 10,000 replacements were sampled from the appearance beer reviews training

set.

Figure S20: Predictive distribution on the annotation

set (held-out) using the LSTM model for appearance.

Vertical lines indicate decision thresholds (⌧` “ 0.85,
⌧´ “ 0.45) selected for SIScollection.

Figure S21: Number of sufficient input subsets for

appearance identified by SIScollection per example.
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Figure S22: Length of rationales for appearance pre-

diction

Figure S23: Importance of individual features for ap-

pearance prediction in beer review

Table S7: Statistics for rationale length and feature importance in appearance prediction. For rationale length,

median and max indicate percentage of input text in the rationale. For marginal perturbed feature importance,

we indicate the median importance of features in rationales and features from the other (non-rationale) text.

p-values are computed using a Wilcoxon rank-sum test.

Method

Rationale Length (% of text) Marginal Perturbed Feature Importance

Med. Max p (vs. SIS) Med. (Rationale) Med. (Other) p (vs. SIS)

SIS 2.6% 10.6% – 0.0183 1.72e-05 –

Suff. IG 3.7% 89.3% 2e-09 0.0184 2.41e-05 1e-02

Suff. LIME 3.7% 98.2% 8e-09 0.0167 2.38e-05 6e-09

Suff. Perturb. 3.0% 14.9% 9e-03 0.0339 2.51e-05 5e-44

Figure S24: QHS vs. fraction of SIS in human rationale

for appearance prediction

Figure S25: Prediction on rationales only vs. rationale

length for various methods in positive sentiment exam-

ples for appearance. The threshold for sufficiency was

⌧` “ 0.85.
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Figure S26: Prediction history on remaining (unmasked) text at each step of the BackSelect procedure, for

examples where appearance sentiment is predicted.

Table S8: All clusters of sufficient input subsets extracted from reviews from the test set predicted to have positive

appearance by the LSTM. Frequency indicates the number of occurrences of the SIS in the cluster. Dashes are

used in clusters with under 4 unique SIS.

Cluster SIS #1 Freq. SIS #2 Freq. SIS #3 Freq. SIS #4 Freq.

C1 beautiful 376 nitro 51 looks great 38 great looking 32

C2 gorgeous 83 - - - - - -

C3 beautifully 7 absolutely
beautifully 2 beautifully pillowy 1 beautifully bands 1

C4 brilliant 5 brilliant slowly 1 wonderfully
brilliant 1 appearance brilliant 1

C5 lovely looking 3 black lovely 3 impressive lovely 1 lovely crystal 1

Table S9: All clusters of sufficient input subsets extracted from reviews from the test set predicted to have

negative appearance by the LSTM. Frequency indicates the number of occurrences of the SIS in the cluster.

Dashes are used in clusters with under 4 unique SIS.

Cluster SIS #1 Freq. SIS #2 Freq. SIS #3 Freq. SIS #4 Freq.

C1 piss 46 zero 38 water water 37 water 27

C2 unappealing 12 floaties 12 floaties unappealing 1 - -

C3 ugly 12 - - - - - -

Table S10: Statistics for rationale length and feature importance in palate prediction. For rationale length,

median and max indicate percentage of input text in the rationale. For marginal perturbed feature importance,

we indicate the median importance of features in rationales and features from the other (non-rationale) text.

p-values are computed using a Wilcoxon rank-sum test.

Method

Rationale Length (% of text) Marginal Perturbed Feature Importance

Med. Max p (vs. SIS) Med. (Rationale) Med. (Other) p (vs. SIS)

SIS 2.4% 13.7% – 0.0210 -8.94e-07 –

Suff. IG 3.2% 56.1% 2e-06 0.0163 -9.54e-07 6e-10

Suff. LIME 3.0% 57.0% 7e-06 0.0173 -1.19e-06 2e-07

Suff. Perturb. 2.8% 11.8% 3e-03 0.0319 -1.25e-06 5e-26
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Figure S27: Change in palate prediction (fpxztiuq ´ fpxq) after masking a randomly chosen word with mean

imputation or hot-deck imputation. 10,000 replacements were sampled from the palate beer reviews training set.

Figure S28: Predictive distribution on the annota-

tion set (held-out) using the LSTM model for palate.

Vertical lines indicate decision thresholds (⌧` “ 0.85,
⌧´ “ 0.45) selected for SIScollection.

Figure S29: Number of sufficient input subsets for

palate identified by SIScollection per example.

Figure S30: Length of rationales for palate prediction

Figure S31: Importance of individual features in beer

review palate rationales
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Figure S32: QHS vs. fraction of SIS in human rationale

for palate prediction

Figure S33: Prediction on rationales only vs. rationale

length for various methods in positive sentiment ex-

amples for palate. The threshold for sufficiency was

⌧` “ 0.85.

Figure S34: Prediction history on remaining (unmasked) text at each step of the BackSelect procedure, for

examples where palate sentiment is predicted.

Table S11: All clusters of sufficient input subsets extracted from reviews from the test set predicted to have

positive palate by the LSTM. Frequency indicates the number of occurrences of the SIS in the cluster. Dashes are

used in clusters with under 4 unique SIS.

Cluster SIS #1 Freq. SIS #2 Freq. SIS #3 Freq. SIS #4 Freq.

C1 smooth creamy 27 silky smooth 20 mouthfeel perfect 16 creamy perfect 12

C2
mouthfeel
exceptional 6 exceptional

mouthfeel 4 - - - -

C3 perfect 50 perfect perfect 6 - - - -

C4 smooth velvety 6 velvety smooth 6 - - - -

C5 silk 11 - - - - - -

C6 smooth perfect 8 mouth smooth
perfect 1 perfect smooth 1 - -

C7 perfect great 5 great perfect 2 feels perfect 2 perfect feels great 1
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Table S12: All clusters of sufficient input subsets extracted from reviews from the test set predicted to have

negative palate by the LSTM. Frequency indicates the number of occurrences of the SIS in the cluster.

Cluster SIS #1 Freq. SIS #2 Freq. SIS #3 Freq. SIS #4 Freq.

C1 overcarbonated 12 mouthfeel
overcarbonated 3 way overcarbonated 1 overcarbonated

mouthfeel
1

C2 watery 302 thin 238 flat 118 mouthfeel thin 33

C3
too carbonation

masks 1 too carbonation d 1 mouthfeel odd too
too 1 too carbonated

admire
1

C4 lack carbonation 4 carbonation lack 4 carbonation hurts 2 issue lack hurts 1
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