Supplementary Materials for Improving Quadrature for Constrained
Integrands

1 Derivation of Moments

This section provides the derivation of the first and sec-
ond raw moments for the log and probit transforms, as
shown in Table [I} and the relevant partial derivatives,
which are required to use gradient based methods to op-
timize the GP hyperparameters in f-space as described
in the main text.

1.1 Log transform moments

Let y = {y1,...,yn} be a multivariate Gaussian ran-
dom variable with mean vector p and covariance matrix
Y and let x = exp(y). Then x follows a multivariate
log-normal distribution [T} 2, B, a well-studied distri-
bution whose first and second raw moments are given

by
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where z; is the i*" element of the vector x, u; is the
mean of the i*" element of y; and Yi; is the covariance
between y; and y;. The derivation of these moments is
omitted as they are well established in the literature
and not very interesting (they follow from a simple
substitution and then completing the square within the
exponent).

In order to fit hyperparameters in f-space as described
in the main text, we maximize the likelihood of some
observed training dataset (or equivalently, minimize the
negative log-likelihood) w.r.t. the hyperparameters of
the GP prior on the g-space belief. Making use of equa-
tion 5.8 from Rasmussen and Williams [3], it follows
that the relevant quantities are 9E[zil/s9 and OElziz;l/a0
where 6 is some hyperparameter of either the mean or
covariance function of the GP prior. Because the par-
tial derivatives 91/a9 and 9%/a¢ depend on the choice of
mean and covariance function, we instead present the
partial derivatives of the moments w.r.t. the means and
covariances/variances. These partial derivatives can
be used in conjuction with 91/a0 and 9%/a6 to compute
the gradient of the negative log-likelihood w.r.t. the
g-space GP hyperparamters via the chain rule.

The relevant partial derivatives for the log transform
are trivial to compute:
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1.2 Probit transform moments

To derive the first raw moment associated with the
probit transform, we take an approach similar to the
one found in section 3.9 of Rasmussen and Williams
[B]: let y = {y1,...,yn} be a multivariate Gaussian
random variable with mean vector g and covariance
matrix ¥ and let x = ®(y). The first raw moment of
x; is
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We make the following substitutions: a = w — u; and
b = z — a. Plugging these substitutions in and then
switching the order of the integrals gives
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Table 1: Induced (raw) first and second moments of f =
function can be computed by K (z,z’) =
the first moment for that transform.

&(g) for the log and probit transformations; the covariance
)
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. Some entries for the second raw moment refer to values of

transform first moment m(z) = E[f(x)] second raw moment C(z,z’) = E[f(z)f(z")]
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Observe that the quantity inside the exponent of
can be written using matrix notation as
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thus revealing the integrand of to be (proportional
to) a bivariate Gaussian PDF. The innermost integral
of is therefore equivalent to marginalizing out
one of the variables in this bivariate distribution, up
to a normalizing constant which can be pulled from
the constants in front of the integral. Continuing the
derivation in this way gives
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To derive the second raw moments associated with
the probit transform, we begin with an approach
similar to the one above. We start with the prod-
uct moment E[z;x;] (for notational simplicity, let
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Next, we make the following substitutions: a; = wy—p,,
ay = wg — Yj, by = 21 —a; and by = 23 — as:
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We can again express the exponent in (20]) using matrix
notation as follows
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where I5 is the 2-by-2 identity matrix. In this form, we
can recognize the integrand of to be proportional
to a multivariate Gaussian PDF. Pulling constants from
outside the integral gives
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Thus, the two innermost integrals correspond to
marginalizing out the variable a; and as from this
multivariate Gaussian and so we arrive at the final
result:
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Using the same derivation as detailed above, we can
show that
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Again, we present the relevant partial derivatives, start-
ing with the partial derivatives of the first moment:
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which follow from the fundamental theorm of calculus
and the chain rule. The derivative of the second raw
moments w.r.t. u; can also be computed in a similar
fashion:
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where the last line can be arrived at by pulling the term
¢ (Hi/vT+5) out of the integral and then completing
the square. Following a similar derivation, the partial
derivative of the product moment w.r.t. p; is
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Next, the partial derivative of the second moment w.r.t.
the covariance can be computed as follows:
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The second term can be decomposed into a weighted
sum of the second raw moments of a truncated bivariate
Gaussian. These moments can be expressed in terms

of the univariate Gaussian PDF and CDF [4]:
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Similarly, the other moments of the truncated bivariate
Gaussian are
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We can therefore substitute , and into

to come up with a closed form for this partial



derivative. Lastly, the partial derivatives of the second
raw moments w.r.t. X;; are
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We can again substitute , and into
and to come up with closed forms for these partial
derivatives.
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