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Abstract

We propose a novel confidence scoring mech-
anism for deep neural networks based on a
two-model paradigm involving a base model
and a meta-model. The confidence score is
learned by the meta-model observing the base
model succeeding/failing at its task. As fea-
tures to the meta-model, we investigate linear
classifier probes inserted between the various
layers of the base model. Our experiments
demonstrate that this approach outperforms
multiple baselines in a filtering task, i.e., task
of rejecting samples with low confidence. Ex-
perimental results are presented using CIFAR-
10 and CIFAR-100 dataset with and without
added noise. We discuss the importance of
confidence scoring to bridge the gap between
experimental and real-world applications.

1 Introduction

With the advancement of deep learning techniques,
models based on neural networks are entrusted with
various applications that involve complex decision mak-
ing, such as medical diagnosis (Caruana et al., 2015),
self-driving cars (Bojarski et al., 2016), or safe explo-
ration of an agent’s environment in a reinforcement
learning setting (Kahn et al., 2017). While the accu-
racy of these techniques has improved significantly in
recent years, they are lacking a very important feature:
an ability to reliably detect whether the model has pro-
duced an incorrect prediction. This is especially crucial
in real-world decision making systems: if the model is
able to sense that its prediction is likely incorrect, con-
trol of the system should be passed to fall-back systems
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or to a human expert. For example, control should be
passed to a human medical doctor when the confidence
of a diagnosis with respect to a particular symptom is
low (Jiang et al., 2011). Similarly, when a self-driving
car’s obstruent detector is not sufficiently certain, the
car should rely on fall-back sensors, or choose a conser-
vative action of slowing down the vehicle (Kendall and
Gal, 2017). Lack of, or poor confidence estimates may
result in loss of human life (National Highway Traffic
Safety Administration, 2017).

We address this problem by pursuing the following
paradigm: a learnable confidence scorer acting as an
“observer” (meta-model) on top of an existing neural
classifier (base model). The observer collects various
features from the base model and is trained to predict
success or failure of the base model with respect to its
original task (e.g., image recognition).

Formally, a meta-model G that, given a base model y =
F (x), should produce a confidence score z = G(x,ΘF )
(where ΘF denotes the parameters of the base model
F ). The confidence score z need not be a probability: it
can be any scalar value that relates to uncertainty and
can be used to filter out the most uncertain samples
based on a threshold value.

To generate confidence scores, we propose a meta-model
utilizing linear classifier probes (Alain and Bengio,
2016) inserted into the intermediate layers of the base
model (hence referred to as “whitebox” due to its trans-
parency of the internal states). We use a well-studied
task, image classification, as the focus of this paper, and
show that the confidence scores generated by the white-
box meta-models are superior to standard baselines
when noisy data are considered in the training. By re-
moving samples deemed most uncertain by our method,
the precision of the predictions by the base model on
the remaining examples improves significantly. Addi-
tionally, we show in the experiments that our method
extends to handling out-of-domain samples: when the
base model encounters out-of-domain data, the white-
box meta-model is shown to be capable of rejecting
these with better accuracy than baselines.
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2 Related work

Previous work on Monte Carlo dropout (Gal et al.,
2017; Gal and Ghahramani, 2016) to estimate model
uncertainty can be applied to our filtering task at hand.
In an autonomous driving application this approach
showed that model uncertainty correlates with posi-
tional error (Kendall and Cipolla, 2016). In an ap-
plication to image segmentation, uncertainty analysis
was done at the pixel level and overall classification
accuracy improved when pixels with higher uncertainty
were dropped (Kampffmeyer et al., 2016). Monte Carlo
dropout was also used to estimate uncertainty in diag-
nosing diabetic retinopathy from fundus images (Leibig
et al., 2017). Diagnostic performance improvement was
reported when uncertainty was used to filter out some
instances from model based classification.

Uncertainty estimations from methods like Monte Carlo
dropout can be viewed as providing additional features
about a model’s prediction for an instance, which can
be subsumed by our proposed meta-model approach.

In a broader context, the ability to rank samples is a
fundamental notion in the receiver operating charac-
teristics (ROC) analysis. ROC is primarily concerned
with the task of detection (filtering) which is in con-
trast to estimating a prognostic measure of uncertainty
(implying calibration). Plethora of ROC-related work
spanning a variety of disciplines, including biomedical,
signal, speech, language, and image processing, has
been explored in the context of filtering and decision
making (Zou et al., 2011; ICML Workshop). More-
over, ROC, either as a whole or through a part of
its operating range, has been used in optimization in
various applications (Wang et al., 2016; Navrátil and
Ramaswamy, 2002). Since we are focusing on the fil-
tering aspect of confidence scoring rather than their
calibration, we adopt the ROC analysis as our primary
metric in this work (Ferri et al., 2009).

Modern neural networks are known to be miscalibrated
(Guo et al., 2017): the predicted probability is highly
biased with respect to the true correctness likelihood.
Calibration has been proposed as a postprocessing step
to mitigate this problem for any model (Zadrozny and
Elkan, 2001, 2002; Guo et al., 2017). Calibration meth-
ods like isotonic regression (Zadrozny and Elkan, 2002)
perform transformations that are monotonic with re-
spect to scores for sets of instances and so will not alter
the ranking of confident vs. uncertain samples. The
more recent temperature scaling calibration method
(Guo et al., 2017) can alter the ranking of instances
and will be considered and compared in our analysis.

The recent work on selective classification for deep neu-
ral networks (Geifman and El-Yaniv, 2017) shares the

same broad goals to filter out instances where the base
model prediction is in doubt. Their method uses only
the outputs of the base model (softmax response) to
determine a threshold that would optimize coverage
(recall) while guaranteeing the desired risk (precision)
at some specified confidence level. From an applica-
tion perspective, our work extends this by showing
that in noisy settings whitebox models for this task
outperform methods using only the base model output
scores. We also consider an additional task using out-
of-domain instances to evaluate filtering methods when
encountering domain shifts.

3 Method

For any classification model ŷ = F (x) where ŷ is the
probability vector of the predicted classes, we define
a confidence scoring model (G, the meta-model) that
operates on F (base model) and produces a confidence
score z for each prediction ŷ.

We explore two kinds of meta-models, namely the black-
box and the whitebox type.

Blackbox In the blackbox version it is assumed that
the internal mechanism of the model F is not accessible
to the meta-model, i.e., the only observable variable
for the meta-model is its output ŷ:

z = Gblackbox (ŷ). (1)

For example, in a k-class classification problem, the
meta-model is only allowed to take the final k-
dimensional probability vector into account. A typical
representative of a blackbox baseline commonly em-
ployed in real-world scenarios is the softmax response
(Geifman and El-Yaniv, 2017): just taking the proba-
bility output of the predicted class label:

z = P (y∗|x,ΘF ) = max
i

ŷ(i), (2)

where ŷ(i) is the i-th dimension of the vector ŷ, y∗ =
arg maxi ŷ(i) (i.e. the label with the highest predicted
probability), and ΘF denotes the parameters of the
base model F .

Whitebox A whitebox meta-model assumes full ac-
cess to the internals of the base model. A neural model,
consisting of multiple stacked layers, can be regarded
as a composition of functions:

F (x) = fn(fn−1(· · · (f2(f1(x))) · · · )). (3)

We denote the intermediate results as x1 = f1(x);
x2 = f2(x1); x3 = f3(x2); etc. A whitebox meta-model
is capable of accessing these intermediate results:

z = Gwhitebox (x1,x2, · · · ,xn), (4)
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Figure 1: A schematic overview of whitebox vs. blackbox meta-models.

where xn = ŷ is the output of the last layer. It should
be noted that in general the meta-model may employ
additional functions to combine the base model’s in-
termediate results in various ways, and we explore one
such option by using linear classifier probes described
below.

3.1 Whitebox meta-model with linear
classifier probes

We propose a whitebox model using linear classifier
probes (later just “probes”). The concept of probes
was originally proposed by (Alain and Bengio, 2016)
as an aid for enhancing the interpretability of neural
networks. However, we are applying this concept for
the purpose of extracting features from the base model.
Our intuition draws from the fact that probes for differ-
ent layers tend to learn different levels of abstractions of
the input data: lower layers (those closer to the input)
learn more elementary patterns whereas higher layers
(those closer to the output) capture conceptual abstrac-
tions of the data and tend to be more informative with
respect to the class label of a given instance.

For each intermediate result xi (0 < i ≤ n with xn = ŷ
being the final output of a multi-layer neural network),
we train a probe Fi(xi) to predict the correct class y
using only the specific intermediate result:

ŷi = Fi(xi) = softmax(Wixi + bi) . (5)

Given a set of trained probes, {Fi}0<i≤n, we build the
meta-model using the probe outputs (either probabili-
ties or logits) as training input. The meta-model is then
trained with the objective of predicting whether the
base model’s classification is correct or not. Finally, the
prediction probability of the base model being correct
is the confidence score z:

z = G(ŷ1, · · · , ŷn). (6)

This architecture is illustrated in Figure 1. The diode
symbol “ ” represents the one-way nature of the

information flow emphasizing that the probes are not
trained jointly with the base model. Instead, they are
trained with the underlying base model’s parameters
fixed.

3.2 Meta-model structure

We explore three different forms of the meta-model func-
tion G from Eq. (6). The meta-model is trained as a bi-
nary classifier where G predicts whether the base model
prediction is correct or not. The probability of the pos-
itive class P (“base model is correct”|ŷ1, · · · , ŷn,ΘG)
is used as the confidence score z.

Logistic regression (LR) This meta-model has a
simple form

z =
es

1 + es
with s = θ · [ŷ1 ŷ2 · · · ŷn] . (7)

where the probe vectors ŷi are concatenated. The
logit value z ∈ (0, 1) in Eq. (7) is used directly as the
confidence score. The model is L2-regularized.

Gradient boosting machine (GBM) The con-
catenated probe vectors are fed into a gradient boosting
machine (Friedman, 2001). The GBM hyperparameters
include the learning rate, number of boosting stages,
maximum depth of trees and the fraction of samples
used for fitting individual base learners.

Besides the aforementioned structures, we also investi-
gated fully connected 2-layer neural networks, however,
omitted them in this paper as their performance was
essentially identical with the GBMs.

4 Tasks, datasets and metrics

We use the CIFAR-10 and CIFAR-100 image classifi-
cation dataset1 in our experiments. For each set of
data we conduct two flavors of experiments: In-domain

1 https://www.cs.toronto.edu/~kriz/cifar.html.

https://www.cs.toronto.edu/~kriz/cifar.html
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Figure 2: Neural structure of the base model.

confidence scoring task and an in-domain plus out-of-
domain pool task (referred to as “out-of-domain” from
now on).

In-domain task Given a base model and a held-out
set, the base model makes predictions about samples in
the held-out set. Can the trained meta-model prune out
predictions considered uncertain? Furthermore, after
removing a varying percentile of the most uncertain
predictions, how does the residual precision of the
pruned held-out set change? The expected behavior
is that the proposed meta-model should increase the
overall residual accuracy after uncertain samples are
removed.

Out-of-domain task Given a base model (here
trained on CIFAR-10), what would the model do if
presented with images not belonging to one of the 10
classes? The predictions made by the base model will
surely be wrong: However, can the meta-model dis-
tinguish these predictions as incorrect? Our proposed
meta-model should in theory produce a low confidence
score to these out-of-domain predictions. Note that
the out-of-domain task comprises both in-domain and
out-of-domain samples to be processed as a single pool.

We use the ROC (receiver operating characteristic)
curve and the precision/recall curve to study the diag-
nostic ability of our meta-models. In the ROC curve,
the x-axis is the false positive rate (i.e. rate of incor-
rectly detected success events) and the y-axis is the
true positive rate (i.e. recall): a operating point (x0, y0)
on the ROC plot corresponds to threshold inducing a
trade-off between a proportion of x0 wrongly classified
samples not detected by the meta-model and y0 propor-
tion of correctly classified samples that the meta-model
agrees with.

Additionally, we compute the area under curve (AUC)
for the ROC curve as a summary value.

4.1 Datasets

The original CIFAR-10 dataset contains 50,000 training
images and 10,000 test images. We divide the original

training set into 3 subsets, namely train-base, train-
meta and dev.

Table 1: Dividing the CIFAR-10 dataset.

Original partition New partition Size

50,000 train
train-base 30,000
train-meta 10,000
dev 10,000

10,000 test test 10,000

We adopt the following training strategy, so as to com-
pletely separate the data used by the base model and
the meta-model:

• Train the base model using the train-base sub-
set: Because the size of the training set is smaller
(30,000 samples instead of 50,000) than the stan-
dard setup (reported as 92.5% accuracy using the
base model), the accuracy on dev and test is
slightly lower: we get 90.4% accuracy on test.

• Train the whitebox meta-model (including the
probes) on train-meta.

• The dev set is used for tuning (various hyperpa-
rameters) and for validation.

• The test set is used for final held-out performance
reporting.

The out-of-domain task is evaluated by combining the
test sets of CIFAR-10 and CIFAR-100 datasets. The
CIFAR-100 dataset class labels are completely disjoint
with those of CIFAR-10. The out-of-domain set will
be referred to as OOD.

4.2 Base model

We reuse the high performing ResNet model for image
classification implemented in the official TensorFlow
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(Abadi et al., 2016) example model code2. This model
consists of a sequential stack of residual units of con-
volution networks (He et al., 2016a,b; Zagoruyko and
Komodakis, 2016) as shown in Figure 2. Each layer’s
tensor size is specified in the figure.

In subsequent experiments, we train probes for all
intermediate layers3 from x1 to ŷ.

5 Experimental results

To assess the various models we organize the experi-
ments in several parts by varying the quality of the
data used to create the models. Furthermore, their
performance in each part is evaluated on both the
in-domain and the out-of-domain tasks. The varying
quality aspect comprises the following conditions:

Clean base / Clean meta All sets involved in train-
ing, i.e., train-base, train-meta, and dev are used
in their original form from the CIFAR-10 dataset;

Noisy base / Noisy meta In this case the sets
train-meta and dev are modified by adding artifi-
cial noise to the labels of the images, hence degrading
the base model performance. Specifically, for a ran-
dom subset of 30% of the samples, the correct label
is replaced by another label (randomly chosen over
the corresponding complement of the label set). This
results in an artificially degraded base model with a
test set accuracy of 77.4% (as compared to 90.4% of
the same model trained on clean data). This condition,
in combination with the degraded base model, repre-
sents a scenario of obtaining training data from a noisy
environment, e.g., via crowd-sourcing in which labels
are not always correct.

In both conditions, the test set (both in-domain and
out-of-domain) is applied clean, without artificial cor-
ruption. The above conditions in combination with
the two tasks offer a representative set of classification
scenarios encountered in practice.

We compare the following confidence scoring methods:

• (Softmax) Softmax response function (Eq. (2))
in Geifman and El-Yaniv (2017);

• (Blackbox-LR/GBM) Using the final output ŷ
as the only feature for the meta-models;

• (Probes-LR/GBM) Whitebox model using all
the probes as features for the meta-models.

2 https://github.com/tensorflow/models/tree/
master/research/resnet.

3 We do not insert probes between the two convolu-
tional layers within the residual unit, instead, we consider
a residual unit as an atomic layer.

Table 2: Area under ROC (AUC) of various methods.

Method Condition (base/meta)

Clean/Clean Noisy/Noisy
In-domain Tasks

Softmax 0.91 0.74
Blackbox (LR) 0.91 0.79

Blackbox (GBM) 0.91 0.80
Probes (LR) 0.88 0.87

Probes (GBM) 0.91 0.88
Out-of-domain Tasks

Softmax 0.89 0.72
Blackbox (LR) 0.89 0.76

Blackbox (GBM) 0.89 0.77
Probes (LR) 0.85 0.83

Probes (GBM) 0.89 0.84

Fig. 3 shows the main results for the two conditions
and two datasets defined above, in terms of ROC and
Precision/Recall curves. Table 2 summarizes the AUC
(area under ROC) results.

Under the Clean/Clean condition we observe little dif-
ference among the methods, with AUC values at 0.91
(in-domain setting for the test set, later on, test) and
0.89 (out-of-domain setting, later on, ood) (with the
exception of the Probes-LR model, see discussion be-
low).

On the other hand, under Noisy/Noisy condition, the
probe-based (whitebox) models separate themselves
well from the baseline as well as their blackbox counter-
parts. Under the Noisy/Noisy condition, the Probes-
GBM model with AUC values of 0.88 (test) and 0.84
(ood) dominates its Blackbox-GBM counterpart at
0.80 (test) and 0.77 (ood).

Overall, under the Noisy/Noisy condition, two trends
can be identified: (1) whitebox probe-based models
outperform their blackbox counterparts, all of which
fare significantly better than the softmax baseline, and
(2) the probe-based GBM model dominates, albeit mod-
erately, the simpler LR model in all cases.

We analyzed further the lower performance of the L2-
regularized Probes-LR model in the Clean/Clean con-
dition. We explored variants including a sparse L1-
regularized LR model but could not find a satisfactory
answer to this performance drop.

We also compared the performance of the tempera-
ture scaled base model scores (Guo et al., 2017) in
the two cases, Clean/Clean and Noisy/Noisy: The
performances for both in-domain and out-of-domain
tasks after scaling when compared to the original base
model scores stayed essentially the same in each case,

https://github.com/tensorflow/models/tree/master/research/resnet
https://github.com/tensorflow/models/tree/master/research/resnet
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Figure 3: Figures (1a)-(1d) show the performance metrics for the various model in the “Clean/Clean” condition,
i.e., when both the base model as well as the meta-model were trained using uncorrupted data. The AUC (area
under curve) values were calculated for each model and are shown in the corresponding legend of the ROC plots.
Performance curves for the “Noisy/Noisy” condition, i.e., one where both the base and the meta-model are
degraded by 30%-noise, are shown in Figures (2a)-(2d).

suggesting that the task of calibration remains an or-
thogonal aspect of confidence scoring (i.e., changing
the distribution of the predicted scores but not sample
ranking).

6 Discussion

The experimental results presented in the previous
section show that whitebox meta-models using probes
are significantly better in noisy settings and also in out-
of-domain settings when compared to softmax baseline
and blackbox models, as is shown by the various ROC
or precision/recall curve plots. In this section we will
extract some insights by diving deeper into the results.

It is instructive to start with a comparison of accu-
racies achieved by the probes at various levels. The
chart in Figure 4 depicts these accuracies based on the
meta-model training data in the two scenarios: Clean
base / Clean meta, Noisy base / Noisy meta, respec-
tively. The impact of noise is seen in the top accuracy
achieved in one of the two scenarios. The accuracy
improves with neural network depth for the most part
in both scenarios. We also explored non-linear probes
using neural networks with one hidden layer of size 100.

Although the probe accuracies did improve for many of
the earlier layers the resulting meta model performance
remained comparable and therefore we present results
using the simpler linear probes only.

The accuracy plots do not provide insights into how the
whitebox models achieve their higher performance and
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Clean base / Clean meta
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Figure 4: Accuracies for the meta-model training data
at varying probe levels.
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how this changes going from the clean data scenario to
the scenarios with added label noise.

To gain additional insight we performed a feature in-
formativeness analysis based on a method described in
(Friedman, 2001). Derived from the GBM meta-model’s
feature usage statistics using the test set, feature im-
portance scores for the two conditions (Clean/Clean
and Noisy/Noisy) are shown in Figure 5. Here, each
of the 10 outputs of each of the 17 probes is assigned
an intensity level according it its importance score,
thus forming a heatmap representation. Recall that
the features are sorted according to the top-layer class
probabilities, i.e, for each sample, feature 1 (on the
vertical axis in Figure 5) corresponds to the top-scoring
class, feature 2 to 2-nd highest scoring class, etc., across
all the probes (horizontal axis).

Considering the Clean/Clean scenario first (top por-
tion in Figure 5), the top important features include
probe outputs in the last layer (Layer 17), focusing
on the score of the predicted class (i.e., output with
the highest base model score) and the class with the
second highest base model score. This aligns with the
intuition that having a high score for the predicted
class and a large gap relative to the next competing
class (i.e., mostly looking at top 2 scores) is indicative
of the base model being correct. However, the obser-

Figure 5: Feature importance scores as obtained on the
Testset in Clean-Clean (top) and Noisy-Noisy (bottom)
conditions, arranged by their corresponding probe layer
and ordered position in each probe.

vation changes in the Noisy/Noisy scenario (bottom
portion of Figure 5). Here, two observations can be
made: (1) there is a distinct shift in reliance of the
GBM on the second-to-last layer (Layer 16), preserving
the pattern of looking at the top 2-3 scores within the
probe, and (2) a significantly deeper-reaching attention
of the meta-model within the probe cascade, including
layers 12 through 16. We conjecture that these obser-
vations reflect the meta-model’s pattern of ”hedging”
against the adverse effect of the label noise introduced
in the Noisy-Noisy task. As the base model’s error rate
becomes higher (approximately 25%), the meta-model
learns to almost completely ignore the Layer 17 (which
is directly exposed to the label noise) and to pick up
on more robust, deeper-residing features in the ResNet
model. This ability to adjust is the powerful advan-
tage of the meta-model approach and seems to lead to
its significant performance improvement in the noisy
scenario.

There is another advantage of the whitebox meta-
models that can be illustrated by considering the rela-
tive performance in the in-domain and out-of-domain
settings. We argue that the Noisy/Noisy scenario is
relevant for many real-life applications in which labels
for the training data come from noisy sources. Figure 6
shows the comparative performances in in-domain and
out-of-domain settings for the whitebox GBM meta-
model and the base model final scores, respectively.

The x-axes in these plots represents the corresponding
threshold values for the respective models for filtering
the base model predictions (i.e., samples with confi-
dence scores lower than the threshold value would be
filtered). First, consider the whitebox meta-model case
in Figure 6 (left). Let’s say, in an application setting,
we pick a threshold (≈0.59) that achieves an in-domain
recall of 0.7. At this threshold, the GBM whitebox
meta-model achieves an in-domain precision of 0.95.
If we encounter a domain shift as represented by the
out-of-domain task the precision degrades to ≈0.71.
Consider the same situation if we were using the base
model score as in Figure 6 (right). The threshold value
of ≈0.51 achieves the same in-domain recall of 0.7. The
in-domain precision is 0.87 but the drop in precision for
the out-of-domain case is steeper to ≈0.54. The lower
performance degradation for whitebox meta-models
when encountering domain shifts can be viewed as a
form of robustness when compared with simply using
the base model’s scores.

The impact of meta-model based filtering can be fur-
ther illustrated using examples representing four quad-
rants of the binary confusion matrix. We chose the
CIFAR-10 class “deer” and considered all instances
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Figure 6: In-domain and out-of-domain performances (precision/recall with respect to filtering threshold) using
whitebox GBM meta-model (left) and base model scores (right)

Figure 7: Confusion-quadrant examples for the whitebox logistic regression (left) and the base model score (right).
TN: true negatives, FP: false positives, FN: false negatives and TP: true positives.

from the Noisy/Noisy out-of-domain test set.4 Figure 7
compares image examples sampled from the confusion
quadrants when using the meta-model scores (left-hand
side) with those sampled using the base model class
score (baseline, right-hand side). The thresholds for
each system were chosen so as to achieve highest preci-
sion while still obtaining at least four samples in each
confusion quadrant. Representative images shown in
Figure 7 were randomly sampled from the resulting
quadrant sets. Subjectively, it appears that the FP
images from the whitebox meta-model are relatively
competitive with the “deer” class compared to ones
which the simple baseline falsely accepts. A similar, al-
beit subjective, assessment in favor of the meta-model
can be made comparing the FN images across the two
systems.

4An interesting article showing some CIFAR examples of
false positives can be found at https://hjweide.github.
io/quantifying-uncertainty-in-neural-networks.

7 Conclusion and future work

We proposed the paradigm of meta-models for confi-
dence scoring, and investigated a whitebox meta-model
with linear classifier probes. Experiments on CIFAR-10
and CIFAR-100 data showed that our proposed method
is capable of more accurately rejecting samples with
low confidence compared to various baselines in noisy
settings and/or out-of-domain scenarios. Its superiority
over blackbox baselines supports the use of whitebox
models and our results demonstrate that probes into
the intermediate states of a neural network provide
useful signal for confidence scoring.

Future work includes incorporating other base model
features. One example is the work by (Gal et al.,
2017) whereby the uncertainty measures using Monte
Carlo dropout could serve as additional features to our
proposed whitebox meta-model.

https://hjweide.github.io/quantifying-uncertainty-in-neural-networks
https://hjweide.github.io/quantifying-uncertainty-in-neural-networks
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