## Supplementary Material (AISTATS 2019): Rényi Differentially Private ERM for Smooth Objectives

## A Proofs

**Lemma 2.** Let B and B' be mini-batches that differ on the value of one record. Define the operator  $\mathcal{T}_B(\cdot) = \mathrm{Id}(\cdot) - \eta \nabla f_B(\cdot)$  (and similarly for B'). Let **w** and **w**' be any two vectors in  $\Theta$ . Let  $\rho = \max\{|1 - \eta\mu|, |1 - \eta L|\}$  (where  $\mu$  is the strong convexity parameter and L is the smoothness parameter). Then:

$$\begin{aligned} ||\mathcal{T}_B(\mathbf{w}) - \mathcal{T}_B(\mathbf{w}')|| &\leq \rho ||\mathbf{w} - \mathbf{w}'|| \quad (same \ batch \ B) \\ ||\mathcal{T}_B(\mathbf{w}) - \mathcal{T}_{B'}(\mathbf{w}')|| &\leq \rho ||\mathbf{w} - \mathbf{w}'|| + \frac{2\eta R}{|B|} \end{aligned}$$

where the first equation shows the effect of using the same operator  $\mathcal{T}_B$  and the second equation shows the effect of using  $\mathcal{T}_B$  to update  $\mathbf{w}$  and a different operator  $\mathcal{T}_{B'}$  to update  $\mathbf{w}'$ .

*Proof.* We first consider the case where the same operator  $\mathcal{T}_B$  is applied to both  $\mathbf{w}$  and  $\mathbf{w}'$ , i.e., B = B'.

$$\begin{aligned} |\mathcal{T}_{B}(\mathbf{w}) - \mathcal{T}_{B}(\mathbf{w}')||_{2} &= \|\mathbf{w} - \eta \nabla f_{B}(\mathbf{w}) - (\mathbf{w}' - \eta \nabla f_{B}(\mathbf{w}'))\|_{2} \\ &= \|\mathbf{w} - \mathbf{w}' - \eta (\nabla f_{B}(\mathbf{w}) - \nabla f_{B}(\mathbf{w}'))\|_{2} \\ &= \left\| \int_{0}^{1} \{\mathbf{I} - \eta \nabla^{2} f_{B}(\mathbf{w}' + s(\mathbf{w} - \mathbf{w}'))\}(\mathbf{w} - \mathbf{w}') \, \mathrm{d}s \right\|_{2} \\ &\leq \int_{0}^{1} \|\{\mathbf{I} - \eta \nabla^{2} f_{B}(\mathbf{w}' + s(\mathbf{w} - \mathbf{w}'))\}(\mathbf{w} - \mathbf{w}')\|_{2} \, \mathrm{d}s \\ &\leq \int_{0}^{1} \|\mathbf{I} - \eta \nabla^{2} f_{B}(\mathbf{w}' + s(\mathbf{w}_{t} - \mathbf{w}'_{t}))\|_{2} \|\mathbf{w} - \mathbf{w}'\|_{2} \, \mathrm{d}s \\ &\leq \int_{0}^{1} \sup_{\mathbf{z}} \|\mathbf{I} - \eta \nabla^{2} f_{B}(\mathbf{z})\|_{2} \|\mathbf{w} - \mathbf{w}'\|_{2} \, \mathrm{d}s \\ &\leq \sup_{\mathbf{z}} \|\mathbf{I} - \eta \nabla^{2} f(\mathbf{z})\|_{2} \|\mathbf{w} - \mathbf{w}'\|_{2} \\ &\leq \max \left\{ |1 - \eta \mu|, |1 - \eta L| \right\} \|\mathbf{w} - \mathbf{w}'\|_{2} \\ &= \rho \|\mathbf{w} - \mathbf{w}'\|_{2} \,, \end{aligned}$$

where  $\mathbf{z} = \mathbf{w}' + s^*(\mathbf{w} - \mathbf{w}'), s^* \in [0, 1]$  is a point on the line segment joining  $\mathbf{w}$  and  $\mathbf{w}'$ .

Now we consider the case where B and B' differ by one record. Let  $\xi$  denote the index of record at which D and D' differ, i.e.,  $d_i = d'_i$  for all  $i \neq \xi$  and  $d_{\xi} \neq d'_{\xi}$ . We introduce the following equality.

$$\nabla f_B(\mathbf{w}) - \nabla f_B(\mathbf{w}') = \frac{1}{|B|} \left\{ \sum_{i \in B} \nabla f(\mathbf{w}, d_i) - \sum_{i \in B'} \nabla f(\mathbf{w}', d_i') \right\}$$
$$= \frac{1}{|B|} \left\{ \nabla f(\mathbf{w}, d_{\xi}) - \nabla f(\mathbf{w}', d_{\xi}) + \nabla f(\mathbf{w}', d_{\xi}) - \nabla f(\mathbf{w}', d_{\xi}') + \sum_{i \in B, i \neq \xi} \nabla f(\mathbf{w}, d_i) - \nabla f(\mathbf{w}', d_i) \right\}$$
$$= \frac{1}{|B|} \left\{ \left( \nabla f(\mathbf{w}', d_{\xi}) - \nabla f(\mathbf{w}', d_{\xi}') \right) + \sum_{i \in B} \nabla f(\mathbf{w}, d_i) - \nabla f(\mathbf{w}', d_i) \right\}$$
$$= \nabla f_B(\mathbf{w}) - \nabla f_B(\mathbf{w}') + \frac{1}{|B|} \left( \nabla f(\mathbf{w}', d_{\xi}) - \nabla f(\mathbf{w}', d_{\xi}') \right) \right\}$$
(6)

Using Equation (6), we get

$$\begin{aligned} \|\mathcal{T}_{B}(\mathbf{w}) - \mathcal{T}_{B'}(\mathbf{w}')\|_{2} &= \|\mathbf{w} - \eta \nabla f_{B}(\mathbf{w}) - (\mathbf{w}' - \eta \nabla f_{B'}(\mathbf{w}'))\|_{2} \\ &= \|\mathbf{w} - \mathbf{w}' - \eta (\nabla f_{B}(\mathbf{w}) - \nabla f_{B'}(\mathbf{w}'))\|_{2} \\ &= \left\|\mathbf{w} - \mathbf{w} - \eta (\nabla f_{B}(\mathbf{w}) - \nabla f_{B}(\mathbf{w}')) + \frac{\eta}{|B|} \left(\nabla f(\mathbf{w}', d_{\xi}) - \nabla f(\mathbf{w}', d_{\xi}')\right)\right\|_{2} \\ &\leq \|\mathbf{w} - \mathbf{w}' - \eta (\nabla f_{B}(\mathbf{w}_{t}) - \nabla f_{B}(\mathbf{w}'))\|_{2} + \frac{\eta}{|B|} \|\nabla f(\mathbf{w}', d_{\xi}) - \nabla f(\mathbf{w}', d_{\xi}')\|_{2} \\ &\leq \|\mathbf{w} - \mathbf{w}' - \eta (\nabla f_{B}(\mathbf{w}) - \nabla f_{B}(\mathbf{w}'))\|_{2} + \frac{2\eta R}{|B|} \\ &= \|\mathcal{T}_{B}(\mathbf{w}) - \mathcal{T}_{B}(\mathbf{w}')\|_{2} + \frac{2\eta R}{|B|} \\ &\leq \rho \|\mathbf{w} - \mathbf{w}'\|_{2} + \frac{2\eta R}{|B|} \,, \end{aligned}$$

where the second to last inequality is due to our requirement on the boundedness of gradient.

**Lemma 3.** Define  $H_{\alpha}(P_1; P_2) = e^{(\alpha-1) D_{\alpha}(P_1 \parallel P_2)}$ . Let  $\mathcal{M}_1, \ldots, \mathcal{M}_m$  be mechanisms and  $q = [q_1, \ldots, q_m]$  be a probability vector over  $1, \ldots, m$ . Let  $\mathcal{M}$ , on input D, sample  $i \sim q$  and return  $\mathcal{M}_i(D)$ . Then  $H_{\alpha}(\mathcal{M}(D_1); \mathcal{M}(D_2)) \leq \sum_{j=1}^m q_j H_{\alpha}(\mathcal{M}_j(D_1); \mathcal{M}_j(D_2)).$ 

*Proof.* For each j, let  $P_1^j$  and  $P_2^j$  be the distributions of  $\mathcal{M}_j(D_1)$  and  $\mathcal{M}_j(D_2)$ , respectively. Let  $P_1$  be the distribution of  $\mathcal{M}(D_1)$  and let  $P_2$  be the distribution of  $\mathcal{M}(D_2)$ .

$$\begin{aligned} H_{\alpha}(\mathcal{M}(D_{1});\mathcal{M}(D_{2})) &= \mathbb{E}_{x \sim P_{2}} \left[ P_{1}(x)^{\alpha} P_{2}(x)^{-\alpha} \right] \\ &= \mathbb{E}_{x \sim P_{2}} \left[ \left( \frac{\sum_{j=1}^{m} q_{j} P_{1}^{j}(x)}{\sum_{j=1}^{m} q_{j} P_{2}^{j}(x)} \right)^{\alpha} \right] \\ &= \mathbb{E}_{x \sim P_{2}} \left[ \left( \sum_{j=1}^{m} \frac{q_{j} P_{2}^{j}(x)}{\sum_{j'=1}^{m} q_{j'} P_{2}^{j'}(x)} \frac{P_{1}^{j}(x)}{P_{2}^{j}(x)} \right)^{\alpha} \right] \\ &= \mathbb{E}_{x \sim P_{2}} \left[ \left( \sum_{j=1}^{m} \frac{q_{j} P_{2}^{j}(x)}{P_{2}(x)} \frac{P_{1}^{j}(x)}{P_{2}^{j}(x)} \right)^{\alpha} \right] \\ &\leq \mathbb{E}_{x \sim P_{2}} \left[ \sum_{j=1}^{m} \frac{q_{j} P_{2}^{j}(x)}{P_{2}(x)} \left( \frac{P_{1}^{j}(x)}{P_{2}^{j}(x)} \right)^{\alpha} \right] \\ &= \sum_{j=1}^{m} q_{j} \mathbb{E}_{x \sim P_{2}^{j}} \left[ \left( \frac{P_{1}^{j}(x)}{P_{2}^{j}(x)} \right)^{\alpha} \right] \\ &= \sum_{i=1}^{m} q_{j} H_{\alpha}(\mathcal{M}_{j}(D_{1}); \mathcal{M}_{j}(D_{2})) , \end{aligned}$$

where the inequality comes from Jensen's inequality (since the function  $z \mapsto z^{\alpha}$  is convex for  $\alpha > 1$ ) and the second-to-last equality comes from using the definition of expected value.

**Proposition 2.** If we run Algorithm 1 for arbitrary number of epochs with a fixed step size  $\eta$ , its sensitivity  $\Delta$  satisfies

$$\Delta \le \frac{2\eta R}{|B|(1-\rho^m)}$$

where  $\rho = \max\{|1 - \eta\mu|, |1 - \eta L|\}$ . In particular, when m = 1 and  $\eta = \frac{2}{L + \mu}$ ,  $\Delta \leq \frac{2R}{n\mu}$ .

*Proof.* Let D and D' be any two databases that differ on one record. Given a fixed randomness in data permutation, let  $B_0, \ldots, B_{m-1}$  and  $B'_0, \ldots, B'_{m-1}$  denote m disjoint mini-batches for D and D', respectively. Then there exists an index j such that  $B_j \neq B'_j$  and  $B_i = B'_i$  for all  $i \neq j$ .

Algorithm 1 on input D generates a sequence of solutions  $\mathbf{w}_0, \mathbf{w}_1, \mathbf{w}_2, \ldots$ , using the rule  $\mathbf{w}_i = \mathcal{T}_{B_{i-1} \mod m}(\mathbf{w}_{i-1})$ (and similarly on input D' using  $\mathcal{T}_{B'}$ ). Define  $\Delta^{(k)}$  as the difference between  $\mathbf{w}_i$  and  $\mathbf{w}'_i$  at the end of  $k^{\text{th}}$  epoch. Provided that the algorithm for input D and D' starts with the same initial solution, i.e.,  $\mathbf{w}_0 = \mathbf{w}'_0$ , Lemma 2 says that the first j-1 updates in an epoch will be contractions, the  $j^{\text{th}}$  update will be an expansion, and the remaining m-j updates will be contractions. Therefore, at the end of the first epoch, we have  $\Delta^{(1)} \leq \rho^{m-j} \frac{2\eta R}{|B|}$ . In the second epoch, there will be again j-1 contractions, one expansion, and m-j contractions. Hence, we have

$$\begin{split} \Delta^{(2)} &\leq \rho^{m-j} \left( \rho \cdot (\rho^{j-1} \Delta^{(1)}) + \frac{2\eta R}{|B|} \right) \\ &= \rho^m \Delta^{(1)} + \rho^{m-j} \frac{2\eta R}{|B|} \\ &\leq \rho^m \cdot \rho^{m-j} \frac{2\eta R}{|B|} + \rho^{m-j} \frac{2\eta R}{|B|} \,. \end{split}$$

Likewise, at the end of the  $k^{\text{th}}$  epoch,

$$\Delta^{(k)} \le \rho^{m-j} \frac{2\eta R}{|B|} \left( \rho^{(k-1)m} + \rho^{(k-2)m} + \dots + \rho^m + 1 \right) \,.$$

Therefore,

$$\lim_{k \to \infty} \Delta^{(k)} = \frac{\rho^{m-j} 2\eta R}{|B|(1-\rho^m)} \le \frac{2\eta R}{|B|(1-\rho^m)}$$
(7)

since  $0 < \rho < 1$ . Recall that  $\rho = \max\{|1 - \eta\mu|, |1 - \eta L|\}$ . We see that  $\rho$  is a function of step size  $\eta$ , and the value of  $\eta$  can be optimized to minimize  $\rho$  (i.e., to obtain the maximum contraction). It can be seen that  $\rho$  has the minimum value of  $\frac{L-\mu}{L+\mu}$  when  $\eta = \frac{2}{L+\mu}$ , which is when  $|1 - \eta\mu| = |1 - \eta L|$ . Plugging  $\rho = \frac{L-\mu}{L+\mu}$  and m = 1 into (7), we obtain the second claim.

**Proposition 3.** Algorithm 3 with averaging satisfies  $(\alpha, \epsilon)$ -RDP, where  $\epsilon = \frac{1}{\alpha - 1} \log \left( \frac{1}{m} \sum_{j=1}^{m} e^{\frac{\alpha(\alpha - 1)(\Delta[j])^2}{2\sigma^2}} \right).$ 

*Proof.* Let D and D' be neighboring databases. Let  $\mathcal{M}_j$  be a mechanism with associated sensitivity  $\Delta[j]$ . Given the randomly permuted input dataset, Algorithm 3, denoted by  $\mathcal{M}$ , chooses  $\mathcal{M}_j$  with probability q[j] = 1/m and releases the output using the Gaussian mechanism with noise scale parameter  $\sigma$ . We show that the Rényi divergence between the output distributions of  $\mathcal{M}$  is bounded by  $\epsilon$ .

$$\begin{aligned} \mathcal{D}_{\alpha}(\mathcal{M}(D) \parallel \mathcal{M}(D')) &= \frac{1}{\alpha - 1} \log H_{\alpha}(\mathcal{M}(D); \mathcal{M}(D')) \\ &\leq \frac{1}{\alpha - 1} \log \left( \sum_{j=1}^{m} q[j] H_{\alpha}(\mathcal{M}_{j}(D); \mathcal{M}_{j}(D')) \right) \\ &= \frac{1}{\alpha - 1} \log \left( \frac{1}{m} \sum_{j=1}^{m} e^{(\alpha - 1) \mathcal{D}_{\alpha}(\mathcal{M}_{j}(D) \parallel \mathcal{M}_{j}(D'))} \right) \\ &\leq \frac{1}{\alpha - 1} \log \left( \frac{1}{m} \sum_{j=1}^{m} e^{\alpha(\alpha - 1) \Delta[j]^{2}/2\sigma^{2}} \right), \end{aligned}$$

where the first and second inequalities are due to Lemmas 3 and 1, respectively.

## B KDDCup99 Dataset

To demonstrate the performance on a large dataset, we evaluate the proposed algorithm on KDDCup99 dataset. Figure 4 shows the performance for LR and SVM. For LR, output perturbation methods perform better when  $\epsilon$  is small while gradient perturbation methods outperform when  $\epsilon$  is large. While OutPert-GD perform very poorly on other 4 datasets, it shows a comparable performance on the large dataset. This is because its sensitivity is inversely proportional to the dataset size.



Figure 4: Performance on KDDCup99 dataset (Left: LR, Right: SVM)