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A Proofs

Lemma 2. Let B and B′ be mini-batches that differ on the value of one record. Define the operator TB(·) =
Id(·)− η∇fB(·) (and similarly for B′). Let w and w′ be any two vectors in Θ. Let ρ = max{|1− ηµ|, |1− ηL|}
(where µ is the strong convexity parameter and L is the smoothness parameter). Then:

||TB(w)− TB(w′)|| ≤ ρ||w −w′|| (same batch B)

||TB(w)− TB′(w′)|| ≤ ρ||w −w′||+ 2ηR

|B|
where the first equation shows the effect of using the same operator TB and the second equation shows the effect
of using TB to update w and a different operator TB′ to update w′.

Proof. We first consider the case where the same operator TB is applied to both w and w′, i.e., B = B′.

‖TB(w)− TB(w′)‖2 = ‖w − η∇fB(w)− (w′ − η∇fB(w′))‖2
= ‖w −w′ − η(∇fB(w)−∇fB(w′))‖2

=

∥∥∥∥
∫ 1

0

{I− η∇2fB(w′ + s(w −w′))}(w −w′) ds

∥∥∥∥
2

≤
∫ 1

0

∥∥{I− η∇2fB(w′ + s(w −w′))}(w −w′)
∥∥

2
ds

≤
∫ 1

0

∥∥I− η∇2fB(w′ + s(wt −w′t))
∥∥

2
‖w −w′‖2 ds

≤
∫ 1

0

sup
z
‖I− η∇2fB(z)‖2‖w −w′‖2 ds

≤ sup
z
‖I− ηt∇2f(z)‖2‖w −w′‖2

≤ max {|1− ηµ|, |1− ηL|}‖w −w′‖2
= ρ‖w −w′‖2 ,

where z = w′ + s∗(w −w′), s∗ ∈ [0, 1] is a point on the line segment joining w and w′.

Now we consider the case where B and B′ differ by one record. Let ξ denote the index of record at which D and
D′ differ, i.e., di = d′i for all i 6= ξ and dξ 6= d′ξ. We introduce the following equality.

∇fB(w)−∇fB(w′) =
1

|B|

{∑

i∈B
∇f(w, di)−

∑

i∈B′
∇f(w′, d′i)

}

=
1

|B|
{
∇f(w, dξ)−∇f(w′, dξ) +∇f(w′, dξ)−∇f(w′, d′ξ) +

∑

i∈B,i6=ξ
∇f(w, di)−∇f(w′, di)

}

=
1

|B|

{
(
∇f(w′, dξ)−∇f(w′, d′ξ)

)
+
∑

i∈B
∇f(w, di)−∇f(w′, di)

}

= ∇fB(w)−∇fB(w′) +
1

|B|
(
∇f(w′, dξ)−∇f(w′, d′ξ)

)
(6)



Using Equation (6), we get

‖TB(w)− TB′(w′)‖2 = ‖w − η∇fB(w)− (w′ − η∇fB′(w′))‖2
= ‖w −w′ − η(∇fB(w)−∇fB′(w′))‖2
=

∥∥∥∥w −w − η(∇fB(w)−∇fB(w′)) +
η

|B|
(
∇f(w′, dξ)−∇f(w′, d′ξ)

)∥∥∥∥
2

≤ ‖w −w′ − η(∇fB(wt)−∇fB(w′))‖2 +
η

|B| ‖∇f(w′, dξ)−∇f(w′, d′ξ)‖2

≤ ‖w −w′ − η(∇fB(w)−∇fB(w′))‖2 +
2ηR

|B|

= ‖TB(w)− TB(w′)‖2 +
2ηR

|B|

≤ ρ‖w −w′‖2 +
2ηR

|B| ,

where the second to last inequality is due to our requirement on the boundedness of gradient.

Lemma 3. Define Hα(P1;P2) = e(α−1) Dα(P1 ‖ P2). Let M1, . . . ,Mm be mechanisms and q = [q1, . . . , qm] be a
probability vector over 1, . . . ,m. Let M, on input D, sample i ∼ q and return Mi(D). Then

Hα(M(D1);M(D2)) ≤
m∑
j=1

qjHα(Mj(D1);Mj(D2)).

Proof. For each j, let P j1 and P j2 be the distributions of Mj(D1) and Mj(D2), respectively. Let P1 be the
distribution of M(D1) and let P2 be the distribution of M(D2).

Hα(M(D1);M(D2))

= Ex∼P2

[
P1(x)αP2(x)−α

]

= Ex∼P2

[(∑m
j=1 qjP

j
1 (x)

∑m
j=1 qjP

j
2 (x)

)α]

= Ex∼P2






m∑

j=1

qjP
j
2 (x)

∑m
j′=1 qj′P

j′
2 (x)

P j1 (x)

P j2 (x)



α


= Ex∼P2






m∑

j=1

qjP
j
2 (x)

P2(x)

P j1 (x)

P j2 (x)



α


≤ Ex∼P2



m∑

j=1

qjP
j
2 (x)

P2(x)

(
P j1 (x)

P j2 (x)

)α


=
m∑

j=1

qj Ex∼P j2

[(
P j1 (x)

P j2 (x)

)α]

=
m∑

j=1

qjHα(Mj(D1);Mj(D2)) ,

where the inequality comes from Jensen’s inequality (since the function z 7→ zα is convex for α > 1) and the
second-to-last equality comes from using the definition of expected value.

Proposition 2. If we run Algorithm 1 for arbitrary number of epochs with a fixed step size η, its sensitivity ∆
satisfies

∆ ≤ 2ηR

|B|(1− ρm)
,

where ρ = max{|1− ηµ|, |1− ηL|}. In particular, when m = 1 and η = 2
L+µ , ∆ ≤ 2R

nµ .



Proof. Let D and D′ be any two databases that differ on one record. Given a fixed randomness in data per-
mutation, let B0, . . . , Bm−1 and B′0, . . . , B

′
m−1 denote m disjoint mini-batches for D and D′, respectively. Then

there exists an index j such that Bj 6= B′j and Bi = B′i for all i 6= j.

Algorithm 1 on input D generates a sequence of solutions w0,w1,w2, . . . , using the rule wi = TBi−1 mod m
(wi−1)

(and similarly on input D′ using TB′). Define ∆(k) as the difference between wi and w′i at the end of kth epoch.
Provided that the algorithm for input D and D′ starts with the same initial solution, i.e., w0 = w′0, Lemma 2
says that the first j − 1 updates in an epoch will be contractions, the jth update will be an expansion, and the
remaining m− j updates will be contractions. Therefore, at the end of the first epoch, we have ∆(1) ≤ ρm−j 2ηR

|B| .
In the second epoch, there will be again j − 1 contractions, one expansion, and m − j contractions. Hence, we
have

∆(2) ≤ ρm−j
(
ρ · (ρj−1∆(1)) +

2ηR

|B|

)

= ρm∆(1) + ρm−j
2ηR

|B|

≤ ρm · ρm−j 2ηR

|B| + ρm−j
2ηR

|B| .

Likewise, at the end of the kth epoch,

∆(k) ≤ ρm−j 2ηR

|B|
(
ρ(k−1)m + ρ(k−2)m + · · ·+ ρm + 1

)
.

Therefore,

lim
k→∞

∆(k) =
ρm−j2ηR
|B|(1− ρm)

≤ 2ηR

|B|(1− ρm)
(7)

since 0 < ρ < 1. Recall that ρ = max{|1 − ηµ|, |1 − ηL|}. We see that ρ is a function of step size η, and the
value of η can be optimized to minimize ρ (i.e., to obtain the maximum contraction). It can be seen that ρ has
the minimum value of L−µ

L+µ when η = 2
L+µ , which is when |1 − ηµ| = |1 − ηL|. Plugging ρ = L−µ

L+µ and m = 1

into (7), we obtain the second claim.

Proposition 3. Algorithm 3 with averaging satisfies (α, ε)-RDP, where

ε = 1
α−1 log

(
1
m

∑m
j=1 e

α(α−1)(∆[j])2

2σ2

)
.

Proof. Let D and D′ be neighboring databases. LetMj be a mechanism with associated sensitivity ∆[j]. Given
the randomly permuted input dataset, Algorithm 3, denoted by M, chooses Mj with probability q[j] = 1/m
and releases the output using the Gaussian mechanism with noise scale parameter σ. We show that the Rényi
divergence between the output distributions of M is bounded by ε.

Dα(M(D) ‖ M(D′)) =
1

α− 1
logHα(M(D);M(D′))

≤ 1

α− 1
log




m∑

j=1

q[j]Hα(Mj(D);Mj(D
′))




=
1

α− 1
log


 1

m

m∑

j=1

e(α−1) Dα(Mj(D) ‖ Mj(D
′))




≤ 1

α− 1
log


 1

m

m∑

j=1

eα(α−1)∆[j]2/2σ2


 ,

where the first and second inequalities are due to Lemmas 3 and 1, respectively.



B KDDCup99 Dataset

To demonstrate the performance on a large dataset, we evaluate the proposed algorithm on KDDCup99 dataset.
Figure 4 shows the performance for LR and SVM. For LR, output perturbation methods perform better when ε
is small while gradient perturbation methods outperform when ε is large. While OutPert-GD perform very poorly
on other 4 datasets, it shows a comparable performance on the large dataset. This is because its sensitivity is
inversely proportional to the dataset size.
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Figure 4: Performance on KDDCup99 dataset (Left: LR, Right: SVM)


