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A Notation

Table 2: Summary of the symbols used in the paper

Symbol Definition

N the total number of rounds in online learning
J(π) the average accumulated cost, EdπEπ[ct] of RL in (1)
dπ the generalized stationary state distribution

D(q||p) the difference between distributions p and q
π∗ the expert policy
Π the hypothesis class of policies
πn the policy run in the environment at the nth online learning iteration
F̂ the hypothesis class of models (elements denoted as F̂ )
F̂n the model used at the n− 1 iteration to predict the future gradient of the nth iteration
εwΠ the policy class complexity (Definition 4.1)
εwF̂ the model class complexity (Definition 4.1)

F (π′, π) the bivariate function Ed′π [D(π∗||π)] in (5)
fn(π) F (πn, π) in (6)
f̃n(π) an unbiased estimate of fn(π)

hn(F̂ ) an upper bound of ‖∇2F (πn, πn)−∇2F̂ (πn, πn)‖2∗
h̃n(F̂ ) an unbiased estimate of hn(F̂ )

µf the modulus of strongly convexity of f̃n (Assumption 4.2)
Gf an upper bound of ‖∇f̃n‖∗ (Assumption 4.2)
G an upper bound of ‖∇fn‖∗ (Theorem 2.1)
µh modulus of strongly convexity of h̃n (Assumption 4.2)
Gh an upper bound of ‖∇h̃n‖∗ (Assumption 4.2)
L the Lipschitz constant such that ‖∇2F̂ (π, π)−∇2F̂ (π′, π′)‖∗ ≤ L‖π − π′‖ (Assumption 4.1)
R(p) the expected weighted average regret, E

[
regretw(Π)
w1:N

]
in (10)

regretw the weighted regret, defined in Lemma 3.1
{wn} the sequence of weights used to define regretw; we set wn = np

B Imitation Learning Objective Function and Choice of Distance

Here we provide a short introduction to the objective function of IL in (2). The idea of IL is based on the
Performance Difference Lemma, whose proof can be found, e.g. in [13].

Lemma B.1 (Performance Difference Lemma). Let π and π′ be two policies and Aπ′,t(s, a) = Qπ′,t(s, a)−Vπ′,t(s)
be the (dis)advantage function with respect to running π′. Then it holds that

J(π) = J(π′) + EdπEπ[Aπ′,t]. (B.1)

Using Lemma B.1, we can relate the performance of the learner’s policy and the expert policy as

J(π) = J(π∗) + EdπEπ[Aπ∗,t]

= J(π∗) + Edπ [(Eπ − Eπ∗)[Qπ∗,t]]

where the last equality uses the definition of Aπ′,t and that Vπ,t = Eπ[Qπ,t]. Therefore, if the inequality below
holds

Ea∼πs [Qπ∗,t(s, a)]− Ea∗∼π∗s [Qπ∗,t(s, a
∗)] ≤ Cπ∗D(π∗s ||πs), ∀t ∈ N, s ∈ S, π ∈ Π

then minimizing (2) would minimize the performance difference between the policies as in (3)

J(π)− J(π∗) ≤ Cπ∗Edπ [D(π∗||π)].
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Intuitively, we can set D(π∗||π) = Eπ[Aπ∗,t] and (3) becomes an equality with Cπ∗ = 1. This corresponds to the
objective function used in AggreVaTe by Ross and Bagnell [3]. However, this choice requires Aπ∗,t to be given
as a function or to be estimated online, which may be inconvenient or complicated in some settings.

Therefore, D is usually used to construct a strict upper bound in (3). The choice of D and Cπ∗ is usually derived
from some statistical distances, and it depends on the topology of the action space A and the policy class Π. For
discrete action spaces, D can be selected as a convex upper bound of the total variational distance between π and
π∗ and Cπ∗ is a bound on the range of Qπ∗,t (e.g., a hinge loss used by [2]). For continuous action spaces, D can
be selected as an upper bound of the Wasserstein distance between π and π∗ and Cπ∗ is the Lipschitz constant of
Qπ∗,t with respect to action [12]. More generally, for stochastic policies, we can simply set D to Kullback-Leibler
(KL) divergence (e.g. by [7]), because it upper bounds both total variational distance and Wasserstein distance.
The direction of KL divergence, i.e. D(π∗s ||πs) = KL[πs||π∗s ] or D(π∗s ||πs) = KL[π∗s ||πs], can be chosen based on
the characteristics of the expert policy. For example, if the log probability of the expert policy (e.g. a Gaussian
policy) is available, KL[πs||π∗s ] can be used. If the expert policy is only accessible through stochastic queries,
then KL[π∗s ||πs] is the only feasible option.

C Missing Proofs

C.1 Proof of Section 3.1

Lemma 3.1. For arbitrary sequences {πn ∈ Π}Nn=1 and {wn > 0}Nn=1, it holds that

E
[∑N

n=1
wnJ(πn)
w1:N

]
≤ J(π∗) + Cπ∗

(
εwΠ + E

[
regretw(Π)
w1:N

])
where f̃n is an unbiased estimate of fn, regretw(Π) := maxπ∈Π

∑N
n=1 wnf̃n(πn) − wnf̃n(π), εwΠ is given in

Definition 4.1, and the expectation is due to sampling f̃n.

Proof of Lemma 3.1. By inequality in (3) and definition of fn,

E

[
N∑
n=1

wn(J(πn)− J(π∗))

]
≤ Cπ∗E

[
N∑
n=1

wnfn(πn)

]
= Cπ∗E

[
N∑
n=1

wnf̃n(πn)

]
,

where the last equality is due to πn is non-anticipating. This implies that

E

[
N∑
n=1

wnJ(πn)

]
≤ w1:NJ(π∗) + Cπ∗E

[
N∑
n=1

wnf̃n(πn)

]

= w1:NJ(π∗) + Cπ∗E

[
min
π∈Π

N∑
n=1

wnf̃n(π) + regretw(Π)

]

The statement is obtained by dividing both sides by w1:N and by the definition of εwF̂ . �

C.2 Proof of Section 4.2

Theorem 4.1. For MoBIL-VI with p > 1, R(p) ≤ Cp
(

pG2
h

2(p−1)µh
1
N2 +

εwF̂
pN

)
, where Cp = (p+1)2ep/N

2µf
.

Proof. We prove a more general version of Theorem 4.1 below. �

Theorem C.1. For MoBIL-VI,

R(p) ≤



G2
h

4µfµh

p(p+1)2e
p
N

p−1
1
N2 + 1

2µf

(p+1)2e
p
N

p
1
N ε

w
F̂ , for p > 1

G2
h

µfµh

ln(N+1)
N2 + 2

µf
1
N ε

w
F̂ , for p = 1

G2
h

4µfµh
(p+ 1)2 O(1)

Np+1 + 1
2µf

(p+1)2e
p
N

p
1
N2 ε

w
F̂ , for 0 < p < 1

G2
h

2µfµh
1
N + 1

2µf
lnN+1
N εwF̂ , for p = 0
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Proof. The solution πn+1 of the VI problem (8) satisfies the optimality condition of

πn+1 = arg min
π∈Π

n∑
m=1

wmfm(πn) + wn+1F̂n+1(πn+1, π).

Therefore, we can derive the bound of R(p)12 as

R(p) =
regretw(Π)

w1:N

≤ p+ 1

2µfw1:N

N∑
n=1

np−1‖∇2F (πn, πn)−∇2F̂n(πn, πn)‖2∗ (Lemma H.5)

≤ p+ 1

2µfw1:N

N∑
n=1

np−1hn(πn) (Property of hn) (C.1)

Next, we treat np−1hn as the per-round cost for an online learning problem, and utilize Lemma H.6 to upper bound
the accumulated cost. In particular, we set wn in Lemma H.6 to np−1 and ln to hn. Finally, w1:N =

∑N
n=1 n

p

can be lower bounded using Lemma H.1. Hence, for p > 1, we have

R(p) ≤ p+ 1

2µf

p+ 1

Np+1

(
G2
h

2µh

p

p− 1
(N + 1)p−1 +

1

p
(N + 1)pεwF̂

)
=

G2
h

4µfµh

p(p+ 1)2

p− 1

(
N + 1

N

)p−1
1

N2
+

1

2µf

(p+ 1)2

p

(
N + 1

N

)p
1

N
εwF̂

≤ G2
h

4µfµh

p(p+ 1)2e
p
N

p− 1

1

N2
+

1

2µf

(p+ 1)2e
p
N

p

1

N
εwF̂ ,

where in the last inequality we utilize the fact that 1 + x ≤ ex,∀x ∈ R. Cases other than p > 1 follow from
straightforward algebraic simplification.

�

Proposition 4.1. For MoBIL-VI with p = 0, R(0) ≤ G2
f

2µfµh
1
N +

εwF̂
2µf

lnN+1
N .

Proof. Proved in Theorem C.1 by setting p = 0. �

C.3 Proof of Section 4.3

Lemma 4.1 (Stronger FTL Lemma). Let x?n ∈ arg minx∈X l1:n(x). For any sequence of decisions {xn} and
losses {ln}, regret(X ) =

∑N
n=1 l1:n(xn)− l1:n(x?n)−∆n, where ∆n+1 := l1:n(xn+1)− l1:n(x?n) ≥ 0.

Proof. The proof is based on observing ln = l1:n − l1:n−1 and l1:N as a telescoping sum:

regret(X ) =

N∑
n=1

ln(xn)− l1:N (x?N )

=

N∑
n=1

(l1:n(xn)− l1:n−1(xn))−
N∑
n=1

(
l1:n(x?n)− l1:n−1(x?n−1)

)
=

N∑
n=1

(l1:n(xn)− l1:n(x?n)−∆n) ,

where for notation simplicity we define l1:0 ≡ 0. �

Lemma 4.2. regretwpath(Π) ≤ p+1
2αµf

∑N
n=1 n

p−1‖gn − ĝn‖2∗ − αµf
2(p+1)

∑N
n=1(n− 1)p+1‖πn − π̂n‖2.

12The expectation of R(p) is not required here because MoBIL-VI assumes the problem is deterministic.
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Proof. We utilize our new Lemma 4.1. First, we bound
∑N
n=1 l1:n(πn)− l1:n(π?n), where π?n = arg minπ∈Π l1:n(π).

We achieve this by Lemma H.4. Let ln = wnf̄n = wn(〈gn, π〉+ rn(π)). To use Lemma H.4, we note that because
rn is centered at πn, πn+1 satisfies

πn+1 = arg min
π∈Π

n∑
m=1

wmf̄(π) + wn+1 〈ĝn+1, π〉

= arg min
π∈Π

n∑
m=1

wmf̄(π)︸ ︷︷ ︸
ln(π)

+ wn+1 〈ĝn+1, π〉+ wn+1rn+1(πn+1)︸ ︷︷ ︸
vn+1(π)

Because by definition ln is wnαµf -strongly convex, it follows from Lemma H.4 and Lemma H.1 that

N∑
n=1

l1:n(πn)− l1:n(π?n) ≤ 1

αµf

N∑
n=1

w2
n

w1:n
‖ĝn − gn‖2∗ ≤

p+ 1

2αµf

N∑
n=1

np−1‖gn − ĝn‖2∗.

Next, we bound ∆n+1 as follows

∆n+1 = l1:n(πn+1)− l1:n(π?n)

≥ 〈∇l1:n(π?n), πn+1 − π?n〉+
αµfw1:n

2
‖πn+1 − π?n‖2 (Strong convexity)

≥ αµfw1:n

2
‖πn+1 − π?n‖2 (Optimality condition of π∗n)

=
αµfw1:n

2
‖πn+1 − π̂n+1‖2 (Definition of π̂n+1)

≥ αµfn
p+1

2(p+ 1)
‖πn+1 − π̂n+1‖2. (Definition of wn and Lemma H.1)

Combining these results proves the bound. �

Lemma 4.3. E[‖gn − ĝn‖2∗] ≤ 4(σ2
g + σ2

ĝ + L2E[‖πn − π̂n‖2] + E[h̃n(F̂n)]).

Proof. By Lemma H.3, we have

E
[
‖gn − ĝn‖2∗

]
≤ 4
(
E
[
‖gn −∇2F (πn, πn)‖2∗

]
+ E

[
‖∇2F (πn, πn)−∇2F̂n(πn, πn)‖2∗

]
+

E
[
‖∇2F̂n(πn, πn)−∇2F̂n(π̂n, π̂n)‖2∗

]
+ E

[
‖∇2F̂n(π̂n, π̂n)− ĝn‖2∗

])
.

Because the random quantities are generated in order . . . , πn, gn, F̂n+1, π̂n+1, ĝn+1, πn+1, gn+1 . . . , by the variance
assumption (Assumption 4.3), the first and fourth terms can be bounded by

E
[
‖gn −∇2F (πn, πn)‖2∗

]
= Eπn

[
Egn [‖gn −∇2F (πn, πn)‖2∗|πn]

]
≤ σ2

g ,

E
[
‖∇2F̂n(π̂n, π̂n)− ĝn‖2∗

]
= EF̂n,π̂n

[
Eĝn [‖∇2F̂n(π̂n, π̂n)− ĝn‖2∗

∣∣π̂n, F̂n]
]
≤ σ2

ĝ .

And, for the second term, we have

E
[
‖∇2F (πn, πn)−∇2F̂n(πn, πn)‖2∗

]
≤ E

[
hn(F̂n)

]
= E

[
h̃n(F̂n)

]
Furthermore, due to the Lipschitz assumption of ∇2F̂n+1 (Assumption 4.1), the third term is bounded by

E
[
‖∇2F̂n(πn, πn)−∇2F̂n(π̂n, π̂n)‖2∗

]
≤ L2E

[
‖πn − π̂n‖2

]
.

Combing the bounds above, we conclude the lemma.

�

Theorem 4.2. For MoBIL-Prox with p > 1 and αn = α ∈ (0, 1], it satisfies

R(p) ≤ (p+1)2e
p
N

αµf

(
G2
h

µh

p
p−1

1
N2 + 2

p

σ2
g+σ2

ĝ+εwF̂
N

)
+

(p+1)νp
Np+1 ,

where νp = O(1) and nceil = d 2e
1
2 (p+1)LGf
αµf

e.
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Proof. We prove a more general version of Theorem 4.1 below. �

Theorem C.2. For MoBIL-Prox,

R(p) ≤ 4

α
RMoBIL-VI(p) + εwΠ + σ(p)

(
σ2
g + σ2

ĝ

)
+

(p+ 1)νp
Np+1

,

σ(p) ≤

 2
αµf

(p+1)2e
p
N

p
1
N , if p > 0

2
αµf

lnN+1
N , if p = 0

ν(p) = 2e

(
(p+ 1)LGf

αµf

)2 nceil∑
n=2

n2p−2 −
eG2

f

2

nceil∑
n=2

(n− 1)p+1np−1 = O(1), nceil = d2e
1
2 (p+ 1)LGf

αµf
e

where RMoBIL-VI(p) is the upper bound of the average regret R(p) in Theorem C.1, and the expectation is due to
sampling f̃n and h̃n.

Proof. Recall R(p) = E[ regretw(Π)
w1:N

], where

regretw(Π) =

N∑
n=1

wnf̃n(πn)−min
π∈Π

N∑
n=1

wnf̃n(π).

Define f̄n(π) := 〈gn, π〉+ rn(π). Since f̃n is µf -strongly convex, rn is αµf -strongly convex, and r(πn) = 0, f̄n
satisfies

f̃n(πn)− f̃n(π) ≤ f̄n(πn)− f̄n(π), ∀π ∈ Π.

which implies R(p) ≤ E[
regretwpath(Π)

w1:N
], where

regretwpath(Π) :=

N∑
n=1

wnf̄n(πn)−min
π∈Π

N∑
n=1

wnf̄n(π)

is regret of an online learning problem with per-round cost wnf̄n.

Lemma 4.2 upper bounds regretwpath(Π) by using Stronger FTL lemma (Lemma 4.1). Since the second term in
Lemma 4.2 is negative, which is in our favor, we just need to upper bound the expectation of the first item. Using
triangular inequality, we proceed to bound E

[
‖gn − ĝn‖2∗

]
, which measures how well we are able to predict the

next per-round cost using the model.

By substituting the result of Lemma 4.3 into Lemma 4.2, we see

E
[
regretwpath(Π)

]
≤ E

[ N∑
n=1

ρn‖πn − π̂n‖2
]

+

(
2(p+ 1)

αµf

N∑
n=1

np−1

)(
σ2
g + σ2

ĝ

)
+

2(p+ 1)

αµf
E
[ N∑
n=1

np−1h̃n(F̂n)
] (C.2)

where ρn = 2(p+1)L2

αµf
np−1 − αµf

2(p+1) (n− 1)p+1. When n is large enough, ρn ≤ 0, and hence the first term of (C.2)
is O(1). To be more precise, ρn ≤ 0 if

2(p+ 1)L2

αµf
np−1 ≤ αµf

2(p+ 1)
(n− 1)p+1

⇐⇒ (n− 1)2 ≥
(

2(p+ 1)LGf
αµf

)2(
n

n− 1

)p−1

⇐= (n− 1)2 ≥
(

2(p+ 1)LGf
αµf

)2

e
p−1
n−1
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⇐= (n− 1)2 ≥
(

2(p+ 1)LGf
αµf

)2

e (Assume n ≥ p)

⇐= n ≥ 2e
1
2 (p+ 1)LGf

αµf
+ 1

Therefore, we just need to bound the first nceil = d 2e
1
2 (p+1)LGf
αµf

e terms of ρn‖πn − π̂n‖2. Here we use a basic fact
of convex analysis in order to bound ‖πn − π̂n‖2

Lemma C.1. Let X be a compact and convex set and let f, g be convex functions. Suppose f + g is µ-strongly
convex. Let x1 ∈ arg minx∈X f(x) and x2 = arg minx∈X (f(x) + g(x)). Then ‖x1 − x2‖ ≤ ‖∇g(x1)‖∗

µ .

Proof of Lemma C.1. Let h = f + g. Because h is µ-strongly convex and x2 = arg minx∈X h(x)

µ

2
‖x1 − x2‖2 ≤ h(x1)− h(x2) ≤ 〈∇h(x1), x1 − x2〉 −

µ

2
‖x1 − x2‖2

≤ 〈∇g(x1), x1 − x2〉 −
µ

2
‖x1 − x2‖2

This implies µ‖x1−x2‖2 ≤ 〈∇g(x1), x1 − x2〉 ≤ ‖∇g(x1)‖∗‖x1−x2‖. Dividing both sides by ‖x1−x2‖ concludes
the lemma. �

Utilizing Lemma C.1 and the definitions of πn and π̂n, we have, for n ≥ 2,

‖πn − π̂n‖2 ≤
1

αµfw1:n−1
‖wnĝn‖2∗

≤
(p+ 1)G2

f

αµf

n2p

(n− 1)p+1
(Bounded ĝn and Lemma H.1)

≤
(p+ 1)e

p+1
n−1G2

f

αµf
np−1 (1 + x ≤ ex)

≤
e(p+ 1)G2

f

αµf
np−1 (Assume n ≥ p+ 2).

and therefore, after assuming initialization π1 = π̂1, we have the bound

nceil∑
n=2

ρn‖πn − π̂n‖2 ≤ 2e

(
(p+ 1)LGf

αµf

)2 nceil∑
n=2

n2p−2 −
eG2

f

2

nceil∑
n=2

(n− 1)p+1np−1 (C.3)

of which more delicate upper bound can be derived from Lemma H.1. For the third term of (C.2), we can tie
it back to the bound of R(p) of MoBIL-VI, which we denote RMoBIL-VI(p). More concretely, recall that for
MoBIL-VI in (C.1), we have

R(p) ≤ p+ 1

2µfw1:N

N∑
n=1

np−1hn(πn),

and we derived the upper bound (RMoBIL-VI(p)) for the RHS term. By observing that the third term of (C.2)
after averaging is

2(p+ 1)

αµfw1:N
E
[ N∑
n=1

np−1h̃n(F̂n)
]

= E
[ 4

α

(
p+ 1

2µfw1:N

N∑
n=1

np−1h̃n(F̂n)

)]
≤ 4

α
E
[
RMoBIL-VI(p)

]
=

4

α
RMoBIL-VI(p).

(C.4)
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Dividing (C.2) by w1:N , and plugging in (C.3), (C.4), we see

R(p) ≤ E[regretwpath(Π)/w1:N ]

≤ 4

α
RMoBIL-VI(p) +

1

w1:N

(
νp +

(
2(p+ 1)

αµf

N∑
n=1

np−1

)(
σ2
g + σ2

ĝ

))

where νp = 2e
(

(p+1)LGf
αµf

)2∑nceil

n=2 n
2p−2 − eG2

f

2

∑nceil

n=2(n− 1)p+1np−1, nceil = d 2e
1
2 (p+1)LGf
αµf

e.

Finally, we consider the case p > 1 as stated in Theorem 4.2

R(p) ≤ 4

α

(
G2
h

4µfµh

p(p+ 1)2e
p
N

p− 1

1

N2
+

1

2µf

(p+ 1)2e
p
N

p

1

N
εwF̂

)
+
p+ 1

Np+1

(
νp +

(
2(p+ 1)

αµf

np

p

)(
σ2
g + σ2

ĝ

))
≤ (p+ 1)2e

p
N

αµf

(
G2
h

µh

p

p− 1

1

N2
+

2

p

σ2
g + σ2

ĝ + εwF̂
N

)
+

(p+ 1)νp
Np+1

,

where νp = 2e
(

(p+1)LGf
αµf

)2 (
(nceil+1)2p−1

2p−1 − 1
)
− eG2

f

2
(nceil−1)2p+1

2p+1 , nceil = d 2e
1
2 (p+1)LGf
αµf

e. �

D Model Learning through Learning Dynamics Models

So far we have stated model learning rather abstractly, which only requires hn(F̂ ) to be an upper bound of
‖∇2F (πn, πn)−∇2F̂ (πn, πn)‖2∗. Now we give a particular example of hn and h̃n when the predictive model is
constructed as a simulator with online learned dynamics models. Specifically, we consider learning a transition
model M ∈M online that induces a bivariate function F̂ , whereM is the class of transition models. Let DKL

denote the KL divergence and let dMπn be the generalized stationary distribution (cf. (1)) generated by running
policy πn under transition model M . We define, for Mn ∈M, F̂n(π′, π) := EdMn

π′
[D(π∗||π)]. We show the error

of F̂n can be bounded by the KL-divergence error of Mn.

Lemma D.1. Assume ∇D(π∗||·) is LD-Lipschitz continuous with respect to ‖ · ‖∗. It holds that ‖∇2F (πn, πn)−
∇2F̂n(πn, πn)‖2∗ ≤ 2−1(LDDiam(S))2DKL(dπn ||dMn

πn ).

Directly minimizing the marginal KL-divergence DKL(dπn , d
Mn
πn ) is a nonconvex problem and requires backpropa-

gation through time. To make the problem simpler, we further upper bound it in terms of the KL divergence
between the true and the modeled transition probabilities.

To make the problem concrete, here we consider T -horizon RL problems.

Proposition D.1. For a T -horizon problem with dynamics P , let Mn be the modeled dynamics. Then ∃C > 0
s.t ‖∇2F (πn, πn)−∇2F̂n(πn, πn)‖2∗ ≤ C

T

∑T−1
t=0 (T − t)Edπn,tEπ [DKL(P ||Mn)].

Therefore, we can simply takes hn as the upper bound in Proposition D.1, and h̃ as its empirical approximation
by sampling state-action transition triples through running policy πn in the real environment. This construction
agrees with the causal relationship assumed in the Section 3.2.1.

D.1 Proofs

Lemma D.1. Assume ∇D(π∗||·) is LD-Lipschitz continuous with respect to ‖ · ‖∗. It holds that ‖∇2F (πn, πn)−
∇2F̂n(πn, πn)‖2∗ ≤ 2−1(LDDiam(S))2DKL(dπn ||dMn

πn ).

Proof. First, we use the definition of dual norm

‖∇2F̂ (πn, πn)−∇2F (πn, πn)‖∗ = max
δ:‖δ‖≤1

(Edπn − EdMnπn ) [〈δ,∇D(π∗||πn)〉] (D.1)

and then we show that 〈δ,∇D(π∗||πn)〉 is LD-Lipschitz continuous: for π, π′ ∈ Π,

〈δ,∇D(π∗||π)−∇D(π∗||π′)〉 ≤ ‖δ‖‖∇D(π∗||π)−∇D(π∗||π′)‖∗ ≤ LD‖π − π′‖
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Note in the above equations ∇ is with respect to D(π∗||·).
Next we bound the right hand side of (D.1) using Wasserstein distance DW , which is defined as follows [20]: for two
probability distributions p and q defined on a metric space DW (p, q) := supf :Lip(f(·))≤1 Ex∼p[f(x)]− Ex∼q[f(x)].

Using the property that 〈δ,∇D(π∗||πn)〉 is LD-Lipschitz continuous, we can derive

‖∇2F̂ (πn, πn)−∇2F (πn, πn)‖∗ ≤ LDDW (dπn , d̂πn) ≤ LDDiam(S)√
2

√
DKL(dπn ||d̂nπn)

in which the last inequality is due to the relationship between DKL and DW [20]. �

Proposition D.1. For a T -horizon problem with dynamics P , let Mn be the modeled dynamics. Then ∃C > 0
s.t ‖∇2F (πn, πn)−∇2F̂n(πn, πn)‖2∗ ≤ C

T

∑T−1
t=0 (T − t)Edπn,tEπ [DKL(P ||Mn)].

Proof. Let ρπ,t be the state-action trajectory up to time t generated by running policy π, and let ρ̂π,t be that of
the dynamics model. To prove the result, we use a simple fact:

Lemma D.2. Let p and q be two distributions.

KL[p(x, y)||q(x, y)] = KL[p(x)||q(x)] + Ep(x)KL[p(y|x)||q(y|x)]

Then the rest follows from Lemma D.1 and the following inequality.

DKL(dπn ||d̂πn) ≤ 1

T

T−1∑
t=0

DKL(ρπn,t||ρ̂πn,t)

=
1

T

T−1∑
t=0

Eρπn,t

[
t−1∑
τ=0

ln
pM (sτ+1|sτ , aτ )

pM̂ (sτ+1|sτ , aτ )

]

=
1

T

T−1∑
t=0

(T − t)Edπ,tEπ
[
DKL(pM ||pM̂ )

]
�

E Relaxation of Strong Convexity Assumption

The strong convexity assumption (Assumption 4.2) can be relaxed to just convexity. We focus on studying the
effect of f̃n and/or h̃n being just convex on R(p) in Theorem 2.1 and Theorem 4.2 in big-O notation. Suggested
by Lemma 3.2, when strong convexity is not assumed, additional regularization has to be added in order to keep
the stabilization terms l1:n(xn)− l1:n(x?n) small.
Lemma E.1 (FTRL with prediction). Let ln be convex with bounded gradient and let X be a com-
pact set. In round n, let regularization rn be µn-strongly convex for some µn ≥ 0 such that rn(xn) =
0 and xn ∈ arg minX rn(x), and let vn+1 be a (non)convex function such that

∑n
m=1 wm (ln + rn) +

wn+1vn+1 is convex. Suppose that learner plays Follow-The-Regularized-Leader (FTRL) with prediction, i.e.
xn+1 = arg minx∈X

∑n
m=1 (wm (ln + rn) + wn+1vn+1) (x), and suppose that

∑n
m=1 wmµm = Ω(nk) > 0 and∑n

m=1 wmrn(x) ≤ O(nk) for all x ∈ X and some k ≥ 0. Then, for wn = np,

regretw(X ) = O(Nk) +

N∑
n=1

O
(
n2p−k) ‖∇ln(xn)−∇vn(xn)‖2∗

Proof. The regret of the online learning problem with convex per-round cost wnln can be bounded by the
regret of the online learning problem with strongly convex per-round cost wn (ln + rn) as follows. Let x?n ∈
arg minx∈X

∑N
n=1 wnln(x).

regretw(X ) =

N∑
n=1

wnln(xn)−min
x∈X

N∑
n=1

wnln(x)

=

N∑
n=1

wn (ln(xn) + rn(xn))−
N∑
n=1

wn (ln(x?n) + rn(x?n)) +

N∑
n=1

wnrn(x?n)
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≤
(

N∑
n=1

wn (ln(xn) + rn(xn))−min
x∈X

N∑
n=1

wn (ln(x) + rn(x))

)
+O(Nk).

Since the first term is the regret of the online learning problem with strongly convex per-round cost wn (ln + rn),
and xn+1 = arg minX (

∑n
m=1 wm (ln + rn) + wn+1vn+1), we can bound the first term via Lemma H.5 by setting

wn = np and
∑n
m=1 wmµm = O(nk). �

The lemma below is a corollary of Lemma E.1.
Lemma E.2 (FTRL). Under the same condition in Lemma E.1, suppose that learner plays FTRL, i.e.
xn+1 = arg minX

∑n
m=1 wm (ln + rn). Then, for wn = np with p > − 1

2 , choose {rn} such that
∑n
m=1 wmµm =

Ω(np+1/2) > 0 and it achieves regretw(X ) = O(Np+ 1
2 ) and regretw(X )

w1:N
= O(N−1/2).

Proof. Let
∑n
m=1 wmµm = Θ(nk) > 0 for some k ≥ 0. First, if 2p− k > −1, then we have

regret(X ) ≤ O(Nk) +

N∑
n=1

O
(
n2p−k) ‖∇ln(xn)‖2∗ (Lemma E.1)

≤ O(Nk) +

N∑
n=1

O
(
n2p−k) (ln has bounded gradient)

≤ O(Nk) +O
(
N2p−k+1

)
(Lemma H.1)

In order to have the best rate, we balance the two terms O(Nk) and O
(
N2p−k+1

)
k = 2p− k + 1 =⇒ k = p+

1

2
,

That is, p > − 1
2 , because 2p− (p+ 1

2 ) > −1. This setting achieves regret in O(Np+ 1
2 ). Because w1:N = O(Np+1),

the average regret is in O(N−
1
2 ). �

With these lemmas, we are ready to derive the upper bounds of R(p) when either f̃n or h̃n is just convex, with
some minor modification of Algorithm 1. For example, when f̃n is only convex, rn will not be αµf strongly;
instead we will concern the strongly convexity of

∑n
m=1 wnrn. Similarly, if h̃n is only convex, the model cannot

be updated by FTL as in line 5 of Algorithm 1; instead it has to be updated by FTRL.

In the following, we will derive the rate for MoBIL-VI (i.e. f̃n = fn and h̃ = h) and assume εwF̂ = 0 for simplicity.
The same rate applies to the MoBIL-Prox when there is no noise. To see this, for example, if f̃n is only convex,
we can treat rn as an additional regularization and we can see

R(p) = E
[ regretw(Π)

w1:N

]
≤ 1

w1:N
E
[ N∑
n=1

wnf̄n(πn)−min
π∈Π

N∑
n=1

wnf̄n(π)︸ ︷︷ ︸
regretwpath(Π)

+

N∑
n=1

wnrn(π?N )
]

where π?N = arg minπ∈Π

∑N
n=1 f̃n(π). As in the proof of Theorem 4.2, regretwpath is decomposed into several terms:

the h̃n part in conjunction with
∑N
n=1 wnrn(π?N ) constitute the same R(p) part for MoBIL-VI, while other

terms in regretwpath are kept the same.

Strongly convex f̃n and convex h̃n Here we assume p > 1
2 . Under this condition, we have

regretw(Π) =

N∑
n=1

O(np−1)h̃n(F̂n) (Lemma H.5)

= O
(
Np− 1

2

)
(Lemma E.2)

Because w1:N = Ω(Np+1), the average regret R(p) = O(N−3/2).
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Convex f̃n and strongly convex h̃n Here we assume p > 0. Suppose r1:n is Θ(nk)-strongly convex and
2p− k > 0. Under this condition, we have

regretw(Π) = O(Nk) +

N∑
n=1

O
(
n2p−k) h̃n(F̂n+1) (Lemma E.1)

= O
(
Nk
)

+O
(
N2p−k) . (Lemma H.6)

We balance the two terms and arrive at

k = 2p− k =⇒ k = p,

which satisfies the condition 2p− k > 0, if p > 0. Because w1:N = Ω(Np+1), the average regret R(p) = O(N−1).

Convex f̃n and convex h̃n Here we assume p ≥ 0. Suppose r1:n is Θ(nk)-strongly convex and 2p− k > − 1
2 .

Under this condition, we have

regretw(Π) = O(Nk) +

N∑
n=1

O
(
n2p−k) h̃n(F̂n+1) (Lemma E.1)

= O
(
Nk
)

+O
(
N2p−k+ 1

2

)
(Lemma E.1)

We balance the two terms and see

k = 2p− k +
1

2
=⇒ k = p+

1

4
,

which satisfies the condition 2p−k > − 1
2 , if p ≥ 0. Because w1:N = Ω(Np+1), the average regretR(p) = O(N−3/4).

Convex fn without model Setting p = 0 in Lemma E.2, we have regret(Π) = O(N
1
2 ).

Therefore, the average regret becomes O(N−
1
2 ).

Stochastic problems The above rates assume that there is no noise in the gradient and the model is realizable.
If the general case, it should be selected k = p + 1 for strongly convex f̃n and k = p + 1

2 for convex f̃n. The

convergence rate will become O(
εF̂+σ2

g+σĝ2

N ) and O(
εF̂+σ2

g+σĝ2√
N

), respectively.

F Connection with Stochastic Mirror-Prox

In this section, we discuss how MoBIL-Prox generalizes stochastic Mirror-Prox by Juditsky et al. [11],
Nemirovski [18] and how the new Stronger FTL Lemma 4.1 provides more constructive and flexible directions to
design new algorithms.

F.1 Variational Inequality Problems

Mirror-Prox [18] was first proposed to solve VI problems with monotone operators, which is a unified framework
of “convex-like” problems, including convex optimization, convex-concave saddle-point problems, convex multi-
player games, and equilibrium problems, etc (see [14] for a tutorial). Here we give the definition of VI problems
and review some of its basic properties.

Definition F.1. Let X be a convex subset in an Euclidean space E and let F : X → E be an operator, the VI
problem, denoted as VI(X , F ), is to find a vector x∗ ∈ X such that

〈F (x∗), x− x∗〉 ≥ 0, ∀x ∈ X .

The set of solutions to this problem is denoted as SOL(X , F )
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It can be shown that, when X is also compact, then VI(X , F ) admits at least one solution [14]. For example, if
F (x) = ∇f(x) for some function f , then solving VI(X , F ) is equivalent to finding stationary points.

VI problems are, in general, more difficult than optimization. To make the problem more structured, we will
consider the problems equipped with some general convex structure, which we define below. When F (x) = ∇f(x)
for some convex function f , the below definitions agree with their convex counterparts.

Definition F.2. An operator F : X → E is called

1. pseudo-monotone on X if for all x, y ∈ X ,

〈F (y), x− y〉 ≥ 0 =⇒ 〈F (x), x− y〉 ≥ 0

2. monotone on X if for all x, y ∈ X ,

〈F (x)− F (y), x− y〉 ≥ 0

3. strictly monotone on X if for all x, y ∈ X ,

〈F (x)− F (y), x− y〉 > 0

4. µ-strongly monotone on X if for all x, y ∈ X ,

〈F (x)− F (y), x− y〉 ≥ µ‖x− y‖2

A VI problem is a special case of general equilibrium problems [21]. Therefore, for a VI problem, we can also
define its dual VI problem.

Definition F.3. Given a VI problem VI(X , F ), the dual VI problem, denoted as DVI(X , F ), is to find a vector
x∗D ∈ X such that

〈F (x), x− x∗D〉 ≥ 0, ∀x ∈ X .

The set of solutions to this problem is denoted as DSOL(X , F ).

The solution sets of the primal and the dual VI problems are connected as given in next proposition, whose proof
e.g. can be found in [22].

Proposition F.1.

1. If F is pseudo-monotone, then SOL(X , F ) ⊆ DSOL(X , F ).

2. If F is continuous, then DSOL(X , F ) ⊆ SOL(X , F ).

However, unlike primal VI problems, a dual VI problem does not always have a solution even if X is compact.
To guarantee the existence of solution to DSOL(X , F ) it needs stronger structure, such as pseudo-monotonicity
as shown in Proposition F.1. Like solving primal VI problems is related to finding local stationary points in
optimization, solving dual VI problems is related to finding global optima when F (x) = ∇f(x) for some function
f [23].

F.2 Stochastic Mirror-Prox

Stochastic Mirror-Prox solves a monotone VI problem by indirectly finding a solution to its dual VI problem
using stochastic first-order oracles. This is feasible because of Proposition F.1. The way it works is as follows:
given an initial condition x1 ∈ X , it initializes x̂1 = x1; at iteration n, it receives unbiased estimates gn and ĝn
satisfying E[gn] = F (xn) and E[ĝn] = F (x̂n) and then performs updates

xn+1 = Proxx̂n(γnĝn)

x̂n+1 = Proxx̂n(γngn+1)
(F.1)
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where γn > 0 is the step size, and the proximal operator Prox is defined as

Proxy(g) = arg min
x∈X

〈g, x〉+Bω(x||y)

and Bω(x||y) = ω(x)− ω(y)− 〈∇ω(y), x− y〉 is the Bregman divergence with respect to an α-strongly convex
function ω. At the end, stochastic Mirror-Prox outputs

x̄N =

∑N
n=1 γnxn
γ1:n

as the final decision.

For stochastic Mirror-Prox, the accuracy of an candidate solution x is based on the error

ERR(x) := max
y∈X
〈F (y), x− y〉 .

This choice of error follows from the optimality criterion of the dual VI problem in Definition F.3. That is,
ERR(x) ≤ 0 if and only if x ∈ DSOL(X , F ). From Proposition F.1, we know that if the problem is pseudo-
monotone, a dual solution is also a primal solution. Furthermore, we can show an approximate dual solution is
also an approximate primal solution.

Let Ω2 = maxx,y∈X Bω(x||y). Now we recap the main theorem of [11].13

Theorem F.1. [11] Let F be monotone. Assume F is L-Lipschitz continuous, i.e.

‖F (x)− F (y)‖∗ ≤ L‖x− y‖ ∀x, y ∈ X

and for all n, the sampled vectors are unbiased and have bounded variance, i.e.

E[gn] = F (xn), E[ĝn] = F (x̂n)

E[‖gn − F (xn)‖2∗] ≤ σ2, E[‖ĝn − F (x̂n)‖2∗] ≤ σ2

Then for γn = γ with 0 < γn ≤ α√
3L

, it satisfies that

E[ERR(x̄N )] ≤ 2αΩ2

Nγ
+

7γσ2

α

In particular, if γ = min{ α√
3L
, αΩ

√
2

7Nσ2 }, then

E[ERR(x̄N )] ≤ max

{
7

2

Ω2L

α

1

N
,Ω

√
14σ2

N

}

If the problem is deterministic, the original bound of Nemirovski [18] is as follows.
Theorem F.2. [18] Under the same assumption in Theorem F.1, suppose the problem is deterministic. For
γ ≤ α√

2L
,

ERR(x̄N ) ≤
√

2
Ω2L

α

1

N

Unlike the uniform scheme above, a recent analysis by Ho-Nguyen and Kilinc-Karzan [24] also provides a
performance bound the weighted average version of Mirror-Prox when the problem is deterministic.
Theorem F.3. [24] Under the same assumption in Theorem F.1, suppose the problem is deterministic. Let
{wn ≥ 0} be a sequence of weights and let the step size to be γn = α

L
w1:n

maxm wm
.

ERR(x̄N ) ≤ Ω2L

α

maxn wn
w1:N

Theorem F.3 (with wn = w) tightens Theorem F.1 and Theorem F.2 by a constant factor.
13Here simplify the condition they made by assuming F is Lipschitz continuous and gn and ĝn are unbiased.
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F.3 Connection with MoBIL-Prox

To relate stochastic Mirror-Prox and MoBIL-Prox, we first rename the variables in (F.1) by setting x̂n+1 := x̂n
and γn+1 := γn

xn+1 = Proxx̂n(γnĝn)

x̂n+1 = Proxx̂n(γngn+1)
⇐⇒ xn+1 = Proxx̂n+1

(γn+1ĝn+1)

x̂n+2 = Proxx̂n+1
(γn+1gn+1)

and then reverse the order of updates and write them as

x̂n+1 = Px̂n(γngn)

xn+1 = Px̂n+1
(γn+1ĝn+1)

(F.2)

Now we will show that the update in (F.2) is a special case of (9), which we recall below

π̂n+1 = arg min
π∈Π

n∑
m=1

wm
(
〈gm, π〉+ rm(π)

)
,

πn+1 = arg min
π∈Π

n∑
m=1

wm
(
〈gm, π〉+ rm(π)

)
+ wn+1 〈ĝn+1, π〉 ,

(9)

That is, we will show that xn = πn and x̂ = π̂n under certain setting.

Proposition F.2. Suppose wn = γn, F̂n = F , r1(π) = Bω(π||π1) and rn = 0 for n > 1. If Π = X is
unconstrained, then xn = πn and x̂n = π̂n as defined in (F.2) and (9).

Proof. We prove the assertion by induction. For n = 1, it is trivial, since π1 = π̂1 = x1 = x̂1. Suppose it is true
for n. We show it also holds for n+ 1.

We first show x̂n+1 = π̂n+1. By the optimality condition of π̂n+1, it holds that

0 =

n∑
m=1

wmgm +∇ω(π̂n+1)−∇ω(π1)

= (wngn +∇ω(π̂n+1)−∇ω(π̂n)) +

(
n−1∑
m=1

wmgm +∇ω(π̂n)−∇ω(π1)

)
= wngn +∇ω(π̂n+1)−∇ω(π̂n)

where the last equality is by the optimality condition of π̂n. This is exactly the optimality condition of x̂n+1

given in (F.2), as x̂n = π̂n by induction hypothesis and wn = γn. Finally, because Prox is single-valued, it implies
x̂n+1 = π̂n+1.

Next we show that πn+1 = xn+1. By optimality condition of πn+1, it holds that

0 = wn+1ĝn+1 +

n∑
m=1

wmgm +∇ω(πn+1)−∇ω(π1)

= (wn+1ĝn+1 +∇ω(πn+1)−∇ω(π̂n+1)) +

(
n∑

m=1

wmgm +∇ω(π̂n+1)−∇ω(π1)

)
= wn+1ĝn+1 +∇ω(πn+1)−∇ω(π̂n+1)

This is the optimality condition also for xn+1, since we have shown that π̂n+1 = x̂n+1. The rest of the argument
follows similarly as above. �

In other words, stochastic Mirror-Prox is a special case of MoBIL-Prox, when F̂n = F (i.e. the update of πn
also queries the environment not the simulator) and the regularization is constant. The condition that X and Π
are unconstrained is necessary to establish the exact equivalence between Prox-based updates and FTL-based
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updates. This is a known property in the previous studies on the equivalence between lazy mirror descent and
FTRL [16]. Therefore, when F̂n = F , we can view MoBIL-Prox as a lazy version of Mirror-Prox. It has
been empirical observed the FT(R)L version sometimes empirically perform better than the Prox version [16].

With the connection established by Proposition F.2, we can use a minor modification of the strategy used in
Theorem 4.2 to prove the performance of MoBIL-Prox when solving VI problems. To show the simplicity of the
FTL-style proof compared with the algebraic proof of Juditsky et al. [11], below we will prove from scratch but
only using the new Stronger FTL Lemma (Lemma 4.1).

To do so, we introduce a lemma to relate expected regret and ERR(x̄N ).

Lemma F.1. Let F be a monotone operator. For any {xn ∈ X}Nn=1 and {wn ≥ 0},

E[ERR(x̄N )] ≤ E

[
max
x∈X

1

w1:N

N∑
n=1

wn 〈F (xn), xn − x〉
]

where x̄N =
∑N
n=1 wnxn
w1:n

.

Proof. Let x? ∈ arg maxx∈X 〈F (x), x̄N − x〉. By monotonicity, for all xn, 〈F (x?), xn − x?〉 ≤ 〈F (xn), xn − x?〉.
and therefore

E[ERR(x̄N )] = E

[
1

w1:N

N∑
n=1

wn 〈F (x?), xn − x?〉
]

≤ E

[
1

w1:N

N∑
n=1

wn 〈F (xn), xn − x?〉
]
≤ E

[
max
x∈X

1

w1:N

N∑
n=1

wn 〈F (xn), xn − x〉
]

�

Theorem F.4. Under the same assumption as in Theorem F.1. Suppose wn = np and rn(x) = βnBω(x||xn),
where βn is selected such that

∑N
n=1 wnβn = 1

ηn
k for some k ≥ 0 and η > 0. If k > p, then

E[ERR(x̄N )] ≤ 1

w1:N

(
αΩ2

η
Nk +

3σ2η

α

N∑
n=1

n2p−k

)
+
O(1)

w1:N

Proof. To simplify the notation, define ln(x) = wn(〈F (xn), x〉+ rn(x)) and let

regretw(X ) =

N∑
n=1

wn 〈F (xn), xn〉 −min
x∈X

N∑
n=1

wn 〈F (xn), x〉

Rw(X ) =

N∑
n=1

ln(xn)−min
x∈X

N∑
n=1

ln(x)

By this definition, it holds that

regretw(X ) ≤ Rw(X ) + max
x∈X

N∑
n=1

wnrn(x)

In the following, we bound the two terms in the upper bound above. First, by applying Stronger FTL Lemma
(Lemma 4.1) with ln and we can show that

Rw(X ) ≤
N∑
n=1

l1:n(xn)− l1:n(x?n)−∆n

≤
N∑
n=1

η

2α
n2p−k‖gn − ĝn‖2∗ −

α(n− 1)k−1

2η
‖xn − x̂n‖2
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where x?n := arg maxx∈X l1:n(x). Because by Lemma H.3 and Lipschitz continuity of F , it holds

‖gn − ĝn‖2∗ ≤ 3(L2‖xn − x̂n‖2 + 2σ2) (F.3)

Therefore, we can bound

Rw(X ) ≤
N∑
n=1

(
3

2

L2η

α
n2p−k − α

2η
(n− 1)k

)
‖xn − x̂n‖2 +

3σ2η

α

N∑
n=1

n2p−k (F.4)

If k > p, then the first term above is O(1) independent of N . On the other hand,

max
x∈X

N∑
n=1

wnrn(x) ≤ αΩ2

η
Nk (F.5)

Combining the two bounds and Lemma F.1, i.e. E[ERR(x̄N )] ≤ E
[

regretw(X )
w1:N

]
concludes the proof. �

Deterministic Problems For deterministic problems, we specialize the proof Theorem F.4 gives. We set
k = p = 0, x1 = arg minx∈X ω(x), which removes the 2 factor in (F.5), and modify 3 to 1 in (F.3) (because the
problem is deterministic). By recovering the constant in the proof, we can show that

E[ERR(x̄N )] ≤ 1

N

(
αΩ2

η
+

N∑
n=1

(
1

2

L2η

α
− α

2η

)
‖xn − x̂n‖2

)
Suppose . We choose η to make the second term non-positive, i.e.

1

2

L2η

α
− α

2η
≤ 0 ⇐= η ≤ α

L

and the error bound becomes

E[ERR(x̄N )] ≤ LΩ2

N

This bound and the condition on η matches that in [24].

Stochastic Problems For stochastic problems, we use the condition specified in Theorem F.4. Suppose
2p− k > −1. To balance the second term in (F.4) and (F.5), we choose

2p− k + 1 = k =⇒ k = p+
1

2

To satisfy the hypothesis 2p− k > −1, it requires p > − 1
2 . Note with this choice, it satisfies the condition k > p

required in Theorem F.4. Therefore, the overall bound becomes

E[ERR(x̄N )] ≤ 1

w1:N

(
αΩ2

η
Np+ 1

2 +
3σ2η

α

N∑
n=1

np−
1
2

)
+
O(1)

w1:N

≤ p+ 1

Np+1

(
αΩ2

η
+

3ησ2

α(p+ 1
2 )

)
(N + 1)p+

1
2 +

O(1)

Np+1

≤ e p+1/2
N (p+ 1)

(
αΩ2

η
+

3ησ2

α(p+ 1
2 )

)
N−

1
2 +

O(1)

Np+1

where we use Lemma H.1 and (N+1
N )p+1/2 ≤ e p+1/2

N . If we set η such that

αΩ2

η
=

3ησ2

α(p+ 1
2 )

=⇒ η = α
Ω

σ

√
p+ 1

2

3
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Then

E[ERR(x̄N )] ≤ 2e
p+1/2
N (p+ 1)Ωσ

√
3

p+ 1
2

N−
1
2 +

O(1)

Np+1
(F.6)

For example, if p = 0, then

E[ERR(x̄N )] ≤ O(1)

N
+

2
√

6σΩe
p+1/2
N√

N

which matches the bound in by Juditsky et al. [11] with a slightly worse constant. We leave a complete study of
tuning p as future work.

F.4 Comparison of stochastic Mirror-Prox and MoBIL-Prox in Imitation Learning

The major difference between stochastic Mirror-Prox and MoBIL-Prox is whether the gradient from the
environment is used to also update the decision πn+1. It is used in the Mirror-Prox, whereas MoBIL-Prox
uses the estimation from simulation. Therefore, for N iterations, MoBIL-Prox requires only N interactions,
whereas Mirror-Prox requires 2N interactions.

The price MoBIL-Prox pays extra when using the estimated gradient is that a secondary online learning problem
has to be solved. This shows up in the term, for example of strongly convex problems,

(p+ 1)G2
h

2µh

1

N2
+
εwF̂ + σ2

g + σ2
ĝ

N

in Theorem 4.2. If both gradients are from the environment, then εwF̂ = 0 and σ2
ĝ = σ2

g . Therefore, if we ignore
the O( 1

N2 ) term, using an estimated gradient to update πn+1 is preferred, if it requires less interactions to get to
the magnitude of error, i.e.

2× 2σ2
g ≥ εwF̂ + σ2

ĝ + σ2
g

in which the multiplier of 2 on the left-hand side is due to MoBIL-Prox only requires one interaction per
iterations, whereas stochastic Mirror-Prox requires two.

Because σ2
g is usually large in real-world RL problems and σ2

ĝ can be made close to zero easily (by running more
simulations), if our model class is reasonably expressive, then MoBIL-Prox is preferable. Essentially, this is
because MoBIL-Prox can roughly cut the noise of gradient estimates by half.

The preference over MoBIL-Prox would be more significant for convex problems, because the error decays
slower over iterations (e.g. 1√

N
) and therefore more iterations are required by the stochastic Mirror-Prox

approach to counter balance the slowness due to using noisy gradient estimator.

G Experimental Details

G.1 Tasks

Two robot control tasks (Cartpole and Reacher3D) powered by the DART physics engine [19] were used as the
task environments.

Cartpole The Cart-Pole Balancing task is a classic control problem, of which the goal is to keep the pole
balanced in an upright posture with force only applied to the cart. The state and action spaces are both continuous,
with dimension 4 and 1, respectively. The state includes the horizontal position and velocity of the cart, and the
angle and angular velocity of the pole. The time-horizon of this task is 1000 steps. There is a small uniformly
random perturbation injected to initial state, and the transition is deterministic. The agent receives +1 reward for
every time step it stays in a predefined region, and a rollout terminates when the agent steps outside the region.
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Reacher3D In this task, a 5-DOF (degrees-of-freedom) manipulator is controlled to reach a random target
position in a 3D space. The reward is the sum of the negative distance to the target point from the finger tip and
a control magnitude penalty. The actions correspond to the torques applied to the 5 joints. The time-horizon of
this task is 500 steps. At the beginning of each rollout, the target point to reach is reset to a random location.

G.2 Algorithms

Policies We employed Gaussian policies in our experiments, i.e. for any state s ∈ S, πs is Gaussian distributed.
The mean of πs was modeled by either a linear function or a neural network that has 2 hidden layers of size 32
and tanh activation functions. The covariance matrix of πs was restricted to be diagonal and independent of
state. The expert policies in the IL experiments share the same architecture as the corresponding learners (e.g. a
linear learner is paired with a linear expert) and were trained using actor-critic-based policy gradients.

Imitation learning loss With regard to the IL loss, we set D(π∗s ||πs) in (2) to be the KL-divergence between
the two Gaussian distributions: D(π∗s ||πs) = KL[πs||π∗s ]. (We observed that using KL[πs||π∗s ] converges noticeably
faster than using KL[π∗s ||πs]).

Implementation details of MoBIL-Prox The regularization of MoBIL-Prox was set to rn(π) =
µfαn

2 ‖π − πn‖2 such that
∑
wnαnµf = (1 + cnp+1/2)/ηn, where c = 0.1 and ηn was adaptive to the norm

of the prediction error. Specifically, we used ηn = ηλn: η > 0 and λn is a moving-average estimator of the norm
of en = gn − ĝn defined as

λ̄n = βλ̄n−1 + (1− β)‖en‖2
λn = λ̄n/(1− βn)

where β was chosen to be 0.999. This parameterization is motivated by the form of the optimal step size
of MoBIL-Prox in Theorem 4.2, and by the need of having adaptive step sizes so different algorithms are
more comparable. The model-free setting was implemented by setting ĝn = 0 in MoBIL-Prox, and the same
adaptation rule above was used (which in this case effectively adjusts the learning rate based on ‖gn‖). In the
experiments, η was selected to be 0.1 and 0.01 for p = 0 and p = 2, respectively, so the areas under the effective
learning rate ηnwp/(1 + cnp+1/2) for p = 0 and p = 2 are close, making MoBIL-Prox perform similarly in these
two settings.

In addition to the update rule of MoBIL-Prox, a running normalizer, which estimates the upper and the lower
bounds of the state space, was used to center the state before it was fed to the policies.

Dynamics model learning The dynamics model used in the experiments is deterministic (the true model is
deterministic too). It is represented by a neural network with 2 hidden layers of size 64 and tanh activation functions.
Given a batch of transition triples {(stk , atk , stk+1)}Kk=1 collected by running πn under the true dynamics in each
round, we set the per-round cost for model learning as 1

K

∑K
k=1 ‖stk+1

−M(stk , atk)‖22, where M is the neural
network dynamics model. It can be shown that this loss is an upper bound of ‖∇2F (πn, πn)−∇2F̂n(πn, πn)‖2∗
by applying a similar proof as in Appendix D. The minimization was achieved through gradient descent using
ADAM [25] with a fixed number of iterations (2048) and fixed-sized mini-batches (128). The step size of ADAM
was set to 0.001.



Accelerating Imitation Learning with Predictive Models

H Useful Lemmas

This section summarizes some useful properties of polynomial partial sum, sequence in Banach space, and variants
of FTL in online learning. These results will be useful to the proofs in Appendix C.

H.1 Polynomial Partial Sum

Lemma H.1. This lemma provides estimates of
∑N
n=1 n

p.

1. For p > 0, N
p+1

p+1 =
∫ N

0
xpdx ≤∑N

n=1 n
p ≤

∫ N+1

1
xpdx ≤ (N+1)p+1

p+1 .

2. For p = 0,
∑N
n=1 n

p = N .

3. For −1 < p < 0,

(N+1)p+1−1
p+1 =

∫ N+1

1
xpdx ≤∑N

n=1 n
p ≤ 1 +

∫ N
1
xpdx = Np+1+p

p+1 ≤ (N+1)p+1

p+1 .

4. For p = −1, ln(N + 1) ≤∑N
n=1 n

p ≤ lnN + 1.

5. For p < −1,
∑N
n=1 n

p ≤ Np+1+p
p+1 = O(1). For p = −2,

∑N
n=1 n

p ≤ N−1−2
−2+1 ≤ 2.

Lemma H.2. For p ≥ −1, N ∈ N,

S(p) =

N∑
n=1

n2p∑n
m=1m

p
≤


p+1
p (N + 1)p, for p > 0

ln(N + 1), for p = 0

O(1), for − 1 < p < 0

2, for p = −1

.

Proof. If p ≥ 0, by Lemma H.1,

S(p) = (p+ 1)

N∑
n=1

np−1 ≤
{
p+1
p (N + 1)p, for p > 0

ln(N + 1), for p = 0
.

If −1 < p < 0, by Lemma H.1, S(p) ≤ (p + 1)
∑N
n=1

n2p

(n+1)p+1−1 . Let an = n2p

(n+1)p+1−1 , and bn = np−1. Since
limn→∞

an
bn

= 1 and by Lemma H.1
∑∞
n=0 bn converges, thus

∑∞
n=0 an converges too. Finally, if p = −1, by

Lemma H.1, S(−1) ≤∑N
n=1

1
n2 ln(n+1) ≤

∑N
n=1

1
n2 ≤ 2. �

H.2 Sequence in Banach Space

Lemma H.3. Let {a = x0, x1, · · · , xN = b} be a sequence in a Banach space with norm ‖ · ‖. Then for any
N ∈ N+, ‖a− b‖2 ≤ N

∑N
n=1 ‖xn−1 − xn‖2.

Proof. First we note that by triangular inequality it satisfies that ‖a− b‖ ≤∑N
n=1 ‖xn−1 − xn‖. Then we use the

basic fact that 2ab ≤ a2 + b2 in the second inequality below and prove the result.

‖a− b‖2 ≤
N∑
n=1

‖xn−1 − xn‖2 +

N∑
n=1

N∑
m=1;m6=n

‖xn−1 − xn‖‖xm−1 − xm‖

≤
N∑
n=1

‖xn−1 − xn‖2 +

N∑
n=1

N∑
m=1;m6=n

1

2

(
‖xn−1 − xn‖2 + ‖xm−1 − xm‖2

)
=

N∑
n=1

‖xn−1 − xn‖2 +
N − 1

2

N∑
n=1

‖xn−1 − xn‖2 +
1

2

N∑
n=1

N∑
m=1;m6=n

‖xm−1 − xm‖2
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=

N∑
n=1

‖xn−1 − xn‖2 + (N − 1)

N∑
n=1

‖xn−1 − xn‖2

= N

N∑
n=1

‖xn−1 − xn‖2 �

H.3 Basic Regret Bounds of Online Learning

For the paper to be self-contained, we summarize some fundamental results of regret bound when the learner in
an online problem updates the decisions by variants of FTL. Here we consider a general setup and therefore use a
slightly different notation from the one used in the main paper for policy optimization.

Online Learning Setup Consider an online convex optimization problem. Let X be a compact decision set in
a normed space with norm ‖ · ‖. In round n, the learner plays xn ∈ X receives a convex loss ln : X → R satisfying
‖∇ln(xn)‖∗ ≤ G, and then make a new decision xn+1 ∈ X . The regret is defined as

regret(X ) =

N∑
n=1

ln(xn)−min
x∈X

N∑
n=1

ln(x)

More generally, let {wn ∈ R+}Nn=1 be a sequence of weights. The weighted regret is defined as

regretw(X ) =

N∑
n=1

wnln(xn)−min
x∈X

N∑
n=1

wnln(x)

In addition, we define a constant εwX (which can depend on {ln}Nn=1) such that

εwX ≥ min
x∈X

∑N
n=1 wnln(x)

w1:N
.

In the following, we prove some basic properties of FTL with prediction. At the end, we show the result of FTL
as a special case. These results are based on the Strong FTL Lemma (Lemma 3.2), which can also be proven by
Stronger FTL Lemma (Lemma 4.1).

Lemma 3.2 (Strong FTL Lemma [16]). For any sequence of decisions {xn ∈ X} and loss functions {ln},
regret(X ) ≤∑N

n=1 l1:n(xn)− l1:n(x?n), where x?n ∈ arg minx∈X l1:n(x), where X is the decision set.

To use Lemma 3.2, we first show an intermediate bound.

Lemma H.4. In round n, let l1:n be µ1:n-strongly convex for some µ1:n > 0, and let vn+1 be a (non)convex
function such that l1:n + vn+1 is convex. Suppose the learner plays FTL with prediction, i.e. xn+1 ∈
arg minx∈X (l1:n + vn+1) (x). Then it holds

N∑
n=1

(l1:n(xn)− l1:n(x?n)) ≤
N∑
n=1

1

2µ1:n
‖∇ln(xn)−∇vn(xn)‖2∗

where x?n = arg minX
∑N
n=1 ln(x).

Proof. For any x ∈ X , since l1:n is µ1:n strongly convex, we have

l1:n(xn)− l1:n(x) ≤ 〈∇l1:n(xn), xn − x〉 −
µ1:n

2
‖xn − x‖2. (H.1)

And by the hypothesis xn = arg minx∈X (l1:n−1 + vn) (x), it holds that

〈−∇l1:n−1(xn)−∇vn(xn), xn − x〉 ≥ 0. (H.2)
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Adding (H.1) and (H.2) yields

l1:n(xn)− l1:n(x) ≤ 〈∇ln(xn)−∇vn(xn), xn − x〉 −
µ1:n

2
‖xn − x‖2

≤ max
d
〈∇ln(xn)−∇vn(xn), d〉 − µ1:n

2
‖d‖2

=
1

2µ1:n
‖∇ln(xn)−∇vn(xn)‖2∗,

where the last equality is due to a property of dual norm (e.g. Exercise 3.27 of [26]). Substituting x?n for x and
taking the summation over n prove the lemma. �

Using Lemma 3.2 and Lemma H.4, we can prove the regret bound of FTL with prediction.
Lemma H.5 (FTL with prediction). Let ln be a µn-strongly convex for some µn ≥ 0. In round n, let vn+1

be a (non)convex function such that
∑n
m=1 wmlm + wm+1vn+1 is convex. Suppose the learner plays FTL with

prediction, i.e. xn+1 ∈ arg minx∈X
∑n
m=1(wmlm + wm+1vn+1)(x) and suppose that

∑n
m=1 wmµm > 0. Then

regretw(X ) ≤
N∑
n=1

w2
n‖∇ln(xn)−∇vn(xn)‖2∗

2
∑n
m=1 wmµm

In particular, if µn = µ, wn = np, p ≥ 0, regretw(X ) ≤ p+1
2µ

∑N
n=1 n

p−1‖∇ln(xn)−∇vn(xn)‖2∗.

Proof. By Lemma 3.2 and Lemma H.4, we see

regretw(X ) ≤
N∑
n=1

(l1:n(xn)− l1:n(x?n)) ≤
N∑
n=1

w2
n‖∇ln(xn)−∇vn(xn)‖2∗

2
∑n
m=1 wmµm

.

If µn = µ, wn = np, and p ≥ 0, then it follows from Lemma H.1

regretw(X ) ≤ 1

2µ

N∑
n=1

n2p

np+1

p+1

‖∇ln(xn)−∇vn(xn)‖2∗ =
p+ 1

2µ

N∑
n=1

np−1‖∇ln(xn)−∇vn(xn)‖2∗.

�

The next lemma about the regret of FTL is a corollary of Lemma H.5.
Lemma H.6 (FTL). Let ln be µ-strongly convex for some µ > 0. Suppose the learner play FTL, i.e. xn =

arg minx∈X
∑n
m=1 wmlm(x). Then regretw(X ) ≤ G2

2µ

∑N
n=1

w2
n

w1:n
. In particular, if wn = np, then

N∑
n=1

wnln(xn) ≤


G2

2µ
p+1
p (N + 1)p + 1

p+1 (N + 1)p+1εwX , for p > 0
G2

2µ ln(N + 1) +NεwX , for p = 0
G2

2µO(1) + 1
p+1 (N + 1)p+1εwX , for −1 < p < 0

G2

µ + (lnN + 1)εwX , for p = −1

Proof. By definition of regretw(X ), the absolute cost satisfies
∑N
n=1 wnln(xn) = regretw(X ) +

minx∈X
∑N
n=1 wnln(x). We bound the two terms separately. For regretw(X ), set vn = 0 in Lemma H.5 and we

have

regretw(X ) ≤ G2

2µ

N∑
n=1

w2
n

w1:n
(Lemma H.5 and gradient bound)

=
G2

2µ

N∑
n=1

n2p∑n
m=1m

p
(Special case wn = np),

in which
∑N
n=1

n2p∑n
m=1m

p is exactly what H.2 bounds. On the other hand, the definition of εwX implies that

minx∈X
∑N
n=1 wnln(x) ≤ w1:N ε

w
X =

∑N
n=1 n

pεwX , where
∑N
n=1 n

p is bounded by Lemma H.1. Combining these
two bounds, we conclude the lemma. �
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