A Proof of Theorem 1

First, let's review the lower bound of the linear bandit setting. The linear bandit setting is almost identical to ours except that the θ_{t} 's do not vary across rounds, and are equal to the same (unknown) θ, i.e., $\forall t \in[T] \theta_{t}=\theta$.
Lemma 4 ([20]). For any $T_{0} \geq \sqrt{d} / 2$ and let $D=\left\{x \in \Re^{d}:\|x\| \leq 1\right\}$, then there exists a $\theta \in\left\{ \pm \sqrt{d / 4 T_{0}}\right\}^{d}$, such that the worst case regret of any algorithm for linear bandits with unknown parameter θ is $\Omega\left(d \sqrt{T_{0}}\right)$.

Going back to the non-stationary environment, suppose nature divides the whole time horizon into $\lceil T / H\rceil$ blocks of equal length H rounds (the last block can possibly have less than H rounds), and each block is a decoupled linear bandit instance so that the knowledge of previous blocks cannot help the decision within the current block. Following Lemma 4, we restrict the sequence of θ_{t} 's are drawn from the set $\{ \pm \sqrt{d / 4 H}\}^{d}$. Moreover, θ_{t} 's remain fixed within a block, and can vary across different blocks, i.e.,

$$
\begin{equation*}
\forall i \in\left[\left\lceil\frac{T}{H}\right\rceil\right] \forall t_{1}, t_{2} \in[(i-1) H+1, i \cdot H \wedge T] \quad \theta_{t_{1}}=\theta_{t_{2}} \tag{27}
\end{equation*}
$$

We argue that even if the learner knows this additional information, it still incur a regret $\Omega\left(d^{2 / 3} B_{T}^{1 / 3} T^{2 / 3}\right)$. Note that different blocks are completely decoupled, and information is thus not passed across blocks. Therefore, the regret of each block is $\Omega(d \sqrt{H})$, and the total regret is at least

$$
\begin{equation*}
\left(\left\lceil\frac{T}{H}\right\rceil-1\right) \Omega(d \sqrt{H})=\Omega\left(d T H^{-\frac{1}{2}}\right) \tag{28}
\end{equation*}
$$

Intuitively, if H, the number of length of each block, is smaller, the worst case regret lower bound becomes larger. But too small a block length can result in a violation of the variation budget. So we work on the total variation of θ_{t} 's to see how small can H be. The total variation of the θ_{t} 's can be seen as the total variation across consecutive blocks as θ_{t} remains unchanged within a single block. Observe that for any pair of $\theta, \theta^{\prime} \in\{ \pm \sqrt{d / 4 H}\}^{d}$, the ℓ_{2} difference between θ and θ^{\prime} is upper bounded as

$$
\begin{equation*}
\sqrt{\sum_{i=1}^{d} \frac{4 d}{4 H}}=\frac{d}{\sqrt{H}} \tag{29}
\end{equation*}
$$

and there are at most $\lfloor T / H\rfloor$ changes across the whole time horizon, the total variation is at most

$$
\begin{equation*}
B=\frac{T}{H} \cdot \frac{d}{\sqrt{H}}=d T H^{-\frac{3}{2}} \tag{30}
\end{equation*}
$$

By definition, we require that $B \leq B_{T}$, and this indicates that

$$
\begin{equation*}
H \geq(d T)^{\frac{2}{3}} B_{T}^{-\frac{2}{3}} \tag{31}
\end{equation*}
$$

Taking $H=\left\lceil(d T)^{\frac{2}{3}} B_{T}^{-\frac{2}{3}}\right\rceil$, the worst case regret is

$$
\begin{equation*}
\Omega\left(d T\left((d T)^{\frac{2}{3}} B_{T}^{-\frac{2}{3}}\right)^{-\frac{1}{2}}\right)=\Omega\left(d^{\frac{2}{3}} B_{T}^{\frac{1}{3}} T^{\frac{2}{3}}\right) \tag{32}
\end{equation*}
$$

B Proof of Lemma 1

In the proof, we denote $B(1)$ as the unit Euclidean ball, and $\lambda_{\max }(M)$ as the maximum eigenvalue of a square matrix M. By folklore, we know that $\lambda_{\max }(M)=\max _{z \in B(1)} z^{\top} M z$. In addition, recall the definition that $V_{t-1}^{-1}=\lambda I+\sum_{s=1 \vee(t-w)}^{t-1} X_{s} X_{s}^{\top}$ We prove the Lemma as follows:

$$
\left\|V_{t-1}^{-1} \sum_{s=1 \vee(t-w)}^{t-1} X_{s} X_{s}^{\top}\left(\theta_{s}-\theta_{t}\right)\right\|=\left\|V_{t-1}^{-1} \sum_{s=1 \vee(t-w)}^{t-1} X_{s} X_{s}^{\top}\left[\sum_{p=s}^{t-1}\left(\theta_{p}-\theta_{p+1}\right)\right]\right\|
$$

$$
\begin{align*}
& =\left\|V_{t-1}^{-1} \sum_{p=1 \vee(t-w)}^{t-1} \sum_{s=1 \vee(t-w)}^{p} X_{s} X_{s}^{\top}\left(\theta_{p}-\theta_{p+1}\right)\right\| \tag{33}\\
& \leq \sum_{p=1 \vee(t-w)}^{t-1}\left\|V_{t-1}^{-1}\left(\sum_{s=1 \vee(t-w)}^{p} X_{s} X_{s}^{\top}\right)\left(\theta_{p}-\theta_{p+1}\right)\right\| \tag{34}\\
& \leq \sum_{p=1 \vee(t-w)}^{t-1} \lambda_{\max }\left(V_{t-1}^{-1}\left(\sum_{s=1 \vee(t-w)}^{p} X_{s} X_{s}^{\top}\right)\right)\left\|\theta_{p}-\theta_{p+1}\right\| \tag{35}\\
& \leq \sum_{p=1 \vee(t-w)}^{t-1}\left\|\theta_{p}-\theta_{p+1}\right\| . \tag{36}
\end{align*}
$$

Equality (33) is by the observation that both sides of the equation is summing over the terms $X_{s} X_{s}^{\top}\left(\theta_{p}-\theta_{p+1}\right)$ with indexes (s, p) ranging over $\{(s, p): 1 \vee(t-w) \leq s \leq p \leq t-1\}$. Inequality (34) is by the triangle inequality.
To proceed with the remaining steps, we argue that, for any index subset $S \subseteq\{1 \vee(t-w), \ldots, t-1\}$, the matrix $V_{t-1}^{-1}\left(\sum_{s \in S} X_{s} X_{s}^{\top}\right)$ is positive semi-definite (PSD). Now, let's denote $A=\sum_{s \in S} X_{s} X_{s}^{\top}$. Evidently, matrix A is PSD, while matrix V_{t-1}^{-1} is positive definite, and both matrices A, V_{t-1}^{-1} are symmetric. Matrices $V_{t-1}^{-1} A$ and $V_{t-1}^{-1 / 2} A V_{t-1}^{-1 / 2}$ have the same sets of eigenvalues, since these matrices have the same characteristics polynomial (with the variable denoted as η below):

$$
\begin{aligned}
\operatorname{det}\left(\eta I-V_{t-1}^{-1} A\right) & =\operatorname{det}\left(V_{t-1}^{-1 / 2}\right) \operatorname{det}\left(\eta V_{t-1}^{1 / 2}-V_{t-1}^{-1 / 2} A\right) \\
& =\operatorname{det}\left(\eta V_{t-1}^{1 / 2}-V_{t-1}^{-1 / 2} A\right) \operatorname{det}\left(V_{t-1}^{-1 / 2}\right)=\operatorname{det}\left(\eta I-V_{t-1}^{-1 / 2} A V_{t-1}^{-1 / 2}\right) .
\end{aligned}
$$

Evidently, $V_{t-1}^{-1 / 2} A V_{t-1}^{-1 / 2}$ is PSD, since for any $y \in \mathbb{R}^{d}$ we clearly have $y^{\top} V_{t-1}^{-1 / 2} A V_{t-1}^{-1 / 2} y=\left\|A^{1 / 2} V_{t-1}^{-1 / 2} y\right\|^{2} \geq 0$ (Matrices $A^{1 / 2}, V_{t-1}^{-1 / 2}$ are symmetric). Altogether, we have shown that $V_{t-1}^{-1}\left(\sum_{s=1 \vee(t-w)}^{p} X_{s} X_{s}^{\top}\right)$ is PSD.
Inequality (35) is by the fact that, for any matrix $M \in \mathbb{R}^{d \times d}$ with $\lambda_{\max }(M) \geq 0$ and any vector $y \in \mathbb{R}^{d}$, we have $\|M y\| \leq \lambda_{\max }(M)\|y\|$. Without loss of generality, assume $y \neq 0$. Now, it is evident that

$$
\|M y\|=\left\|M \frac{y}{\|y\|}\right\| \cdot\|y\| \leq\left\|\max _{z \in B(1)} M z\right\| \cdot\|y\|=\left|\lambda_{\max }(M)\right| \cdot\|y\|=\lambda_{\max }(M)\|y\|
$$

Applying the above claim with $M=V_{t-1}^{-1}\left(\sum_{s=1 \vee(t-w)}^{p} X_{s} X_{s}^{\top}\right)$, which is PSD, and $y=\theta_{p}-\theta_{p+1}$ demonstrates inequality (35).
Finally, inequality (36) is by the inequality $\lambda_{\max }\left(V_{t-1}^{-1}\left(\sum_{s=1 \vee(t-w)}^{p} X_{s} X_{s}^{\top}\right)\right) \leq 1$. Indeed,

$$
\begin{align*}
& \lambda_{\max }\left(V_{t-1}^{-1}\left(\sum_{s=1 \vee(t-w)}^{p} X_{s} X_{s}^{\top}\right)\right)=\max _{z \in B(1)} z^{\top} V_{t-1}^{-1}\left(\sum_{s=1 \vee(t-w)}^{p} X_{s} X_{s}^{\top}\right) z \\
\leq & \max _{z \in B(1)}\left\{z^{\top} V_{t-1}^{-1}\left(\sum_{s=1 \vee(t-w)}^{p} X_{s} X_{s}^{\top}\right) z+z^{\top} V_{t-1}^{-1}\left(\sum_{s=p+1}^{t-1} X_{s} X_{s}^{\top}\right) z+\lambda z^{\top} V_{t-1}^{-1} z\right\} \tag{37}\\
= & \max _{z \in B(1)} z^{\top} V_{t-1}^{-1} V_{t-1} z=1,
\end{align*}
$$

where inequality (37) is by the property that both matrices $V_{t-1}^{-1}\left(\sum_{s=p+1}^{t-1} X_{s} X_{s}^{\top}\right), V_{t-1}^{-1}$ are PSD, as we establish previously. Altogether, the Lemma is proved.

C Proof of Theorem 2

Fixed any $\delta \in[0,1]$, we have that for any $t \in[T]$ and any $x \in D_{t}$,

$$
\begin{align*}
\left|x^{\top}\left(\hat{\theta}_{t}-\theta_{t}\right)\right| & =\left|x^{\top}\left(V_{t-1}^{-1} \sum_{s=1 \vee(t-w)}^{t-1} X_{s} X_{s}^{\top}\left(\theta_{s}-\theta_{t}\right)\right)+x^{\top} V_{t-1}^{-1}\left(\sum_{s=1 \vee(t-w)}^{t-1} \eta_{s} X_{s}-\lambda \theta_{t}\right)\right| \\
& \leq\left|x^{\top}\left(V_{t-1}^{-1} \sum_{s=1 \vee(t-w)}^{t-1} X_{s} X_{s}^{\top}\left(\theta_{s}-\theta_{t}\right)\right)\right|+\left|x^{\top} V_{t-1}^{-1}\left(\sum_{s=1 \vee(t-w)}^{t-1} \eta_{s} X_{s}-\lambda \theta_{t}\right)\right| \tag{38}\\
& \leq\|x\| \cdot\left\|V_{t-1}^{-1} \sum_{s=1 \vee(t-w)}^{t-1} X_{s} X_{s}^{\top}\left(\theta_{s}-\theta_{t}\right)\right\|+\|x\|_{V_{t-1}^{-1}}\left\|\sum_{s=1 \vee(t-w)}^{t-1} \eta_{s} X_{s}-\lambda \theta_{t}\right\|_{V_{t-1}^{-1}} \tag{39}\\
& \leq L \sum_{s=1 \vee(t-w)}^{t-1}\left\|\theta_{s}-\theta_{s+1}\right\|+\|x\|_{V_{t-1}^{-1}}\left[R \sqrt{d \ln \left(\frac{1+w L^{2} / \lambda}{\delta}\right)}+\sqrt{\lambda} S\right] . \tag{40}
\end{align*}
$$

where inequality (38) uses triangular inequality, inequality (39) follows from Cauchy-Schwarz inequality, and inequality (40) are consequences of Lemmas $1,2$.

D Proof of Theorem 3

In the proof, we choose λ so that $\beta \geq 1$, for example by choosing $\lambda \geq 1 / S^{2}$. By virtue of UCB , the regret in any round $t \in[T]$ is

$$
\begin{align*}
\left\langle x_{t}^{*}-X_{t}, \theta_{t}\right\rangle & \leq L \sum_{s=1 \vee(t-w)}^{t-1}\left\|\theta_{s}-\theta_{s+1}\right\|+\left\langle X_{t}, \hat{\theta}_{t}\right\rangle+\beta\left\|X_{t}\right\|_{V_{t-1}^{-1}}-\left\langle X_{t}, \theta_{t}\right\rangle \tag{41}\\
& \leq 2 L \sum_{s=1 \vee(t-w)}^{t-1}\left\|\theta_{s}-\theta_{s+1}\right\|+2 \beta\left\|X_{t}\right\|_{V_{t-1}^{-1}} . \tag{42}
\end{align*}
$$

Inequality (41) is by an application of our SW-UCB algorithm established in equation (10). Inequality (42) is by an application of inequality (40), which bounds the difference $\left|\left\langle X_{t}, \hat{\theta}_{t}-\theta_{t}\right\rangle\right|$ from above. By the evident fact that $\left\langle X_{t}, \hat{\theta}_{t}-\theta_{t}\right\rangle \leq 2$, we have

$$
\begin{equation*}
\left\langle x_{t}^{*}-X_{t}, \theta_{t}\right\rangle \leq 2 L \sum_{s=1 \vee(t-w)}^{t-1}\left\|\theta_{s}-\theta_{s+1}\right\|+2 \beta\left(\left\|X_{t}\right\|_{V_{t-1}^{-1}} \wedge 1\right) \tag{43}
\end{equation*}
$$

Summing equation (43) over $1 \leq t \leq T$, the regret of the SW-UCB algorithm is upper bounded as

$$
\begin{align*}
\mathbf{E}\left[\operatorname{Regret}_{T}(\mathrm{SW}-\mathrm{UCB} \text { algorithm })\right] & =\sum_{t \in[T]}\left\langle x_{t}^{*}-X_{t}, \theta_{t}\right\rangle \\
& \leq 2 L\left[\sum_{t=1}^{T} \sum_{s=1 \vee(t-w)}^{t-1}\left\|\theta_{s}-\theta_{s+1}\right\|\right]+2 \beta \sum_{t=1}^{T}\left(\left\|X_{t}\right\|_{V_{t-1}^{-1}} \wedge 1\right) \\
& =2 L\left[\sum_{s=1}^{T} \sum_{t=s+1}^{(s+w) \wedge T}\left\|\theta_{s}-\theta_{s+1}\right\|\right]+2 \beta \sum_{t=1}^{T}\left(\left\|X_{t}\right\|_{V_{t-1}^{-1}} \wedge 1\right) \\
& \leq 2 L w B_{t}+2 \beta \sum_{t=1}^{T}\left(\left\|X_{t}\right\|_{V_{t-1}^{-1}} \wedge 1\right) . \tag{44}
\end{align*}
$$

What's left is to upper bound the quantity $2 \beta \sum_{t \in[T]}\left(1 \wedge\left\|X_{t}\right\|_{V_{t-1}^{-1}}\right)$. Following the trick introduced by the authors of [1], we apply Cauchy-Schwarz inequality to the term $\sum_{t \in[T]}\left(1 \wedge\left\|X_{t}\right\|_{V_{t-1}^{-1}}\right)$.

$$
\begin{equation*}
\sum_{t \in[T]}\left(1 \wedge\left\|X_{t}\right\|_{V_{t-1}^{-1}}\right) \leq \sqrt{T} \sqrt{\sum_{t \in[T]} 1 \wedge\left\|X_{t}\right\|_{V_{t-1}^{-1}}^{2}} \tag{45}
\end{equation*}
$$

By dividing the whole time horizon into consecutive pieces of length w, we have

$$
\begin{equation*}
\sqrt{\sum_{t \in[T]} 1 \wedge\left\|X_{t}\right\|_{V_{t-1}^{-1}}^{2}} \leq \sqrt{\sum_{i=0}^{\lceil T / w\rceil-1} \sum_{t=i \cdot w+1}^{(i+1) w} 1 \wedge\left\|X_{t}\right\|_{V_{t-1}^{-1}}^{2}} \tag{46}
\end{equation*}
$$

While a similar quantity has been analyzed by Lemma 11 of [1], we note that due to the fact that V_{t} 's are accumulated according to the sliding window principle, the key eq. (6) in Lemma 11's proof breaks, and thus the analysis of [1] cannot be applied here. To this end, we state a technical lemma based on a novel use of the Sherman-Morrison formula.
Lemma 5. For any $i \leq\lceil T / w\rceil-1$,

$$
\sum_{t=i \cdot w+1}^{(i+1) w} 1 \wedge\left\|X_{t}\right\|_{V_{t-1}^{-1}}^{2} \leq \sum_{t=i \cdot w+1}^{(i+1) w} 1 \wedge\left\|X_{t}\right\|_{\bar{V}_{t-1}^{-1}}^{2}
$$

where

$$
\begin{equation*}
\bar{V}_{t-1}=\sum_{s=i \cdot w+1}^{t-1} X_{s} X_{s}^{\top}+\lambda I \tag{47}
\end{equation*}
$$

Proof. Proof of Lemma 5. For a fixed $i \leq\lceil T / w\rceil-1$,

$$
\begin{align*}
\sum_{t=i \cdot w+1}^{(i+1) w} 1 \wedge\left\|X_{t}\right\|_{V_{t-1}^{-1}}^{2} & =\sum_{t=i \cdot w+1}^{(i+1) w} 1 \wedge X_{t}^{\top} V_{t-1}^{-1} X_{t} \\
& =\sum_{t=i \cdot w+1}^{(i+1) w} 1 \wedge X_{t}^{\top}\left(\sum_{s=1 \vee(t-w)}^{t-1} X_{s} X_{s}^{\top}+\lambda I\right)^{-1} X_{t} \tag{48}
\end{align*}
$$

Note that $i \cdot w+1 \geq 1$ and $i \cdot w+1 \geq t-w \forall t \leq(i+1) w$, we have

$$
\begin{equation*}
i \cdot w+1 \geq 1 \vee(t-w) \tag{49}
\end{equation*}
$$

Consider any d-by- d positive definite matrix A and d-dimensional vector y, then by the Sherman-Morrison formula, the matrix

$$
\begin{equation*}
B=A^{-1}-\left(A+y y^{\top}\right)^{-1}=A^{-1}-A^{-1}+\frac{A^{-1} y y^{\top} A^{-1}}{1+y^{\top} A^{-1} y}=\frac{A^{-1} y y^{\top} A^{-1}}{1+y^{\top} A^{-1} y} \tag{50}
\end{equation*}
$$

is positive semi-definite. Therefore, for a given t, we can iteratively apply this fact to obtain

$$
\begin{aligned}
& X_{t}^{\top}\left(\sum_{s=i \cdot w+1}^{t-1} X_{s} X_{s}^{\top}+\lambda I\right)^{-1} X_{t} \\
= & X_{t}^{\top}\left(\sum_{s=i \cdot w}^{t-1} X_{s} X_{s}^{\top}+\lambda I\right)^{-1} X_{t}+X_{t}^{\top}\left(\left(\sum_{s=i \cdot w+1}^{t-1} X_{s} X_{s}^{\top}+\lambda I\right)^{-1}-\left(\sum_{s=i \cdot w}^{t-1} X_{s} X_{s}^{\top}+\lambda I\right)^{-1}\right) X_{t} \\
= & X_{t}^{\top}\left(\sum_{s=i \cdot w}^{t-1} X_{s} X_{s}^{\top}+\lambda I\right)^{-1} X_{t}+X_{t}^{\top}\left(\left(\sum_{s=i \cdot w+1}^{t-1} X_{s} X_{s}^{\top}+\lambda I\right)^{-1}-\left(X_{i \cdot w} X_{i \cdot w}^{\top}+\sum_{s=i \cdot w+1}^{t-1} X_{s} X_{s}^{\top}+\lambda I\right)^{-1}\right) X_{t}
\end{aligned}
$$

$$
\begin{align*}
& \geq X_{t}^{\top}\left(\sum_{s=i \cdot w}^{t-1} X_{s} X_{s}^{\top}+\lambda I\right)^{-1} X_{t} \\
& \vdots \\
& \geq X_{t}^{\top}\left(\sum_{s=1 \vee(t-w)}^{t-1} X_{s} X_{s}^{\top}+\lambda I\right)^{-1} X_{t} . \tag{51}
\end{align*}
$$

Plugging inequality (51) to (48), we have

$$
\begin{align*}
\sum_{t=i \cdot w+1}^{(i+1) w} 1 \wedge\left\|X_{t}\right\|_{V_{t-1}^{-1}}^{2} & \leq \sum_{t=i \cdot w+1}^{(i+1) w} 1 \wedge X_{t}^{\top}\left(\sum_{s=i \cdot w+1}^{t-1} X_{s} X_{s}^{\top}+\lambda I\right)^{-1} X_{t} \\
& \leq \sum_{t=i \cdot w+1}^{(i+1) w} 1 \wedge\left\|X_{t}\right\|_{\bar{V}_{t-1}^{-1}}^{2} \tag{52}
\end{align*}
$$

which concludes the proof.
From Lemma 5 and eq. (46), we know that

$$
\begin{align*}
2 \beta \sum_{t \in[T]}\left(1 \wedge\left\|X_{t}\right\|_{V_{t-1}^{-1}}\right) & \leq 2 \beta \sqrt{T} \cdot \sqrt{\sum_{i=0}^{\lceil T / w\rceil-1} \sum_{t=i \cdot w+1}^{(i+1) w} 1 \wedge\left\|X_{t}\right\|_{\bar{V}_{t-1}^{-1}}^{2}} \\
& \leq 2 \beta \sqrt{T} \cdot \sqrt{\sum_{i=0}^{\lceil T / w\rceil-1} 2 d \ln \left(\frac{d \lambda+w L^{2}}{d \lambda}\right)} \tag{53}\\
& \leq 2 \beta T \sqrt{\frac{2 d}{w} \ln \left(\frac{d \lambda+w L^{2}}{d \lambda}\right) .}
\end{align*}
$$

Here, eq. (53) follows from Lemma 11 of [1].
Now putting these two parts to eq. (44), we have
$\mathbf{E}\left[\operatorname{Regret}_{T}(\mathrm{SW}-\mathrm{UCB}\right.$ algorithm) $] \leq 2 L w B_{T}+2 \beta T \sqrt{\frac{2 d}{w} \ln \left(\frac{d \lambda+w L^{2}}{d \lambda}\right)}+2 T \delta$

$$
\begin{equation*}
=2 L w B_{T}+\frac{2 T}{\sqrt{w}}\left(R \sqrt{d \ln \left(\frac{1+w L^{2} / \lambda}{\delta}\right)}+\sqrt{\lambda} S\right) \sqrt{2 d \ln \left(\frac{d \lambda+w L^{2}}{d \lambda}\right)}+2 T \delta . \tag{54}
\end{equation*}
$$

Now if B_{T} is known, we can take $w=O\left((d T)^{2 / 3} B_{t}^{-2 / 3}\right)$ and $\delta=1 / T$, we have

$$
\mathbf{E}\left[\operatorname{Regret}_{T}(\text { SW-UCB algorithm })\right]=\widetilde{O}\left(d^{\frac{2}{3}} B_{T}^{\frac{1}{3}} T^{\frac{2}{3}}\right)
$$

while if B_{T} is not unknown taking $w=O\left((d T)^{2 / 3}\right)$ and $\delta=1 / T$, we have

$$
\mathbf{E}\left[\operatorname{Regret}_{T}(\mathrm{SW}-\mathrm{UCB} \text { algorithm })\right]=\widetilde{O}\left(d^{\frac{2}{3}}\left(B_{T}+1\right) T^{\frac{2}{3}}\right)
$$

E Proof of Lemma 3

For any block i, the absolute sum of rewards can be written as

$$
\left|\sum_{t=(i-1) H+1}^{i \cdot H \wedge T}\left\langle X_{t}, \theta_{t}\right\rangle+\eta_{t}\right| \leq \sum_{t=(i-1) H+1}^{i \cdot H \wedge T}\left|\left\langle X_{t}, \theta_{t}\right\rangle\right|+\left|\sum_{t=(i-1) H+1}^{i \cdot H \wedge T} \eta_{t}\right| \leq H+\left|\sum_{t=(i-1) H+1}^{i \cdot H \wedge T} \eta_{t}\right|
$$

where we have iteratively applied the triangular inequality as well as the fact that $\left|\left\langle X_{t}, \theta_{t}\right\rangle\right| \leq 1$ for all t.
Now by property of the R-sub-Gaussian [22], we have the absolute value of the noise term η_{t} exceeds $2 R \sqrt{\ln T}$ for a fixed t with probability at most $1 / T^{2}$ i.e.,

$$
\begin{equation*}
\operatorname{Pr}\left(\left|\sum_{t=(i-1) H+1}^{i \cdot H \wedge T} \eta_{t}\right| \geq 2 R \sqrt{H \ln \frac{T}{\sqrt{H}}}\right) \leq \frac{2 H}{T^{2}} \tag{55}
\end{equation*}
$$

Applying a simple union bound, we have

$$
\begin{equation*}
\operatorname{Pr}\left(\exists i \in\left\lceil\frac{T}{H}\right\rceil:\left|\sum_{t=(i-1) H+1}^{i \cdot H \wedge T} \eta_{t}\right| \geq 2 R \sqrt{H \ln \frac{T}{\sqrt{H}}}\right) \leq \sum_{i=1}^{\lceil T / H\rceil} \operatorname{Pr}\left(\left|\sum_{t=(i-1) H+1}^{i \cdot H \wedge T} \eta_{t}\right| \geq 2 R \sqrt{H \ln \frac{T}{\sqrt{H}}}\right) \leq \frac{2}{T} . \tag{56}
\end{equation*}
$$

Therefore, we have

$$
\begin{equation*}
\operatorname{Pr}\left(Q \geq H+2 R \sqrt{H \ln \frac{T}{\sqrt{H}}}\right) \leq \operatorname{Pr}\left(\exists i \in\left\lceil\frac{T}{H}\right\rceil:\left|\sum_{t=(i-1) H+1}^{i \cdot H \wedge T} \eta_{t}\right| \geq 2 R \sqrt{H \ln \frac{T}{\sqrt{H}}}\right) \leq \frac{2}{T} \tag{57}
\end{equation*}
$$

The statement then follows.

