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Abstract

We study a scenario of active learning where the
input space is partitioned into different regions
and where a distinct hypothesis is learned for each
region. We first introduce a new active learning
algorithm (EIWAL), which is an enhanced version
of the IWAL algorithm, based on a finer analysis
that results in more favorable learning guarantees.
Then, we present a new learning algorithm for
region-based active learning, ORIWAL, in which
either IWAL or EIWAL serve as a subroutine. ORI-
WAL optimally allocates points to the subroutine
algorithm for each region. We give a detailed
theoretical analysis of ORIWAL, including gen-
eralization error guarantees and bounds on the
number of points labeled, in terms of both the
hypothesis set used in each region and the prob-
ability mass of that region. We also report the
results of several experiments for our algorithm
which demonstrate substantial benefits over exist-
ing non-region-based active learning algorithms,
such as IWAL, and over passive learning.

1 Introduction

Standard supervised learning algorithms often rely on large
amounts of labeled samples to achieve a high performance.
But labeling samples is often very costly since it typically
requires human inspection and in some cases high human
expertise. Can we learn with a limited labeling budget?
This is the challenge of active learning, which remains an
active area of research in machine learning, with substantial
applications and benefits.

Active learning algorithms seek to request as few labels
as possible to learn an accurate predictor. There are two
standard settings of active learning: the so-called pool set-
ting where the algorithm receives as input an i.i.d. pool of
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unlabeled points and where it incrementally requests the
label of a number of points; and the on-line setting where
the algorithm receives one i.i.d. point at each round and
must decide on whether to request its label. In both cases,
after making a number of label requests within a budget,
the algorithm returns a predictor chosen out of a hypothesis
set, which is hoped to admit a small generalization error.
Observe that an active learning algorithm for the on-line
setting can also be applied to the pool setting.

In the last few decades, a number of active learning algo-
rithms have been designed, some for specific tasks and re-
quiring strong assumptions. When the problem is separable,
Cohn et al. [1994] proposed an algorithm with logarithmic
label complexity. A line of work [Dasgupta et al., 2005,
Balcan et al., 2007, Balcan and Long, 2013, Awasthi et al.,
2014, 2015, Zhang, 2018] studied learning linear separa-
tors by labeling samples close to the current estimate of
decision boundary. This type of algorithms admits favor-
able label complexity on the uniform distribution over the
unit sphere or on the log-concave distribution. In the pool
setting, Dasgupta and Hsu [2008] proposed a hierarchical
sampling approach which selectively queries labels from the
pool of data and moves down the hierarchies until relatively
pure clusters are uncovered. For this type of cluster-based
active learning, Urner et al. [2013], Kpotufe et al. [2015]
provided a label complexity analysis, but only under various
conditions on the data distribution. In the on-line setting,
general active learning algorithms [Balcan et al., 2006, Das-
gupta et al., 2008, Beygelzimer et al., 2009, 2010, Huang
et al., 2015, Zhang and Chaudhuri, 2014] with favorable
guarantees both in terms of generalization and label com-
plexity have been devised. These algorithms rely on efficient
searching in the concept class, and request labels based on
the “disagreement” among hypotheses in the current version
space. Their label complexities are bounded in terms of an
important quantity known as the disagreement coefficient
[Hanneke, 2007]. Among these algorithms, some are com-
putationally inefficient, however, for keeping track of the
version space explicitly [Balcan et al., 2006], or for solving
expensive optimization problems such as empirical risk min-
imization with 0-1 loss [Dasgupta et al., 2008, Zhang and
Chaudhuri, 2014]. The issue of computational efficiency is
one of the key research questions in this area.
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This paper considers the on-line active learning in a novel
scenario where the input space is partitioned into a finite
number of regions. The problem then consists of requesting
labels as in the standard case to learn one predictor for each
region. This problem naturally arises in a number of appli-
cations, such as speech recognition where the regions are
data sources (e.g. broadcast news, conversational speech,
email, or dictation), and problems in recommendation sys-
tems, where the regions are general categories of an item
(e.g., film genres). In all these cases, the regions of the input
space are suggested by the application at hand. In other
tasks, there may be a natural partitioning into regions based
on the features used. Nevertheless, simple partitions of the
input space, such as random partitions, are often convenient
in the absence of prior knowledge about the nature of the in-
put features, and still provide significant benefit in learning,
as empirically shown by our experiments.

In all cases, a different hypothesis set can be used for each
region and the hope is that often, but not always, the best-
in-class predictor at each region will be very accurate, in
fact achieving a loss of almost zero on its region. This is
the main motivation for our study of region-based active
learning. As we shall see, in many applications one can
indeed achieve a substantially better performance via this
formulation of the problem.

The idea of separating the input space in on-line active
learning is novel, as all on-line active learning algorithms
available in the literature focus on the standard single region
input space. A related area in the pool active learning setting
is hierarchical sampling (e.g., [Dasgupta and Hsu, 2008]),
where the input space admits a hierarchical clustering struc-
ture. This scenario of disjoint input space is partially re-
lated to stratified sampling techniques in statistics [Neyman,
1934], where a statistical population is divided into disjoint
and homogeneous subgroups. Each subgroup is sampled in-
dependently, and different criteria can be used to determine
an optimal sample size for each group [Rossi et al., 1983].
One such criterion is the sample variance from an existing
sample. While such a strategy will help minimize the overall
variance, the technique does not address generalization and
comes with no learning guarantees.

In this work, we first introduce a new active learning algo-
rithm (EIWAL), which is an enhanced version of the IWAL
algorithm from Beygelzimer et al. [2009], based on a finer
analysis that results in more favorable learning guarantees.
Then, we present a new learning algorithm for region-based
active learning, ORIWAL, in which either IWAL or EIWAL
serve as a subroutine. ORIWAL optimally allocates points
to the subroutine algorithm for each region. We give a
detailed theoretical analysis of ORIWAL, including general-
ization error guarantees and bounds on the number of points
labeled, in terms of both the hypothesis set used in each
region and the probability mass of that region. We also
report the results of several experiments for our algorithm

which demonstrate substantial benefits over existing non-
region-based active learning algorithms, such as IWAL, and
over passive learning.

The rest of this paper is organized as follows. Section 2
introduces the definitions and notation needed for our anal-
ysis and specifies the learning scenario we consider. In
Section 3, we introduce the EIWAL algorithm, and prove the
associated theoretical guarantees. Section 4 presents our
novel region-based active learning algorithm ORIWAL and
its learning guarantees. In Section 5, we report the results
of our experiments in several datasets. Section 6 concludes
the paper with a discussion of future work.

2 Preliminaries

In this section, we first introduce the definitions and notation
relevant to our analysis and next describe the active learning
scenario we consider.

Definitions. We denote by X ✓ Rd the input space and by
Y = {�1,+1} the binary output space. We assume given
a partitioning of X into n disjoint regions: X =

S

n

k=1

X
k

,
with X

k

\ X
k

0
= ; for k 6= k0. This partitioning may have

been generated at random or selected in some other way
based on some prior knowledge about the task. In all cases,
it is assumed to be fixed before receiving sample points.

As in standard supervised learning, we assume that train-
ing and test points are drawn i.i.d. according to some un-
known distribution D over X ⇥ Y. We will denote by
p
k

= P(X
k

) the probability mass of region X
k

with respect
to the marginal distribution induced by D over X. For each
k 2 [n], we denote by H

k

the hypothesis set used for region
X

k

, which consists of functions mapping from X to some
prediction space Z ✓ R. In the simplest case, the same
hypothesis set is chosen for all regions: H

1

= · · · = H
n

.

We denote by ` : Z ⇥ Y ! [0, 1] the loss function. The
loss function we adopt in the implementations run in our
experiments is the standard logistic loss, defined for all
(x, y) 2 X ⇥ Y and hypothesis h by log(1 + e�yh(x)

),
which we then normalize to be in [0, 1]. We will denote by
R(h) the generalization error or expected loss of a hypoth-
esis h: R(h) = E[`(h(x), y)]. Similarly, for any k 2 [n],
we denote by R

k

(h) the expected loss of h on region X
k

:
R

k

(h) = E
(x,y)⇠D[`(h(x), y) | x 2 X

k

]. Thus, for any
hypothesis h, we have R(h) =

P

n

k=1

p
k

R
k

(h).

We will denote by H
[n]

be the set of aggregate region-based
hypotheses:

H
[n]

=

n

n

X

k=1

1

x2Xkhk

(x) : h
k

2 H
k

o

,

whose size |H
[n]

| equals
Q

n

k=1

|H
k

|. We denote by
h⇤ the best-in-class hypothesis in H

[n]

, that is, h⇤
=
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argmin

h2H[n]
R(h), and similarly denote by h⇤

k

the best-in-
class hypothesis in region X

k

: h⇤
k

= argmin

h2Hk
R

k

(h).
For simplicity, we denote by R⇤

= R(h⇤
) and R⇤

k

=

R
k

(h⇤
k

) the error of overall and region-specific best-in-class,
respectively. The best-in-class hypothesis h⇤ 2 H

[n]

can be
expressed as follows in terms of the h⇤

k

s:

h⇤
(x) = argmin

h2H[n]

n

X

k=1

p
k

R
k

(h) (1)

=

n

X

k=1

1

x2Xk

h

argmin

h2Hk

R
k

(h)
i

=

n

X

k=1

1

x2Xkh
⇤
k

(x) .

Observe, however, that the risk minimization over each
region individually is always more advantageous than the
risk minimization over the entire space, for the minimal
error within the aggregate region-based hypothesis set H

[n]

is always less than or equal to the minimal error achieved
by selecting each single hypothesis for all regions. Too see
this, consider the simplest case where H

1

= · · · = H
n

=

H. Then, by the super-additivity of the min operator, the
following holds:

R(h⇤
) =

n

X

k=1

p
k

h

min

h2H
R

k

(h)
i

 min

h2H

h

n

X

k=1

p
k

R
k

(h)
i

= min

h2H
R(h) .

In other words, the approximation error of H
[n]

is always
less than or equal to that of H, implying that H

[n]

is always
significantly richer than any individual hypothesis set H.

Learning scenario. We consider active learning in the
on-line setting. Unlike the pool-based setting where the
learner receives the full set of unlabeled points beforehand,
in the on-line setting, at each round t 2 [T ] = {1, . . . , T},
the learner receives a point x

t

drawn i.i.d. according to the
marginal distribution induced by D on X. She then either
selects to request the label of x

t

, in which case she receives
its label y

t

, or chooses not to solicit x
t

’s label.

The quality of an active learning algorithm is measured by
two quantities in this setting: the generalization error of the
hypothesis h 2 H

[n]

it returns after the T rounds, and the
number of labels it requests after T rounds.

3 Enhanced-IWAL Algorithm

In this section, we present an enhanced version of the
IWAL (Importance Weighted Active Learning) algorithm
of Beygelzimer et al. [2009], called EIWAL.

Algorithms such as IWAL use importance weights to address
key the issue of sampling bias in active learning. Beygelz-
imer et al. [2009] gave theoretical guarantees both for the
generalization error and the label complexity of IWAL.

Our enhanced version of IWAL admits improved confidence
intervals, and thus sharper performance guarantees than
the original IWAL, especially in the case where the best-
in-class error R(h⇤

) is small. In that small error regime,
EIWAL also improves upon a more recent and more refined
importance-weighted active learning algorithm discussed
in Beygelzimer et al. [2010] (Theorem 3 therein). This
advantage is particularly significant in the scenario of region-
based active learning that we are interested in where, often
with a large number of regions, the region-based best-in-
class errors R

k

(h⇤
k

) are small.

Given a finite hypothesis set H, EIWAL operates on an i.i.d.
sample (x

1

, y
1

), (x
2

, y
2

), . . . , (x
T

, y
T

) drawn according to
D. The algorithm maintains at any time t a version space
H
t

, with H
1

= H. At time t, the algorithm flips a coin
Q

t

2 {0, 1} with bias p
t

= p
t

(x
t

) defined by

p
t

= max

f,g2Ht y2Y
`(f(x

t

), y)� `(g(x
t

), y) .

If Q
t

= 1, then the label y
t

is requested and H
t

is trimmed to
H
t+1

via an importance-weighted empirical risk minimiza-
tion:

H
t+1

=

⇢

h 2 H
t

:

1

t

t

X

s=1

Q
s

p
s

`(h(x
s

), y
s

)  L⇤
t

+�

t

�

,

where L⇤
t

is given by

L⇤
t

= min

h2Ht

1

t

t

X

s=1

Q
s

p
s

`(h(x
s

), y
s

) ,

and where the slack term �

t

is of the form1

1

t

"

v

u

u

t



t

X

s=1

p
s

�

log



t|H|
�

�

+ log



t|H|
�

�

#

.

The definition of the slack term �

t

is the main significant
difference between EIWAL and the original IWAL. In the
latter, (

P

t

s=1

p
s

) is replaced by the crude upper bound t:
�

t

=

1

t

p

t log(t|H|/�). The final hypothesis h
T

returned
by EIWAL is defined as in IWAL:

h
T

= argmin

h2HT

1

T

T

X

t=1

Q
t

p
t

`(h(x
t

), y
t

) .

For our theoretical analysis of EIWAL, we will adopt the def-
initions and concepts in Beygelzimer et al. [2009]. Define
the distance between two hypotheses f, g 2 H as

⇢(f, g) = E
x⇠D

max

y

|`(f(x), y)� `(g(x), y)| .

1See the exact expression in the proof of Theorem 1 in Ap-
pendix A.
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Given r > 0, let B(f, r) denote the ball of radius r centered
in f 2 H: B(f, r) = {g 2 H : ⇢(f, g)  r}. The general-
ized disagreement coefficient ✓(D,H) can then be defined
as follows:

✓(D,H) = inf

✓

n

8r � 0,

E
x⇠D

sup

h2B(h

⇤
,r)

sup

y

|`(h(x), y)� `(h⇤
(x), y)|  ✓r

o

,

where h⇤
= argmin

h2H R(h). The disagreement coeffi-
cient ✓ is a complexity measure widely used in disagreement-
based active learning problems. In particular, Hanneke
[2007] proved upper and lower bounds for the label com-
plexity for the A2 algorithm in terms of the disagreement
coefficient ✓. Dasgupta et al. [2008] also gave an upper
bound for the DHM algorithm using ✓. See [Hanneke, 2014]
for a more extensive analysis of the disagreement coefficient
and active learning.

Using the definitions and concepts just introduced, the fol-
lowing theoretical guarantees can be proven for EIWAL.2

Theorem 1 (EIWAL). Let h
T

denote the hypothesis returned
by EIWAL after T rounds and ⌧

T

the total number of re-
quested labels. Then, for all � > 0, with probability at least
1� �, for any T > 0 the following inequality holds:

R(h
T

)  R(h⇤
) +

2

T

"

q

P

T

t=1

p
t

+ 6

s

log



2(3 + T )T 2

�

�

#

⇥

s

log



16T 2|H|2 log(T )
�

�

.

Moreover, with probability at least 1� �, for any T > 0, the
following inequality holds:

⌧
T

 8✓K
l

⇣

R(h⇤
)T +O(

p

R(h⇤
)T log(T |H|/�))

⌘

+O(log

3

(T |H|/�)) ,

where K
`

is a constant that depends on the loss function `.

For reference, the generalization bound given in [Beygelz-
imer et al., 2009] for IWAL admits the following form:

R(h
T

)  R(h⇤
) +

s

1

T
log



T 2|H|2
�

�

, (2)

and the bound on the number of labels is given by

⌧
T

= O
⇣

✓K
l

⇣

R(h⇤
)T +

p

T log(T |H|/�)
⌘⌘

. (3)

The comparison of Theorem 1 with (2) and (3), as well as
with Beygelzimer et al. [2010] (Theorem 3 therein) shows
the following: the bound on the generalization error R(h

T

)

2Due to space limitations, the proofs of all our main results are
given in the appendix.

Algorithm 1 ORIWAL((H
k

)

k2[n]

, (p
k

)

k2[n]

, �, T )

for k 2 [n] do
c
k

 log

h

16T

2|Hk|2 log(T )n

�

i

↵
k

 (ck/pk)
1
3

maxk2[n](ck/pk)
1
3

end for
for t 2 [T ] do

RECEIVE(x
t

)

k
t

 k such that x
t

2 X
k

B ⇠ Bernoulli(↵
kt)

if B = 1 then
h
k,t

 EIWAL
kt(xt

)

Request y
t

according to EIWAL
kt on input x

t

Update (if any) internal state of EIWAL
kt

end if
end for
Return h

T

 
⇥

x 7!
P

n

k=1

1

x2Xkhk,T

(x)
⇤

in Theorem 1 is at least as favorable as the 1/
p
T rate

of these previous results, since
P

T

t=1

p
t

 T . Further-
more, the bound on the number of labels ⌧

T

is better than
both (3) and the results in Beygelzimer et al. [2010] when
R(h⇤

) is small, since we have an extra R(h⇤
) inside the

square root. In fact, in the separable case where R(h⇤
) = 0,

our label complexity bound is log3(T ), which is only poly-
logarithmic in T , as opposed to the

p
T guarantee of both (3)

and Beygelzimer et al. [2010]. Similarly, when R(h⇤
) = 0,

one can see that the generalization error bound of EIWAL has
the form log

2

(T )/T , rather than 1/
p
T of (2) and Beygelz-

imer et al. [2010]. This is because
P

T

t=1

p
t

concentrates
fast around ⌧

T

which, as we just said, is only O(log

3

(T ))
when R(h⇤

) = 0.

4 Region-Based Active Learning

In this section, we describe an active learning algorithm,
ORIWAL (Optimal Region-based IWAL), under the region-
based setting. The algorithm works by running a separate
subroutine EIWAL on each of the n regions, while carefully
allocating labeling resources across the regions.

4.1 The ORIWAL Algorithm

At each time t, ORIWAL receives an unlabeled point x
t

that
belongs to region X

kt , for some k
t

2 [n]. Then, with some
probability ↵

k

, ORIWAL decides whether to send x
t

to sub-
routine EIWAL

kt , the EIWAL algorithm running on region
X

kt . If x
t

is sent to EIWAL
kt , then it is EIWAL

kt that deter-
mines whether to request the associated label y

t

. Thus, y
t

is
requested only if x

t

is passed to EIWAL
kt (probability ↵

k

)
and EIWAL

kt happens to ask for this label (probability p
t

de-
pending on the current state of EIWAL

kt). The pseudocode
of ORIWAL is given in Algorithm 1.
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In what follows, when ORIWAL passes x
t

to EIWAL
kt , we

say that ORIWAL queries EIWAL
kt . Notice that querying

EIWAL
k

to determine whether to ask for a label is compu-
tationally much more expensive than determining whether
or not to pass a point to EIWAL

k

. Thus, we will discuss the
learning guarantees and label complexity bounds of ORIWAL
in terms of the number of queries to the EIWAL subroutines.

The crux of the ORIWAL algorithm rests on finding the
probabilities ↵

k

, which determine how many points in ex-
pectation are passed to the k-th region, so as to optimize
learning guarantees. Ideally, the algorithm should not pass
points to a region where the subroutine has already found a
good hypothesis. Regions in need for labels are those where
the corresponding subroutines have received few points or
where a larger number of points is needed to identify an
accurate hypothesis.

To determine the probabilities ↵
k

, we first use the theo-
retical guarantees derived for EIWAL to determine T

k

, the
number of queries made to EIWAL

k

operating in region X
k

.
At a high level, the optimal setting of T

k

s, which translates
into an optimal setting of ↵

k

s, is one that admits the best
trade-off between generalization guarantee and label com-
plexity bound. By Theorem 1, the generalization bound
of EIWAL

k

is proportional to a complexity term c
k

of the
form 3 c

k

= log

⇥

16T

2|Hk|2 log(T )n

�

⇤

, where we upper bound
log T

k

by log T , and further upper bound all label request-
ing probabilities p

t

by 1. 4 Hence, to determine the optimal
setting of T

k

s, we need to find T
1

, T
2

, . . . , T
n

satisfying:

min

T1,··· ,Tn

n

X

k=1

p
k

r

c
k

T
k

, s.t.
n

X

k=1

T
k

 T ,

where p
k

= P(X
k

). It is straightforward to show that the
optimal solution T ⇤

k

admits the following form:

T ⇤
k

=

"

p
2
3
k

c
1
3
k

P

n

k

0
=1

p
2
3
k

0c
1
3
k

0

#

T.

We then choose the probabilities ↵
k

s such that, given the
total number T of possible queries, the expected number of
queries to EIWAL

k

matches T ⇤
k

. That is, ↵
k

should satisfy

p
k

↵
k

P

n

k

0
=1

p
k

0↵
k

0
=

T ⇤
k

T
=

p
2
3
k

c
1
3
k

P

n

k

0
=1

p
2
3
k

0c
1
3
k

0

, (4)

where the left-most side is the conditional probability of
querying EIWAL

k

, conditioning on a total number T of
queries, and the right-most side is the optimal allocation
proportion determined by T ⇤

k

. It is straightforward to show
that for any � > 0, ↵

k

= �(c
k

/p
k

)

1
3 would satisfy (4).

3 The extra factor n is due to a union bound over the n regions,
so as to make Theorem 1 hold for all regions simultaneously.

4 In Section 4.4, we will present the version of ORIWAL derived
from using the original requesting probabilities pt.

Finally, to determine the optimal setting of ↵
k

s, we need to
determine the last parameter �. Observe that, for a given
� and its corresponding ↵

k

s, a total of
P

n

k=1

p
k

�

1 � ↵
k

�

unlabeled points will be discarded due to the “if B = 1 then
...” step of ORIWAL (Algorithm 1). Thus, we choose � that
minimizes the number of discarded unlabeled points:

min

��0

n

X

k=1

p
k

�

1��(c
k

/p
k

)

1
3
�

, s.t.�
�

c
k

/p
k

�

1
3  1, 8k 2 [n].

The constraint on � ensures that ↵
k

s are valid probabilities:
↵
k

 1, 8k 2 [n]. Solving the above problem yields the
optimal setting of ↵

k

s:

� =

1

max

k2[n]

(c
k

/p
k

)

1
3

, ↵
k

=

(c
k

/p
k

)

1
3

max

k2[n]

(c
k

/p
k

)

1
3

.

(5)
Observe that in the expression of ↵

k

s, we assumed access
to the probability mass p

k

of each region. This is a rea-
sonable assumption in many applications of active learning,
since accurately estimating p

k

only requires unlabeled data.
Hence, we can conceive a preprocessing stage where the
probabilities p

k

are accurately estimated from large amounts
of unlabeled data. Alternatively, these probabilities can be
estimated incrementally, and our analysis can be extended
to cover that way of proceeding as well.

4.2 Theoretical Analysis

For ↵
k

s defined as in (5), the following theoretical guaran-
tees hold for the returned hypothesis and label complexity.
The guarantees of ORIWAL depend on region-based dis-
agreement coefficient ✓

k

= ✓(D
k

,H
k

), where D
k

= D|X
k

is defined as the conditional distribution of x on region k.
Theorem 2. For any � > 0, with probability at least 1 �
�, for any T > 0, the following inequality holds for the
hypothesis returned by ORIWAL (Algorithm 1) at time T :
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where T
k

is number of queries made to IWAL
k

. Moreover,
with probability at least 1� �, for any T > 0, the following
inequality holds for the number of requested labels ⌧

T

:
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The generalization bound is the sum of the generalization
error of the best in class h⇤ 2 H

[n]

and the sum of the



Region-Based Active Learning

complexity terms of the hypothesis sets H
k

. In particu-
lar, if the probability mass p

k

of region X
k

is small, then
the corresponding complexity term of set H

k

is given less
weight. Moreover, as one could expect, the overall bound
becomes tighter as the number of queries T

k

made to EI-
WAL

k

increases. For the label complexity bound of ⌧
T

, the
term inside the bracket is of the same form as the term in
the label complexity bound of EIWAL for a single region. In
this case, the region-specific disagreement coefficients ✓

k

,
best-in-class error R⇤

k

, and complexity terms log |H
k

|, scale
the contribution of each region accordingly.

We can also derive guarantees that do not depend on the
empirical quantities T

k

, but only on T . When the expected
number of passed samples per region is at least O(log n),
we have the following result. For sake of brevity, we denote
by q

k

the optimal allocation proportion in Equation (4):

q
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Corollary 3. For all � > 0, with probability at least 1� �,
for any T � 4 log(2n/�)

mink2[n] qk
the following inequality holds:
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Moreover, with probability at least 1 � 2�, for all T > 0,
the following inequality holds:
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We have been discussing the learning guarantees in terms
of the number of queries to the EIWAL subroutines, and we
do not take into account the number of rounds in which the
ORIWAL decides not to query EIWAL. This is because, as
we have mentioned earlier, querying the EIWAL subroutine
consumes a significantly larger amount of computational
resources than determining whether to make a query. This
view of the learning problem naturally arises in applications
where the unlabeled samples are inexpensive and are pro-
cessed beforehand, so it takes no time to determine their
regions and to sample a Bernoulli random variable to decide
whether to query. In other words, given a limited amount of
resources, we are more interested in the performance of the

algorithm in terms of the number of expensive operations,
i.e., queries to the subroutines, than in terms of the number
of rounds where no expensive operations are made.

4.3 Discussion

The advantage of ORIWAL over non-region-based algorithms
is twofold: it seeks region-specific best-in-class hypotheses,
and it controls the number of queries on each region in
an optimal way. If ORIWAL does not optimize for query
allocations but instead sets ↵

k

= 1 for all k 2 [n], ORIWAL
reduces to a special region-based algorithm we call RIWAL
(Region-based IWAL). RIWAL still enjoys the advantage
of region-based hypotheses, but it simply passes on all the
points to the subroutines. The only algorithmic difference
between ORIWAL and RIWAL is that the former generates a
Bernoulli random variable for each incoming sample point,
which only consumes a negligible amount of time compared
to querying subroutine EIWAL. Given the same number
of queries to EIWAL, the two algorithms therefore have
comparable computational cost.

Yet, the learning guarantee of ORIWAL is potentially more
favorable than that of RIWAL, since ORIWAL explicitly op-
timizes for the allocations T

k

among a fixed budget of T
queries to EIWAL. Given a total of T queries, Corollary 3
provides the generalization error of the hypothesis returned
after T rounds, in terms of q

k

= p
k

↵
k

/(
P

n

k

0 p
k

0↵
k

0
), the

probability of querying EIWAL
k

, conditioned on a query
being made. Upper bounding the constants 4✓

k

K
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R⇤
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by 1

gives the following:
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RIWAL sets ↵
k

= 1 and thus qRIWAL
k

= p
k

. Meanwhile, by
definition, qORIWAL
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= p
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. Disre-
garding lower order terms, i.e., the third term in the two
upper bounds above, the application of Jensen’s inequality
to the convex function x 7! x

3
2 yields
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Thus ORIWAL yields a potentially more favorable learning
guarantee than RIWAL given the same number of T queries
to subroutines. Note that the potential improvement of ORI-
WAL over RIWAL, that is the difference between (6) and (7),
depends on how the ratios c

k

/p
k

vary across regions. Un-
balanced ratio values across regions make (6) significantly
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smaller than (7), while in the case where c
k

/p
k

coincide for
all k 2 [n], there is no improvement.

4.4 ORIWALwith time-varying ↵
k

When deriving the optimal value of ↵
k

s, we upper bounded
P

T

t=1

p
t

by T in order to simplify the discussion, but there
is a finer analysis based on a tighter bound on the complex-
ity term, which results in finding an optimal time-varying
↵
k

(t). Without upper bounding this sum of probabilities,
the complexity term of Theorem 1 is C

k

(T
k

) = c
k

�
k

(T
k

),
where �

k

(T
k

) =

�

P

t
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xt2Xk

�

/T
k

is the label request-
ing probability on region k, averaged over the T

k

queries.
Note that C

k

(T
k

)  c
k

. Now, since C
k

(T
k

) depends on T
k

which is an unknown quantity at any given round t 2 [T ],
we cannot directly use it to solve the optimization problem:
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However, by definition, the label requesting probabilities
of EIWAL are non-increasing, which implies that �

k

(T
k

) as
well as C

k

(T
k

) are also non-increasing. Thus, at a given
current round t 2 [T ], we can upper bound the above opti-
mization problem by

min
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where t
k

denotes the number of queries made for region
k at a time t. Via a similar reasoning as before, the solu-
tion of this optimization problem leads to setting ↵

k

(t
k

) =

(Ck(tk)/pk)
1
3

maxk2[n](Ck(tk)/pk)
1
3

. ORIWAL therefore uses these time-

varying quantities ↵
k

(t
k

) at each time t instead of ↵
k

in
Algorithm 1 to determine whether to query EIWAL

k

.

By using the time-varying and algorithm-dependent quan-
tities C

k

(t
k

), ORIWAL gains more information about the
current state of each region, and uses it to more efficiently
allocate labeling resources. More concretely, according to
Lemma 6 in Appendix A, �

k

(t
k

) = 4✓K
l

R⇤
k

+O(

p

R⇤
k

/t
k

).
Thus, when C

k

(t
k

)/p
k

is relatively large for region k
(which implies that ↵

k

(t
k

) is relatively large), then either
t
k

is small and O(

p

R⇤
k

/t
k

) is large, so that EIWAL
k

is still
learning, or t

k

is large but the best-in-class error scaled by
the probability of that region, R⇤

k

/p
k

, is large. In both cases,
ORIWAL allocates more weight to this region, which needs
more labeling resources to learn. In the experiments, we ran
ORIWAL with the time-varying ↵

k

(t
k

)s.

Finally, in Appendix C, we present another extension of
IWAL to the region-based setting, called NAIVE-IWAL,
which simply runs IWAL with the composite hypothesis
set H

[n]

. We show that NAIVE-IWAL is less favorable in
terms of theoretical guarantees than RIWAL, thus is less
favorable than ORIWAL as well.

Table 1: Binary classification dataset summary: number
of observations (N ), number of features (d), proportion
of minority class (r) . Datasets are ordered by number of
observations.

Dataset N d r
magic04 19,020 10 0.352
nomao 34,465 118 0.286
shuttle 43,500 9 0.216
a9a 48,842 123 0.239
ijcnn1 49,990 22 0.097
codrna 59,535 8 0.333
skin 245,057 3 0.208
covtype 581,012 54 0.488

5 Experiments

In this section, we report the results of experiments com-
paring the ORIWAL, RIWAL, and IWAL algorithms. We also
compared these active learning algorithms with two passive
learning algorithms: PASSIVE, which simply requests the
label for all points and finds the hypothesis with the smallest
empirical logistic loss, and RPASSIVE, which runs PASSIVE
on each region separately.

We experimented with the algorithms just mentioned in
8 binary classification datasets from the UCI repository:
magic04, nomao, shuttle, a9a, ijcnn1, codrna, skin,
covtype. Table 1 gives summary statistics for these 8
datasets. Note that, for each dataset, we kept the first 10
principal components of the original features. For each
dataset, we randomly shuffled the data and ran the algo-
rithms on the first 50% of the data, and tested the learned
classifier on the remaining 50%. This was repeated 50 times
on each dataset, and the results were averaged.

We randomly drew 3,000 hyperplanes with bounded norms
as our base hypothesis set, which we call H, and used these
3,000 hyperplanes as H

k

for all regions X
k

, thus, we chose
H

k

= H for all k 2 [n]. To generate disjoint regions,
for each dataset we constructed random binary trees, i.e.,
binary trees with random splitting criteria, and used the
resulting terminal nodes as the disjoint regions. Note that
these regions are generated without using any labels.

Below, we present these results for four datasets with 10

disjoint regions. The results for the remaining datasets,
as well as for the case where we instead have 20 disjoint
regions are provided in Appendix D. In Appendix D, we
also contrast the performance of ORIWAL with 10 regions
vs. ORIWAL with 20 regions.

We first compared the two region-based active learning algo-
rithms, RIWAL and ORIWAL, and the region-based passive
learning algorithm RPASSIVE. Both RIWAL and RPASSIVE
were run with the same regions and hypothesis sets as ORI-
WAL, thus all three algorithms have the same model com-
plexity. Figure 1 plots the misclassification loss on held-out
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Figure 1: Misclassification loss of ORIWAL, RIWAL, and RPASSIVE on hold out test data versus number of labels re-
quested (log

10

scale). The input space was divided into 10 regions. The figures show that ORIWAL typically has a lower
misclassification loss than RIWAL and RPASSIVE.
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Figure 2: Misclassification loss of ORIWAL (our algorithm), non-region-based IWAL, and non-region-based passive learning
PASSIVE on held-out test data, plotted as a function of the number of labels requested (log

10

scale). The input space was
divided into 10 regions. The curves for ORIWAL are repetitions from Figure 1. The figures show that, given a fixed number
of labels, ORIWAL achieves a substantially smaller misclassification loss than IWAL and PASSIVE.

test data against the number of labels requested (on log

10

scale), averaged over 50 runs. The error bars indicate ± stan-
dard error. ORIWAL shows consistent advantage over RIWAL
and RPASSIVE on most datasets, such as magic04, nomao,
and ijcnn1, and matches the performance of RIWAL or
RPASSIVE on a few others. Since ORIWAL is significantly
outperforming the other two region-based algorithms RIWAL
and RPASSIVE, for the rest of our experiments we focused
on ORIWAL.

We then compared our proposed algorithm ORIWAL with
two baselines: the non-region-based IWAL, and the non-
region-based passive learning algorithm, PASSIVE. Both
IWAL and PASSIVE were run using the hypothesis set H,
which is the hypothesis set used in each region of ORIWAL.
Figure 2 plots the misclassification error rate achieved by
the three algorithms. The optimal region-based algorithm
ORIWAL achieves from the beginning a significantly su-
perior prediction accuracy than the two non region-based
algorithms, IWAL and PASSIVE. Given the limited space
for improvement when working with the single hypothesis
set H, IWAL shows no significant improvement over PAS-
SIVE, and stops improving early on. On the other hand,
while the learning curve of non region-based algorithms
has plateaued, ORIWAL continues to improve in accuracy
by leveraging more labels, and manages to significantly
outperform PASSIVE and IWAL.

6 Conclusion

We presented a detailed analysis of the scenario of region-
based active learning for which we gave a new algorithm,
ORIWAL. This algorithm is based on an optimal allocation
of points to the underlying region-dependent active learning
algorithms. We showed that ORIWAL admits favorable theo-
retical guarantees, and further demonstrated empirically its
substantial improvement over non-region-based algorithms
such as IWAL or passive learning in a series of experiments.

Along the way, we also introduced a new active learning
algorithm, EIWAL, that benefits from more favorable guar-
antees than the original IWAL algorithm, and that can be
used as a subroutine in our region-based ORIWAL. More
generally, other subroutine active learning algorithms can
be used with our algorithm, which could lead to further
performance improvements in some cases.

We hope to have shown the benefits of region-based ac-
tive learning and prompted interest in research questions
related to this problem. Several crucial questions arise, in-
cluding the following: How should the regions be chosen?
Which hypothesis set should be selected for each? Can we
adaptively modify the original partitioning by merging or
splitting regions? We have already initiated the study of all
of these questions with some preliminary theoretical results.
A more complete answer to these and other related questions
could lead to significant improvements in active learning.
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