
Appendix

A Proof Details

A.1 Proof of Theorem 3

Theorem 3 (Dual gradient) Denoted as (f⇤, ⌫⇤) = argmax(f,⌫)2H
˜̀(f, ⌫, wg) and bL (wg) = ˜̀(f⇤, ⌫⇤, wg), we

have

rwg
bL (wg) = �E⇠

⇥
rwgf

⇤
�
gwg (⇠)

�⇤
+

1

�
E⇠

⇥
rwg⌫

⇤
�
gwg (⇠)

�⇤
.

Proof The conclusion can be proved by chain rule and the optimality conditions.

Specifically, notice that the
⇣
f⇤

wg
, ⌫⇤wg

⌘
are implicit functions of wg, we can calculate the gradient of bL (wg) w.r.t.

wg

rwg
bL (wg) = bED

h
rff

⇤

wg
rwgf

⇤

wg

i
� E⇠

⇥
rgf (g (⇠))rwgg

⇤
� Eq

h
rff

⇤

wg
rwgf

⇤

wg

i
� ⌘

2
rf

���f⇤

wg

���
2

H

rwgf
⇤

wg

+
1

�

⇣
E⇠

h
rg⌫

⇤

wg
(g (⇠))rwgg

i
+ Eq

h
r⌫⌫

⇤

wg
rwg⌫

⇤

wg

i
� Ep0

h
exp

⇣
⌫⇤wg

⌘
r⌫⌫

⇤

wg
rwg⌫

⇤

wg

i⌘

=

✓
bED

h
rff

⇤

wg

i
� Eq

h
rff

⇤

wg

i
� ⌘

2
rf

���f⇤

wg

���
2

H

◆

| {z }
0

rwgf
⇤

wg
� E⇠

⇥
rgf (g (⇠))rwgg

⇤

+
1

�
E⇠

h
rg⌫

⇤

wg
(g (⇠))rwgg

i
+

1

�

⇣
Eq

h
r⌫⌫

⇤

wg

i
� Ep0

h
exp

⇣
⌫⇤wg

⌘
r⌫⌫

⇤

wg

i⌘

| {z }
0

rwg⌫
⇤

wg

= �E⇠

⇥
rwgf

⇤ (g (⇠))
⇤
+

1

�
E⇠

⇥
rwg⌫

⇤
�
gwg (⇠)

�⇤
,

where the second equations come from the fact
⇣
f⇤

wg
, ⌫⇤wg

⌘
are optimal and

⇣
rwgf

⇤

wg
,rwg⌫

⇤

wg

⌘
are not functions

of (x, ⇠, x0).

A.2 Proof for Theorem 4

The proof of Theorem 4 mainly follows the technique in Gu and Qiu (1993) with extra consideration of the
approximation error from the dual embedding.

We first define some notations that will be used in the proof. We denote hf, gip =
R
⌦ f (x) g (x) p (x) dx, which

induces the norm denoted as k·k2p. We introduce h̃ as the maximizer to L̃ (h) defined as

L̃ (h) := bED [h]� Ep⇤ [h]� 1

2
kh� f⇤k2p⇤ � ⌘

2
khk2

H
.

The proof relies on decomposing the error into two parts: i) the error between h̃ and f⇤; and ii) the error
between f̃ and h̃.

By Mercer decomposition (König, 1986), we can expand k (·, ·) as

k (x, x0) =
1X

l=1

⇣l l (x) l (x
0) ,

With the eigen-decomposition, we can rewrite function f 2 H as f (·) =
P

1

l=1hf, lip⇤ (·). Then, we have

kfk2
H

=
P

1

l=1 ⇣
�1
l hf, li2p⇤ and kfk2p⇤ =

P
1

l=1hf, li2p⇤ .

We make the following standard assumptions:

Assumption 1 There exists > 0 such that k (x, x0) 6 , 8x, x0 2 ⌦.

11

Kernel Exponential Family Estimation via Doubly Dual Embedding

Assumption 2 The eigenvalues of the kernel k (·, ·) decay su�ciently homogeneously with rate r, i.e., ⇣l =
O (l�r) where r > 1.

Assumption 3 There exists a distribution p0 on the support ⌦ which is uniformly upper and lower bounded.

To prove the Theorem 4, we first show the error between h̃ and f⇤ under Assumption 1, 2, and 3.

Lemma 6 Under Assumption 2, we have

E
���h̃� f⇤

���
2

p⇤

�
= O

⇣
n�1⌘�

1
r + ⌘

⌘
,

⌘E
���h̃� f⇤

���
2

H

�
= O

⇣
n�1⌘�

1
r + ⌘

⌘
.

Proof Denote the h̃ (·) =
P

1

l hh̃, lip⇤
| {z }

h̃l

 l (·) and f⇤ (·) =
P

1

l hf⇤, lip⇤
| {z }

f⇤
l

 l (·), then, we can rewrite the L̃ (h)

as

L̃ (h) =
1X

l=1

hl

h
bE [l (x)]� Ep⇤ [l (x)]

i
� 1

2

1X

l=1

(hl � f⇤

l)
2 � ⌘

2

1X

l=1

⇣�1
l h2

l .

Setting the derivative of L̃ (h) w.r.t. [hl] equal to zero, we obtain the representation of h̃l as

h̃l =
f⇤

l + ↵l

1 + ⌘⇣�1
l

,

where ↵l = bE [l (x)]� Ep⇤ [l (x)]. Then, we have
���h̃� f⇤

���
2

p⇤
=

1X

l=1

⇣
h̃l � f⇤

l

⌘2
=

1X

l=1

↵2
l � 2↵l⌘⇣

�1
l f⇤

l + ⌘2⇣�2
l (f⇤

l)
2

�
1 + ⌘⇣�1

l

�2 ,

⌘
���h̃� f⇤

���
2

H

= ⌘
1X

l=1

⇣�1
l

⇣
h̃l � f⇤

l

⌘2
=

1X

l=1

⌘⇣�1
l

↵2
l � 2↵l⌘⇣

�1
l f⇤

l + ⌘2⇣�2
l (f⇤

l)
2

�
1 + ⌘⇣�1

l

�2 .

Recall that E [al] = 0 and E
⇥
a2l
⇤
= 1

n , then we have

E
���h̃� f⇤

���
2

p⇤

�
=

1

n

1X

l=1

1
�
1 + ⌘⇣�1

l

�2 + ⌘
1X

l=1

⌘⇣�1
l�

1 + ⌘⇣�1
l

�2 · ⇣�1
t (f⇤

l)
2 , (24)

E

⌘
���h̃� f⇤

���
2

H

�
=

1

n

1X

l=1

⌘⇣�1
l�

1 + ⌘⇣�1
l

�2 + ⌘
1X

l=1

⌘2⇣�2
l�

1 + ⌘⇣�1
l

�2 · ⇣�1
l (f⇤

l)
2 . (25)

By calculation, we obtain that
1X

l=1

⌘⇣�1
l�

1 + ⌘⇣�1
l

�2 =
X

l<⌘� 1
r

⌘⇣�1
l�

1 + ⌘⇣�1
l

�2 +
X

l>⌘� 1
r

⌘⇣�1
l�

1 + ⌘⇣�1
l

�2

= O
⇣
⌘�

1
r

⌘
+O

 Z
1

⌘� 1
r

⌘tr

(1 + ⌘tr)2
dt

!

= O
⇣
⌘�

1
r

⌘
+ ⌘�

1
rO
 Z

1

1

tr

(1 + tr)2
dt

!
= O

⇣
⌘�

1
r

⌘
. (26)

Similarly, we can achieve
1X

l=1

1
�
1 + ⌘⇣�1

l

�2 = O
⇣
⌘�

1
r

⌘
, (27)

1X

l=1

1

1 + ⌘⇣�1
l

= O
⇣
⌘�

1
r

⌘
. (28)

Note also that
P

1

l=1 ⇣
�1
t (f⇤

l)
2 = kf⇤k2

H
< 1. Hence, the second term in (24) is also finite. Plugging (26)

and (27) into (24), we achieve the conclusion.

Next, we proceed the second part of the error, i.e., between f̃ and h̃.

⇤
Bo Dai

1
,

⇤
Hanjun Dai

2
, Arthur Gretton

3
, Le Song

2
, Dale Schuurmans

1
, Niao He

4

Lemma 7 Under Assumption 1 and Assumption 2, we have as n ! 1 and ⌘ ! 0,
���f̃ � h̃

���
2

p⇤
= op⇤

⇣
n�1⌘�

1
r + ⌘

⌘
+ C✏2approx,

⌘
���f̃ � h̃

���
2

H

= op⇤

⇣
✏approx

⇣
n�1⌘�

1
r + ⌘

⌘⌘
+ op⇤

⇣⇣
n�1⌘�

1
r + ⌘

⌘⌘
✏approx + C✏2approx.

Therefore,

���f̃ � f⇤

���
2

p⇤
= Op⇤

⇣
n�1⌘�

1
r + ⌘

⌘
+ C✏2approx,

⌘
���f̃ � f⇤

���
2

H

= Op⇤

⇣
n�1⌘�

1
r + ⌘

⌘
+ op⇤

⇣⇣
n�1⌘�

1
r + ⌘

⌘⌘
✏approx + C✏2approx.

Proof Since
⇣
f̃ , q̃
⌘
are the optimal solutions to the primal-dual reformulation of the penalized MLE (9), we

have the first-order optimality condition: rf `(f̃ , q̃) = 0, which implies bE [k (x, ·)]�Eq̃ [k (x, ·)]� ⌘f̃ = 0. Hence,

bE
h
hk (x, ·) , f̃ � h̃i

i
� Eq̃

h
hk (x, ·) , f̃ � h̃i

i
� ⌘hf̃ , f̃ � h̃iH = 0. (29)

Similarly, by the optimality of h̃ w.r.t. L̃ (h), we have

bE
h
hk (x, ·) , f̃ � h̃i

i
� Ep⇤

h
hk (x, ·) , f̃ � h̃i

i
� hf̃ � h̃, h̃� f⇤ip⇤ � ⌘hh̃, f̃ � h̃iH = 0. (30)

Combining the (29) and (30), we further obtain

Eq̃

h
f̃ (x)� h̃ (x)

i
� Eph̃

h
f̃ (x)� h̃ (x)

i
+ ⌘

���f̃ � h̃
���
2

H

(31)

= hf̃ � h̃, h̃� f⇤ip⇤ + Ep⇤

h
f̃ (x)� h̃ (x)

i
� Eph̃

h
f̃ (x)� h̃ (x)

i

) Epf̃

h
f̃ (x)� h̃ (x)

i
� Eph̃

h
f̃ (x)� h̃ (x)

i
+ ⌘

���f̃ � h̃
���
2

H

= hf̃ � h̃, h̃� f⇤ip⇤ + Ep⇤

h
f̃ (x)� h̃ (x)

i
� Eph̃

h
f̃ (x)� h̃ (x)

i

| {z }
✏1

+Epf̃

h
f̃ (x)� h̃ (x)

i
� Eq̃

h
f̃ (x)� h̃ (x)

i

| {z }
✏2

.

For ✏1, denote F (✓) = Epf⇤+✓(h̃�f⇤)/&

h
f̃ (x)� h̃ (x)

i
� Ep⇤

h
f̃ (x)� h̃ (x)

i
with & =

���f⇤ � h̃
���
p⇤

= op⇤ (1), then,

apply Taylor expansion to F (✓) will lead to

F (✓) =
✓

&
(1 + op(1)) hf̃ � h̃, h̃� f⇤ip⇤ (32)

where op⇤ (1) w.r.t. ✓ ! 0. Therefore,

Eph̃

h
f̃ (x)� h̃ (x)

i
� Ep⇤

h
f̃ (x)� h̃ (x)

i
= F (&) = (1 + op(1)) hf̃ � h̃, h̃� f⇤ip⇤ , (33)

as ⌘ ! 0 and n⌘
1
r ! 1.

For ✏2, by Hölder inequality,

✏2 = Epf̃

h
f̃ (x)� h̃ (x)

i
� Eq̃

h
f̃ (x)� h̃ (x)

i
=

Z

⌦

pf̃ (x)� q̃(x)

p⇤ (x)

⇣
f̃ (x)� h̃ (x)

⌘
p⇤ (x) dx

6
���f̃ � h̃

���
p⇤

�����
pf̃ (x)� q̃(x)

p⇤ (x)

�����
p⇤

.

Due to the Assumption 3, p⇤ (x) = exp (f⇤ �A (f⇤)) = exp(f⇤(x)�log p0(x))R
⌦ exp(f⇤(x)�log p0(x))p0(x)

p0 (x) with f⇤ 2 Hk and

kf⇤k
H

6 Cf⇤ and klog p0 (x)k1 6 C0, implies 2 exp (�Cf⇤ � C0) 6 p⇤ (x) 6 2 exp (Cf⇤ + C0). Therefore,
we have

✏2 6 2 exp (Cf⇤ + C0) ✏approx
���f̃ � h̃

���
p⇤

. (34)

On the other hand, we define D (✓) = Eph̃+✓(f̃�h̃)

h
f̃ � h̃

i
, notice that D0 (✓) =

���f̃ � h̃
���
2

ph̃+✓(f̃�h̃)

, by the mean

Kernel Exponential Family Estimation via Doubly Dual Embedding

value theorem, we can obtain that

Epf̃

h
f̃ (x)� h̃ (x)

i
� Eph̃

h
f̃ (x)� h̃ (x)

i
= D (1)�D (0) = D0 (✓) =

���f̃ � h̃
���
2

ph̃+✓(f̃�h̃)

(35)

with ✓ 2 [0, 1]. Gu and Qiu (1993) shows that when 8f 2 Hk is uniformly bounded, then, c k·kp⇤ 6 k·kph̃+✓(f̃�h̃)
,

✓ 2 [0, 1], which is the true under the Assumption 1.

Plugging (33) and (34) into (31), we achieve

c
���f̃ � h̃

���
2

p⇤
+ ⌘

���f̃ � h̃
���
2

H

6 op
⇣
hf̃ � h̃, h̃� f⇤ip⇤

⌘
+ 2 exp (Cf⇤ + C0) ✏approx

���f̃ � h̃
���
p⇤

,

which leads to the first part in the conclusion. Combining with the Lemma 6, we obtain the second part of the
conclusion.

Now, we are ready for proving the main theorem about the statistical consistency.

Theorem 4 Assume the spectrum of kernel k (·, ·) decays su�ciently homogeneously in rate l�r. With some
other mild assumptions listed in Appendix A.2, we have as ⌘ ! 0 and n⌘

1
r ! 1,

KL
⇣
p⇤||pf̃

⌘
+KL

⇣
pf̃ ||p

⇤

⌘
= Op⇤

⇣
n�1⌘�

1
r + ⌘ + ✏2approx

⌘
,

where ✏approx := supf2F
infq2Pw kpf � qkp⇤ . Therefore, when setting ⌘ = O

�
n�

r
1+r
�
, pf̃ converges to p⇤ in terms

of Jensen-Shannon divergence in rate Op⇤
�
n�

r
1+r + ✏2approx

�
.

Proof Recall the
⇣
f̃ , q̃
⌘
is the optimal solution to (9), we have the first-order optimality condition as

bE
h
hk (x, ·) , f̃ � f⇤i

i
� Eq̃

h
hk (x, ·) , f̃ � f⇤i

i
� ⌘hf̃ , f̃ � f⇤iH = 0, (36)

which leads to

Epf̃

h
hk (x, ·) , f̃ � f⇤i

i
= bE

h
hk (x, ·) , f̃ � f⇤i

i
� ⌘hf̃ , f̃ � f⇤iH

+Epf̃

h
hk (x, ·) , f̃ � f⇤i

i
� Eq̃

h
hk (x, ·) , f̃ � f⇤i

i

| {z }
✏3

.

Then, we can rewrite the Jensen-Shannon divergence

KL
⇣
p⇤||pf̃

⌘
+KL

⇣
pf̃ ||p

⇤

⌘
= Epf̃

h
hk (x, ·) , f̃ � f⇤i

i
� Ep⇤

h
hk (x, ·) , f̃ � f⇤i

i

= ✏3 + ⌘hf̃ , f⇤ � f̃iH + bE
h
hk (x, ·) , f̃ � f⇤i

i
� Ep⇤

h
hk (x, ·) , f̃ � f⇤i

i

Similar to the bound of ✏2, we have

✏3 6 2 exp (Cf⇤ + C0) ✏approx
���f̃ � f⇤

���
p⇤

= O
✓
✏approx

q
n�1⌘�

1
r + ⌘

◆
= O

⇣
✏2approx +

⇣
n�1⌘�

1
r + ⌘

⌘⌘
.

Moreover, with Cauchy-Schwarz inequality,

⌘hf̃ , f⇤ � f̃iH 6 ⌘
���f̃
���
H

���f̃ � f⇤

���
H

,

⌘
���f̃
���
H

6 2⌘ kf⇤k
H
+ 2⌘

���f̃ � f⇤

���
H

Applying the conclusion in Lemma 7 and the fact that kf⇤kH 6 Cf⇤ , we obtain that

⌘hf̃ , f⇤ � f̃iH = O(⌘).

Finally, for the term

bE
h
hk (x, ·) , f̃ � f⇤i

i
� Ep⇤

h
hk (x, ·) , f̃ � f⇤i

i
,

we rewrite f̃ and f⇤ in the form of as
P

1

l=1

⇣
f̃l � f⇤

l

⌘
↵l. Then, apply Cauchy-Schwarz inequality,

1X

l=1

���
⇣
f̃l � f⇤

l

⌘
↵l

��� 6

1X

l=1

a2l

⇣
f̃l � f⇤

l

⌘2
! 1

2

1X

l=1

✓
↵l

al

◆2
! 1

2

⇤
Bo Dai

1
,

⇤
Hanjun Dai

2
, Arthur Gretton

3
, Le Song

2
, Dale Schuurmans

1
, Niao He

4

where a2l = 1 + ⌘⇣�1
l . Then,

1X

l=1

a2l

⇣
f̃l � f⇤

l

⌘2
=
���f̃ � f⇤

���
2

p⇤
+ ⌘

���f̃ � f⇤

���
2

H

= Op⇤

⇣
n�1⌘�

1
r + ⌘ + ✏2approx

⌘
+ op⇤

⇣⇣
n�1⌘�

1
r + ⌘

⌘⌘
✏approx.

On the other hand, by Lemma 6

E
"

1X

l=1

✓
↵l

al

◆2
#
= O

⇣
n�1⌘�

1
r

⌘
.

Combining these bounds, we achieve the conclusion that

KL
⇣
p⇤||pf̃

⌘
+KL

⇣
pf̃ ||p

⇤

⌘
= Op⇤

⇣
n�1⌘�

1
r + ⌘ + ✏2approx

⌘
.

The second conclusion is straightforward by balancing ⌘.

B MLE with Random Feature Approximation

The memory cost is the main bottleneck for applying the kernel methods to large-scale problems. The random
feature (Rahimi and Recht, 2008; Dai et al., 2014; Bach, 2015) can be utilized for scaling up kernel methods. In
this section, we will propose the variant of the proposed algorithm with random feature approximation.

For arbitrary positive definite kernel, k(x, x), there exists a measure P on X , such that k(x, x0) =R
�w(x)�w(x0)dP(w) Devinatz (1953); Hein and Bousquet (2004), where �w(x) : X ! R from L2(X ,P). There-

fore, we can approximate the function f 2 H with Monte-Carlo approximation f̂ 2 bHr = {
Pr

i=1 �i�!i(·)|k�k2 6
C} where {wi}ri=1 sampled from P(!). The {�!i(·)}

r
i=1 are called random features Rahimi and Recht (2009).

With such approximation, we will apply the stochastic gradient to learn {�i}ri=1. For simplicity, we still consider
the saddle-point reformulation of MLE for exponential families. However, the algorithm applies to general flows
and conditional models too.

Plug the approximation of bf (·) =
Pr

i=1 �i�!i(·) = �>

f � (·) and b⌫ = �>

⌫ � (·) into the optimization (19) and
denote � = {�f ,�⌫}, we have

min
wg

L̄ (wg) := max
�f ,�⌫

˜̀(�f ,�⌫ , wg)�
⌘

2
k�fk2

| {z }
¯̀(�f ,�⌫ ,wg)

. (37)

Therefore, we have the random feature variant of Algorithm 2

Algorithm 3 Stochastic Gradients for �⇤

f and �⇤

⌫

1: for k = 1, . . . ,K do

2: Sample ⇠ ⇠ p (⇠), and generate x = g (⇠).
3: Sample x0 ⇠ p0 (x).
4: Compute stochastic function gradient w.r.t. �f and �⌫ .
5: Decay the stepsize ⌧k.
6: Update �k

f and �k
⌫ with the stochastic gradients.

7: end for

8: Output �K
f ,�K

⌫ .

With the obtained
⇣
�K
f ,�K

⌫

⌘
, the Algorithm 1 will keep almost the same, except in Step 2 call Algorithm 3

instead.

One can also adapt the random feature {!i}ri=1 by stochastic gradient back-propagation (BP) too in Algorithm 3.
Then, the ⌫ is equivalent to parametrized by a two-layer MLP neural networks. Similarly, we can deepen the
neural networks for ⌫, and the parameters can still be trained by BP.

Kernel Exponential Family Estimation via Doubly Dual Embedding

C More Experimental Results

We provide more empirical experimental results here. We further illustrate the convergence of the algorithm on
the 2-dimensional grid and two moons in Figure 3.

(a) initialization (b) 500-th iteration (c) 1000-th iteration (d) 2000-th iteration

(a) initialization (b) 500-th iteration (c) 1000-th iteration (d) 2000-th iteration

Figure 3: The DDE estimators on 2-dimensional grid and two moons datasets in each iteration. The blue
points are sampled from the learned dual distribution. The algorithm starts with random initialization. With
the algorithm proceeds, the learned distribution converges to the ground-truth target distributions.

D Computational Cost Analysis

Following the notations in the paper, the computational cost for Algorithm 2 will be O
�
K2d

�
. Then, the total

cost for Algorithm 1 will be O
�
L
�
K2d+BKd

��
with B as batchsize and L as the number of iterations. If

we stop the algorithm after scanning the dataset, i.e., BL = N , we have the cost as O
�
NK2d

�
, which is more

e�cient comparing to score matching based estimator.

E Implementation Details

In this section, we will provide more details about algorithm implementation. Our implementation is based on
PyTorch, and is open sourced at https://github.com/Hanjun-Dai/dde.

To optimize with the double min-max form, we adopt the following training schema. For every gradient update
of the exponential family model f , 5 updates of sampler gwg will be performed. And for each update of gwg , 3
updates of ⌫ will be performed. Generally, the inner terms of the objective function will get more updates.

For unconditional experiments on synthetic datasets, we use dimension 128 for both the hidden layers of MLP
networks, as well as ⇠. The number of layers for generator gwg and ⌫ are tuned in the range of {3, 4, 5}. For
conditional experiments on real-world datasets, we use 3 layers for both gwg and ⌫, since the dataset is relatively
small. To make the training stable, we also clip the gradients of all updates by the norm of 5.

The hyperparameters, e.g., stepsize, kernel parameters, and weights of the penalty, are tuned by cross-validation.

