Appendices

A Usefull properties of sub-Gaussian random variables

This section presents useful preliminary results satisfied by sub-Gaussian random variables. In particular, Lemma 5 provides a probabilistic upper-bound satisfied by the maximum of independent sub-Gaussian random variables.

A. 1 Preliminary results

Under Assumption 3, the random variables $\sum_{i=1}^{n} \partial f\left(\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}^{*}\right\rangle, y_{i}\right) x_{i j}, \forall j$ are sub-Gaussian. They consequently satisfy the next Lemma 3 :

Lemma 3 Let $Z \sim \operatorname{sub} G\left(\sigma^{2}\right)$ for a fixed $\sigma>0$. Then for any $t>0$ it holds

$$
\mathbb{E}(\exp (t Z)) \leq e^{4 \sigma^{2} t^{2}}
$$

In addition, for any positive integer $\ell \geq 1$ we have:

$$
\mathbb{E}\left(|Z|^{\ell}\right) \leq\left(2 \sigma^{2}\right)^{\ell / 2} \ell \Gamma(\ell / 2)
$$

where Γ is the Gamma function defined as $\Gamma(t)=\int_{0}^{\infty} x^{t-1} e^{-x} d x, \forall t>0$.
Finally, let $Y=Z^{2}-\mathbb{E}\left(Z^{2}\right)$ then we have

$$
\begin{equation*}
\mathbb{E}\left(\exp \left(\frac{1}{16 \sigma^{2}} Y\right)\right) \leq \frac{3}{2}, \tag{19}
\end{equation*}
$$

and as a consequence $\mathbb{E}\left(\exp \left(\frac{1}{16 \sigma^{2}} Z^{2}\right)\right) \leq 2$.
Proof: The two first results correspond to Lemmas 1.4 and 1.5 from Rigollet [2015].
In particular $\mathbb{E}\left(|Z|^{2}\right) \leq 4 \sigma^{2}$.
In addition, using the proof of Lemma 1.12 we have:

$$
\mathbb{E}(\exp (t Y)) \leq 1+128 t^{2} \sigma^{4}, \forall|t| \leq \frac{1}{16 \sigma^{2}}
$$

Equation (19) holds in the particular case where $t=1 / 16 \sigma^{2}$.
The last part of the lemma combines our precedent results with the observation that $\frac{3}{2} e^{1 / 4} \leq 2$.

A. 2 Proof of Lemma 1

As a first consequence of Lemma 3, we derive the proof of Lemma 1 - stated in Section 2.3.

Proof: We note $S_{i}=\partial f\left(\left\langle\boldsymbol{x}_{i}, \boldsymbol{\beta}^{*}\right\rangle, y_{i}\right), \forall i$.
Since $\boldsymbol{\beta}^{*}$ minimizes the theoretical loss, we have $\mathbb{E}\left(S_{i} x_{i j}\right)=0, \forall i, j$.
By definition of a sub-Gaussian random variable, we fix $M>0$ such that: $\forall t>0$,

$$
\mathbb{P}\left(\left|S_{i} x_{i, j}\right|>t\right) \leq 2 \exp \left(-\frac{t^{2}}{2 L^{2} M^{2}}\right), \forall i, j .
$$

Then from Lemma 3 it holds:

$$
\mathbb{E}\left(\exp \left(t S_{i} x_{i j}\right)\right) \leq e^{4 L^{2} M^{2} t^{2}}, \forall t>0, \forall i, j
$$

As a consequence, using Lemma 3 for the independent random variables ($S_{1} x_{1, j}, \ldots, S_{n} x_{n, j}$), it holds $\forall t>0$,

$$
\mathbb{E}\left(\exp \left(t \sum_{i=1}^{n} S_{i} x_{i, j}\right)\right)=\prod_{i=1}^{n} \mathbb{E}\left(\exp \left(t S_{i} x_{i j}\right)\right) \leq \prod_{i=1}^{n} e^{4 L^{2} M^{2} t^{2}}=e^{4 n L^{2} M^{2} t^{2}} .
$$

Let $M_{1}=2 \sqrt{2} M \sqrt{n}$, then with a Chernoff bound:

$$
\mathbb{P}\left(\sum_{i=1}^{n} S_{i} x_{i, j}>t\right) \leq \min _{s>0} \exp \left(\frac{M_{1}^{2} L^{2} s^{2}}{2}-s t\right)=\exp \left(-\frac{t^{2}}{2 L^{2} M_{1}^{2}}\right), \forall t>0,
$$

which concludes the proof.

A. 3 A bound for the maximum of independent sub-Gaussian variables

The next two technical lemmas derive a probabilistic upper-bound for the maximum of sub-Gaussian random variables. Lemma 4 extends Proposition E. 1 [Bellec et al., 2016] to sub-Gaussian random variables.
Lemma 4 Let $g_{1}, \ldots g_{p}$ be independent sub-Gaussian random variables with variance σ^{2}. Denote by $\left(g_{(1)}, \ldots, g_{(p)}\right)$ a non-increasing rearrangement of $\left(\left|g_{1}\right|, \ldots,\left|g_{p}\right|\right)$. Then $\forall t>0$ and $\forall j \in\{1, \ldots, p\}$:

$$
\mathbb{P}\left(\frac{1}{j \sigma^{2}} \sum_{k=1}^{j} g_{(k)}^{2}>t \log \left(\frac{2 p}{j}\right)\right) \leq\left(\frac{2 p}{j}\right)^{1-\frac{t}{16}}
$$

Proof: Let $j \in\{1, \ldots, p\}$. We first apply a Chernoff bound:

$$
\mathbb{P}\left(\frac{1}{j \sigma^{2}} \sum_{k=1}^{j} g_{(k)}^{2}>t \log \left(\frac{2 p}{j}\right)\right) \leq \mathbb{E}\left(\exp \left(\frac{1}{16 j \sigma^{2}} \sum_{k=1}^{j} g_{(k)}^{2}\right)\right)\left(\frac{2 p}{j}\right)^{-\frac{t}{16}} .
$$

Then we use Jensen inequality to obtain

$$
\begin{aligned}
\mathbb{E}\left(\exp \left(\frac{1}{16 j \sigma^{2}} \sum_{k=1}^{j} g_{(k)}^{2}\right)\right) & \leq \frac{1}{j} \sum_{k=1}^{j} \mathbb{E}\left(\exp \left(\frac{1}{16 \sigma^{2}} g_{(k)}^{2}\right)\right) \\
& \leq \frac{1}{j} \sum_{k=1}^{p} \mathbb{E}\left(\exp \left(\frac{1}{16 \sigma^{2}} g_{k}^{2}\right)\right) \leq \frac{2 p}{j} \text { with Lemma 3. }
\end{aligned}
$$

Using Lemma 4, we can derive the following bound which holds with high probability.
Lemma 5 We consider the assumptions and notations of Lemma 4. In addition, we define the coefficients $\lambda_{j}=\sqrt{\log (2 p / j)}, j=1, \ldots p$. Then for $\delta \in\left(0, \frac{1}{2}\right)$, it holds with probability at least $1-\delta$:

$$
\sup _{j=1, \ldots, p}\left\{\frac{g_{(j)}}{\sigma \lambda_{j}}\right\} \leq 12 \sqrt{\log (1 / \delta)} .
$$

Proof: We fix $\delta \in\left(0, \frac{1}{2}\right)$ and $j \in\{1, \ldots, p\}$. We upper-bound $g_{(j)}^{2}$ by the average of all larger variables:

$$
g_{(j)}^{2} \leq \frac{1}{j} \sum_{k=1}^{j} g_{(k)}^{2} .
$$

Applying Lemma 4 gives, for $t>0$:

$$
\mathbb{P}\left(\frac{g_{(j)}^{2}}{\sigma^{2} \lambda_{j}^{2}}>t\right) \leq \mathbb{P}\left(\frac{1}{j \sigma^{2}} \sum_{k=1}^{j} g_{(k)}^{2}>t \lambda_{j}^{2}\right) \leq\left(\frac{j}{2 p}\right)^{\frac{t}{16}-1} .
$$

We fix $t=144 \log (1 / \delta)$ and use an union bound to get:

$$
\mathbb{P}\left(\sup _{j=1, \ldots, p} \frac{g_{(j)}}{\sigma \lambda_{j}}>12 \sqrt{\log (1 / \delta)}\right) \leq\left(\frac{1}{2 p}\right)^{9 \log (1 / \delta)-1} \sum_{j=1}^{p} j^{9 \log (1 / \delta)-1}
$$

Since $\delta<\frac{1}{2}$ it holds that $9 \log (1 / \delta)-1 \geq 9 \log (2)-1>0$, then the map $t>0 \mapsto t^{9 \log (1 / \delta)-1}$ is increasing. An integral comparison gives:

$$
\sum_{j=1}^{p} j^{9 \log (1 / \delta)-1} \leq \frac{1}{2}(p+1)^{9 \log (1 / \delta)}=\frac{1}{2} \delta^{-9 \log (p+1)}
$$

In addition $9 \log (1 / \delta)-1 \geq 7 \log (1 / \delta)=-7 \log (\delta)$ and

$$
\left(\frac{1}{2 p}\right)^{9 \log (1 / \delta)-1} \leq\left(\frac{1}{2 p}\right)^{-7 \log (\delta)}=\delta^{7 \log (2 p)}
$$

Finally, by assuming $p \geq 2$, then we have $7 \log (2 p)-9 \log (p+1)>1$, thus:

$$
\mathbb{P}\left(\sup _{j=1, \ldots, p} \frac{g_{(j)}}{\sigma \lambda_{j}}>12 \sqrt{\log (1 / \delta)}\right) \leq \delta
$$

which concludes the proof.

B Proof of Theorem 2

We use the minimality of $\hat{\boldsymbol{\beta}}$ and Lemma 4 to derive the cone condition.
Proof: We assume without loss of generality that $\left|h_{1}\right| \geq \ldots \geq\left|h_{p}\right|$. We define $S_{0}=\left\{1, \ldots, k^{*}\right\}$ as the set of the k^{*} highest coefficients of $\boldsymbol{h}=\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{*}$.
$\hat{\boldsymbol{\beta}}$ is the solution of Problem (2) hence:

$$
\begin{equation*}
\frac{1}{n} \sum_{i=1}^{n} f\left(\left\langle\boldsymbol{x}_{\boldsymbol{i}}, \hat{\boldsymbol{\beta}}\right\rangle ; y_{i}\right)+\lambda\|\hat{\boldsymbol{\beta}}\|_{1} \leq \frac{1}{n} \sum_{i=1}^{n} f\left(\left\langle\boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{\beta}^{*}\right\rangle ; y_{i}\right)+\lambda\left\|\boldsymbol{\beta}^{*}\right\|_{1} . \tag{20}
\end{equation*}
$$

Using the definition of $\Delta\left(\boldsymbol{\beta}^{*}, \boldsymbol{h}\right)$ as introduced in Theorem 3, Equation (20) can be written in a compact form as:

$$
\Delta\left(\boldsymbol{\beta}^{*}, \boldsymbol{h}\right) \leq \lambda\left\|\boldsymbol{\beta}^{*}\right\|_{1}-\lambda\|\hat{\boldsymbol{\beta}}\|_{1} .
$$

Introducing the support S^{*} of $\boldsymbol{\beta}^{*}$ we have

$$
\begin{align*}
\Delta\left(\boldsymbol{\beta}^{*}, \boldsymbol{h}\right) & \leq \lambda\left\|\boldsymbol{\beta}_{S^{*}}^{*}\right\|_{1}-\lambda\left\|\hat{\boldsymbol{\beta}}_{S^{*}}\right\|_{1}-\lambda\left\|\hat{\boldsymbol{\beta}}_{\left(S^{*}\right)^{c}}\right\|_{1} \\
& \leq \lambda\left\|\boldsymbol{h}_{S^{*}}\right\|_{1}-\lambda\left\|\boldsymbol{h}_{\left(S^{*}\right)^{c}}\right\|_{1} \tag{21}\\
& \leq \lambda\left\|\boldsymbol{h}_{S_{0}}\right\|_{1}-\lambda\left\|\boldsymbol{h}_{\left(S_{0}\right)^{c}}\right\|_{1},
\end{align*}
$$

where this last relation holds by definition of S_{0}. We now want to lower bound $\Delta\left(\boldsymbol{\beta}^{*}, \boldsymbol{h}\right)$. Exploiting the existence of a bounded sub-Gradient ∂f we obtain

$$
\Delta\left(\boldsymbol{\beta}^{*}, \boldsymbol{h}\right) \geq S\left(\boldsymbol{\beta}^{*}, \boldsymbol{h}\right):=\frac{1}{n} \sum_{i=1}^{n} \partial f\left(\left\langle\boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{\beta}^{*}\right\rangle ; y_{i}\right)\left\langle\boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{h}\right\rangle .
$$

In addition we have:

$$
\begin{aligned}
\left|S\left(\boldsymbol{\beta}^{*}, \boldsymbol{h}\right)\right| & =\left|\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{p} \partial f\left(\left\langle\boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{\beta}^{*}\right\rangle ; y_{i}\right) x_{i j} h_{j}\right| \\
& \leq \frac{1}{\sqrt{n}} \sum_{j=1}^{p}\left(\frac{1}{\sqrt{n}}\left|\sum_{i=1}^{n} \partial f\left(\left\langle\boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{\beta}^{*}\right\rangle ; y_{i}\right) x_{i j}\right|\right)\left|h_{j}\right| .
\end{aligned}
$$

Let us define the independent random variables $g_{j}=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \partial f\left(\left\langle\boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{\beta}^{*}\right\rangle ; y_{i}\right) x_{i j}, j=1, \ldots, p$.
Assumption 3 guarantees that g_{1}, \ldots, g_{p} are sub-Gaussian with variance $L^{2} M^{2}$. A first upper-bound of the quantity $|S(\boldsymbol{h})|$ could be obtained by considering the maximum of the sequence $\left\{g_{j}\right\}$. However Lemma 5 gives us a stronger result.

Indeed, since $\delta \leq 1$ we introduce a non-increasing rearrangement $\left(g_{(1)}, \ldots, g_{(p)}\right)$ of $\left(\left|g_{1}\right|, \ldots,\left|g_{p}\right|\right)$. We recall that $S_{0}=\left\{1, \ldots, k^{*}\right\}$ denotes the subset of indexes of the k^{*} highest elements of \boldsymbol{h} and we use Lemma 5 to get, with probability at least $1-\frac{\delta}{2}$:

$$
\begin{align*}
\left|S\left(\boldsymbol{\beta}^{*}, \boldsymbol{h}\right)\right| & \leq \frac{1}{\sqrt{n}} \sum_{j=1}^{p} g_{j}\left|h_{j}\right|=\frac{1}{\sqrt{n}} \sum_{j=1}^{p} g_{(j)}\left|h_{(j)}\right|=\frac{1}{\sqrt{n}} \sum_{j=1}^{p} \frac{g_{(j)}}{L M \lambda_{j}} L M \lambda_{j}\left|h_{(j)}\right| \\
& \leq \frac{1}{\sqrt{n}} \sup _{j=1, \ldots, p}\left\{\frac{g_{(j)}}{L M \lambda_{j}}\right\} \sum_{j=1}^{p} L M \lambda_{j}\left|h_{(j)}\right| \\
& \leq 12 L M \sqrt{\frac{\log (2 / \delta)}{n}} \sum_{j=1}^{p} \lambda_{j}\left|h_{(j)}\right| \text { with Lemma } 5 \\
& \leq 12 L M \sqrt{\frac{\log (2 / \delta)}{n}} \sum_{j=1}^{p} \lambda_{j}\left|h_{j}\right| \text { since } \lambda_{1} \geq \ldots \geq \lambda_{p} \text { and }\left|h_{1}\right| \geq \ldots \geq\left|h_{p}\right| \tag{22}\\
& \leq 12 L M \sqrt{\frac{\log (2 / \delta)}{n}}\left(\sum_{j=1}^{k^{*}} \lambda_{j}\left|h_{j}\right|+\lambda_{k^{*}} \sum_{j=k^{*}}^{p}\left|h_{j}\right|\right) \\
& =12 L M \sqrt{\frac{\log (2 / \delta)}{n}}\left(\sum_{j=1}^{k^{*}} \lambda_{j}\left|h_{j}\right|+\lambda_{k^{*}}| | \boldsymbol{h}_{\left.\left(S_{0}\right)^{c} \|_{1}\right)}\right) .
\end{align*}
$$

Cauchy-Schwartz inequality leads to:

$$
\sum_{j=1}^{k^{*}} \lambda_{j}\left|h_{j}\right| \leq \sqrt{\sum_{j=1}^{k^{*}} \lambda_{j}^{2}}\left\|\boldsymbol{h}_{S_{0}}\right\|_{2} \leq \sqrt{k^{*} \log \left(2 p e / k^{*}\right)}\left\|\boldsymbol{h}_{S_{0}}\right\|_{2}
$$

where we have used the Stirling formula to get $\left(\frac{n}{e}\right)^{n} \leq n!$ and we have used:

$$
\begin{aligned}
\sum_{j=1}^{k^{*}} \lambda_{j}^{2}=\sum_{j=1}^{k^{*}} \log (2 p / j) & =k^{*} \log (2 p)-\log \left(k^{*}!\right) \\
& \leq k^{*} \log (2 p)-k^{*} \log \left(k^{*} / e\right)=k^{*} \log \left(2 p e / k^{*}\right)
\end{aligned}
$$

In the statement of Theorem 2 we have defined $\lambda=12 \alpha L M \sqrt{n^{-1} \log \left(2 p e / k^{*}\right) \log (2 / \delta)}$. Because $\lambda_{k^{*}} \leq \sqrt{\log \left(2 p e / k^{*}\right)}$, Equation (22) leads to:

$$
\left|S\left(\boldsymbol{\beta}^{*}, \boldsymbol{h}\right)\right| \leq \frac{1}{\alpha} \lambda\left(\sqrt{k^{*}}\left\|\boldsymbol{h}_{S_{0}}\right\|_{2}+\left\|\boldsymbol{h}_{\left(S_{0}\right)^{c}}\right\|_{1}\right)
$$

Combined with Equation (21), it holds with probability at least $1-\frac{\delta}{2}$:

$$
-\frac{\lambda}{\alpha}\left(\sqrt{k^{*}}\left\|\boldsymbol{h}_{S_{0}}\right\|_{2}+\left\|\boldsymbol{h}_{\left(S_{0}\right)^{c}}\right\|_{1}\right) \leq \lambda\left\|\boldsymbol{h}_{S_{0}}\right\|_{1}-\lambda\left\|\boldsymbol{h}_{\left(S_{0}\right)^{c}}\right\|_{1},
$$

which immediately leads to:

$$
\left\|\boldsymbol{h}_{\left(S_{0}\right)^{c}}\right\|_{1} \leq \frac{\alpha}{\alpha-1}\left\|\boldsymbol{h}_{S_{0}}\right\|_{1}+\frac{\sqrt{k^{*}}}{\alpha-1}\left\|\boldsymbol{h}_{S_{0}}\right\|_{2} .
$$

We conclude that $\boldsymbol{h} \in \Lambda\left(S_{0}, \frac{\alpha}{\alpha-1}, \frac{\sqrt{k^{*}}}{\alpha-1}\right)$ with probability at least $1-\frac{\delta}{2}$.

C Proof of Theorem 3:

Proof: Let $k \in\{1, \ldots, p\}$ and $S_{1}, \ldots S_{q}$ be a partition of $\{1, \ldots, p\}$ such that $q=\lceil p / k\rceil$ and $\left|S_{\ell}\right| \leq k, \forall \ell$. We divide the proof of the theorem in 3 steps. We first upper-bound the inner supremum for a sequence of k sparse vectors $z_{S_{1}}, \ldots, \boldsymbol{z}_{S_{q}}$ satisfying $\left\|z_{S_{\ell}}\right\|_{1} \leq 3 R, \forall \ell$. We then extend this bound for the supremum over the compact set of sequences considered through an ϵ-net argument.

Step 1: Let us fix a sequence $\boldsymbol{z}_{S_{1}}, \ldots, \boldsymbol{z}_{S_{q}} \in \mathbb{R}^{p}: \operatorname{Supp}\left(\boldsymbol{z}_{S_{j}}\right) \subset S_{j}, \forall j$ and $\left\|\boldsymbol{z}_{S_{\ell}}\right\|_{1} \leq 3 R, \forall \ell$. In particular, $\left\|\boldsymbol{z}_{S_{j}}\right\|_{0} \leq k, \forall j$. In the rest of the proof, we define $\boldsymbol{z}_{S_{0}}=\mathbf{0}$ and:

$$
\begin{equation*}
\boldsymbol{w}_{\ell}=\boldsymbol{\beta}^{*}+\sum_{j=1}^{\ell} \boldsymbol{z}_{S_{j}}, \quad \forall \ell \in\{1, \ldots, q\} \tag{23}
\end{equation*}
$$

In addition, we introduce $Z_{i \ell}, \forall i \in\{1, \ldots, n\}, \forall \ell \in\{1, \ldots, q\}$ as follows:

$$
Z_{i \ell}=f\left(\left\langle\boldsymbol{x}_{i}, \boldsymbol{w}_{\ell}\right\rangle ; y_{i}\right)-f\left(\left\langle\boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{w}_{\ell-1}\right\rangle ; y_{i}\right)=f\left(\left\langle\boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{w}_{\ell-1}+\boldsymbol{z}_{S_{\ell}}\right\rangle ; y_{i}\right)-f\left(\left\langle\boldsymbol{x}_{i}, \boldsymbol{w}_{\ell-1}\right\rangle ; y_{i}\right) .
$$

We fix $\ell \in\{1, \ldots, q\}$. Let us note that:

$$
\begin{align*}
\Delta\left(\boldsymbol{w}_{\ell-1}, \boldsymbol{z}_{S_{\ell}}\right) & =\frac{1}{n} \sum_{i=1}^{n} f\left(\left\langle\boldsymbol{x}_{i}, \boldsymbol{w}_{\ell-1}+\boldsymbol{z}_{S_{\ell}}\right\rangle ; y_{i}\right)-\frac{1}{n} \sum_{i=1}^{n} f\left(\left\langle\boldsymbol{x}_{i}, \boldsymbol{w}_{\ell-1}\right\rangle ; y_{i}\right) \\
& =\frac{1}{n} \sum_{i=1}^{n}\left\{f\left(\left\langle\boldsymbol{x}_{i}, \boldsymbol{w}_{\ell-1}+\boldsymbol{z}_{S_{\ell}}\right\rangle ; y_{i}\right)-f\left(\left\langle\boldsymbol{x}_{i}, \boldsymbol{w}_{\ell-1}\right\rangle ; y_{i}\right)\right\} \tag{24}\\
& =\frac{1}{n} \sum_{i=1}^{n} z_{i \ell} .
\end{align*}
$$

Assumption 1 guarantees that $f(., y)$ is L-Lipschitz $\forall y$ then:

$$
\left|Z_{i \ell}\right| \leq L\left|\left\langle\boldsymbol{x}_{i}, \boldsymbol{z}_{S_{\ell}}\right\rangle\right| .
$$

Then using Assumption $4.1(k)$ on the k sparse vector $\boldsymbol{z}_{S_{\ell}}$ it holds:

$$
\left|\Delta\left(\boldsymbol{w}_{\ell-1}, \boldsymbol{z}_{S_{\ell}}\right)\right| \leq \frac{1}{n} \sum_{i=1}^{n}\left|Z_{i \ell}\right| \leq \frac{1}{n} \sum_{i=1}^{n} L\left|\left\langle\boldsymbol{x}_{i}, \boldsymbol{z}_{S_{\ell}}\right\rangle\right|=\frac{L}{n}\left\|\mathbb{X} \boldsymbol{z}_{S_{\ell}}\right\|_{1} \leq \frac{L \mu(k)}{\sqrt{n k}}\left\|\boldsymbol{z}_{S_{\ell}}\right\|_{1} .
$$

Hence, with Hoeffding's lemma, the centered bounded random variable $\Delta\left(\boldsymbol{w}_{\ell-1}, \boldsymbol{z}_{S_{\ell}}\right)-\mathbb{E}\left(\Delta\left(\boldsymbol{w}_{\ell-1}, \boldsymbol{z}_{S_{\ell}}\right)\right)$ is sub-Gaussian with variance $\frac{L^{2} \mu(k)^{2}}{n k}\left\|\boldsymbol{z}_{S_{\ell}}\right\|_{1}^{2}$. It then hold, $\forall t>0$,

$$
\begin{equation*}
\mathbb{P}\left(\left|\Delta\left(\boldsymbol{w}_{\ell-1}, \boldsymbol{z}_{S_{\ell}}\right)-\mathbb{E}\left(\Delta\left(\boldsymbol{w}_{\ell-1}, \boldsymbol{z}_{S_{\ell}}\right)\right)\right| \geq t\left\|\boldsymbol{z}_{S_{\ell}}\right\|_{1}\right) \leq 2 \exp \left(-\frac{k n t^{2}}{2 L^{2} \mu(k)^{2}}\right) \tag{25}
\end{equation*}
$$

Equation (25) holds for all values of ℓ. Thus, an union bound immediately gives:

$$
\begin{equation*}
\mathbb{P}\left(\sup _{\ell=1, \ldots, q}\left\{\left|\Delta\left(\boldsymbol{w}_{\ell-1}, \boldsymbol{z}_{S_{\ell}}\right)-\mathbb{E}\left(\Delta\left(\boldsymbol{w}_{\ell-1}, \boldsymbol{z}_{S_{\ell}}\right)\right)\right|-t\left\|\boldsymbol{z}_{S_{\ell}}\right\|_{1}\right\} \geq 0\right) \leq 2\left\lceil\frac{p}{k}\right\rceil \exp \left(-\frac{k n t^{2}}{2 L^{2} \mu(k)^{2}}\right) . \tag{26}
\end{equation*}
$$

Step 2: We extend the result to any sequence of vectors $\boldsymbol{z}_{S_{1}, \ldots,} \boldsymbol{z}_{S_{q}} \in \mathbb{R}^{p}: \operatorname{Supp}\left(\boldsymbol{z}_{S_{\ell}}\right) \subset S_{\ell}$ and $\left\|z_{S_{\ell}}\right\|_{1} \leq 3 R, \forall \ell$ throught an ϵ-net argument.

We recall that an ϵ-net of a set \mathcal{I} is a subset \mathcal{N} of \mathcal{I} such that each element of I is at a distance at most ϵ of \mathcal{N}. We know from Lemma 1.18 from Rigollet [2015], that for any $\epsilon \in(0,1)$, the ball $\left\{\boldsymbol{z} \in \mathbb{R}^{d}:\|\boldsymbol{z}\|_{1} \leq R\right\}$ has an ϵ-net of cardinality $|\mathcal{N}| \leq\left(\frac{2 R+1}{\epsilon}\right)^{d}$ - the ϵ-net is defined in term for the L1 norm. In addition, by following the proof of the lemma, we can create this set such that it contains $\mathbf{0}$.
Consequently, we use Equation (26) on a product of ϵ-nets $\mathcal{N}_{k, R}=\prod_{\ell=1}^{q} \mathcal{N}_{k, R}^{\ell}$. Each $\mathcal{N}_{k, R}^{\ell}$ is an ϵ-net of the bounded set of k sparse vectors $\mathcal{I}_{k, R}^{\ell}=\left\{\boldsymbol{z}_{S_{\ell}} \in \mathbb{R}^{p}: \operatorname{Supp}\left(\boldsymbol{z}_{S_{\ell}}\right) \subset S_{\ell} ;\left\|\boldsymbol{z}_{S_{\ell}}\right\|_{1} \leq 3 R\right\}$ which contains $\mathbf{0}_{S_{\ell}}$. We note $\mathcal{I}_{k, R}=\prod_{\ell=1}^{q} \mathcal{I}_{k, R}^{\ell}$. It then holds:

$$
\begin{align*}
& \mathbb{P}\left(\sup _{\left(\boldsymbol{z}_{S_{1}}, \ldots, \boldsymbol{z}_{S_{q}}\right) \in \mathcal{N}_{k, R}}\left\{\sup _{\ell=1, \ldots, q}\left\{\left|\Delta\left(\boldsymbol{w}_{\ell-1}, \boldsymbol{z}_{S_{\ell}}\right)-\mathbb{E}\left(\Delta\left(\boldsymbol{w}_{\ell-1}, \boldsymbol{z}_{S_{\ell}}\right)\right)\right|-t\left\|\boldsymbol{z}_{S_{\ell}}\right\|_{1}\right\} \geq 0\right\}\right) \tag{27}\\
& \leq 2\left\lceil\frac{p}{k}\right\rceil\left(\frac{6 R+1}{\epsilon}\right)^{k}\left\lceil\frac{p}{k}\right\rceil \exp \left(-\frac{k n t^{2}}{2 L^{2} \mu(k)^{2}}\right) \leq 2\left(\frac{2 p}{k}\right)^{2}\left(\frac{6 R+1}{\epsilon}\right)^{k} \exp \left(-\frac{k n t^{2}}{2 L^{2} \mu(k)^{2}}\right) .
\end{align*}
$$

Step 3: We now extend Equation (27) to control any vector in $\mathcal{I}_{k, R}$. For $\boldsymbol{z}_{S_{1}, \ldots, \boldsymbol{z}_{S_{q}} \in \mathcal{I}_{k, R} \text {, there exists }}$ $\tilde{\boldsymbol{z}}_{S_{1}}, \ldots, \tilde{\boldsymbol{z}}_{S_{q}} \in \mathcal{N}_{k, R}$ such that $\left\|\boldsymbol{z}_{S_{\ell}}-\tilde{\boldsymbol{z}}_{S_{\ell}}\right\|_{1} \leq \epsilon, \forall \ell$. Similarly to Equation (23), we define:

$$
\tilde{\boldsymbol{w}}_{\ell}=\boldsymbol{\beta}^{*}+\sum_{j=1}^{\ell} \tilde{\boldsymbol{z}}_{S_{j}}, \quad \forall \ell \in\{1, \ldots, q\} .
$$

For a given t, let us define

$$
f_{t}\left(\boldsymbol{w}_{\ell-1}, \boldsymbol{z}_{S_{\ell}}\right)=\left|\Delta\left(\boldsymbol{w}_{\ell-1}, \boldsymbol{z}_{S_{\ell}}\right)-\mathbb{E}\left(\boldsymbol{w}_{\ell-1}, \boldsymbol{z}_{S_{\ell}}\right)\right|-t\left\|\boldsymbol{z}_{S_{\ell}}\right\|_{1}, \forall \ell .
$$

We fix $\ell_{0}(t)$ such that $\ell_{0}(t) \in \underset{\ell=1, \ldots, q}{\operatorname{argmax}}\left\{f_{7 t}\left(\boldsymbol{w}_{\ell-1}, \boldsymbol{z}_{S_{\ell}}\right)\right\}$. The choice of $7 t$ will be justified later. We fix t and will just note $\ell_{0}=\ell_{0}(t)$ when no confusion can be made.

With Assumption 1 we obtain:

$$
\begin{align*}
& \left|\Delta\left(\boldsymbol{w}_{\ell_{0}-1}, \boldsymbol{z}_{S_{\ell_{0}}}\right)-\Delta\left(\tilde{\boldsymbol{w}}_{\ell_{0}-1}, \tilde{\boldsymbol{z}}_{S_{\ell_{0}}}\right)\right| \\
& =\frac{1}{n}\left|\sum_{i=1}^{n} f\left(\left\langle\boldsymbol{x}_{i}, \boldsymbol{w}_{\ell_{0}}\right\rangle ; y_{i}\right)-\sum_{i=1}^{n} f\left(\left\langle\boldsymbol{x}_{i}, \tilde{\boldsymbol{w}}_{\ell_{0}}\right\rangle ; y_{i}\right)+\sum_{i=1}^{n} f\left(\left\langle\boldsymbol{x}_{i}, \tilde{\boldsymbol{w}}_{\ell_{0}-1}\right\rangle ; y_{i}\right)-\sum_{i=1}^{n} f\left(\left\langle\boldsymbol{x}_{i}, \boldsymbol{w}_{\ell_{0}-1}\right\rangle ; y_{i}\right)\right| \\
& \leq \frac{1}{n} \sum_{i=1}^{n} L\left|\left\langle\boldsymbol{x}_{i}, \boldsymbol{w}_{\ell_{0}}-\tilde{\boldsymbol{w}}_{\ell_{0}}\right\rangle\right|+\frac{1}{n} \sum_{i=1}^{n} L\left|\left\langle\boldsymbol{x}_{i}, \boldsymbol{w}_{\ell_{0}-1}-\tilde{\boldsymbol{w}}_{\ell_{0}-1}\right\rangle\right| \\
& =\frac{1}{n} \sum_{i=1}^{n} L\left|\sum_{\ell=1}^{\ell_{0}}\left\langle\boldsymbol{x}_{i}, \boldsymbol{z}_{S_{\ell}}-\tilde{\boldsymbol{z}}_{S_{\ell}}\right\rangle\right|+\frac{1}{n} \sum_{i=1}^{n} L\left|\sum_{\ell=1}^{\ell_{0}-1}\left\langle\boldsymbol{x}_{i}, \boldsymbol{z}_{S_{\ell}}-\tilde{\boldsymbol{z}}_{S_{\ell}}\right\rangle\right| \\
& \leq \frac{2}{n} \sum_{i=1}^{n} \sum_{\ell=1}^{q} L\left|\left\langle\boldsymbol{x}_{i}, \boldsymbol{z}_{S_{\ell}}-\tilde{\boldsymbol{z}}_{S_{\ell}}\right\rangle\right| \\
& =\frac{2}{\sqrt{n}} \sum_{\ell=1}^{q} \frac{L}{\sqrt{n}}\left\|\boldsymbol{X}\left(\boldsymbol{z}_{S_{\ell}}-\tilde{\boldsymbol{z}}_{S_{\ell}}\right)\right\|_{1} \\
& \leq \frac{2}{\sqrt{n}} \sum_{\ell=1}^{q} \frac{L}{\sqrt{k}} \mu(k)\left\|\boldsymbol{z}_{S_{\ell}}-\tilde{\boldsymbol{z}}_{S_{\ell}}\right\|_{1} \\
& \leq \frac{2 p}{k \sqrt{k n}} L \mu(k) \epsilon \leq \eta \epsilon . \tag{28}
\end{align*}
$$

where $\eta=\frac{2 L \mu(k)}{\sqrt{n}}$ and we have used Assumption 5.1(k). It then holds:

$$
\begin{aligned}
f_{t}\left(\tilde{\boldsymbol{w}}_{\ell_{0}-1}, \tilde{\boldsymbol{z}}_{S_{\ell_{0}}}\right) \geq & f_{t}\left(\boldsymbol{w}_{\ell_{0}-1}, \boldsymbol{z}_{S_{\ell_{0}}}\right)-\left|\Delta\left(\boldsymbol{w}_{\ell_{0}-1}, \boldsymbol{z}_{S_{\ell_{0}}}\right)-\Delta\left(\tilde{\boldsymbol{w}}_{\ell_{0}-1}, \tilde{\boldsymbol{z}}_{S_{\ell_{0}}}\right)\right| \\
& -\left|\mathbb{E}\left(\Delta\left(\boldsymbol{w}_{\ell_{0}-1}, \boldsymbol{z}_{S_{\ell_{0}}}\right)-\Delta\left(\tilde{\boldsymbol{w}}_{\ell_{0}-1}, \tilde{\boldsymbol{z}}_{S_{\ell_{0}}}\right)\right)\right|-t\left\|\boldsymbol{z}_{S_{\ell_{0}}}-\tilde{\boldsymbol{z}}_{S_{\ell_{0}}}\right\|_{1} \\
\geq & \geq f_{t}\left(\boldsymbol{w}_{\ell_{0}-1}, \boldsymbol{z}_{S_{\ell_{0}}}\right)-2 \eta \epsilon-t \epsilon .
\end{aligned}
$$

Case 1: Let us assume that $\left\|\boldsymbol{z}_{S_{\ell_{0}}}\right\|_{1} \geq \epsilon / 2$ and that $t \geq \eta$, then we have:

$$
\begin{equation*}
f_{t}\left(\tilde{\boldsymbol{w}}_{\ell_{0}-1}, \tilde{\boldsymbol{z}}_{S_{\ell_{0}}}\right) \geq f_{t}\left(\boldsymbol{w}_{\ell_{0}-1}, \boldsymbol{z}_{S_{\ell_{0}}}\right)-2(2 \eta+t)\left\|\boldsymbol{z}_{S_{\ell_{0}}}\right\|_{1} \geq f_{7 t}\left(\boldsymbol{w}_{\ell_{0}-1}, \boldsymbol{z}_{S_{\ell_{0}}}\right) . \tag{29}
\end{equation*}
$$

Case 2: We now assume $\left\|\boldsymbol{z}_{S_{\ell_{0}}}\right\|_{1} \leq \epsilon / 2$. Since $\mathbf{0}_{S_{\ell_{0}}} \in \mathcal{N}_{k, R}$ we derive similarly to Equation (28):

$$
\left|\Delta\left(\boldsymbol{w}_{\ell_{0}-1}, \boldsymbol{z}_{S_{\ell_{0}}}\right)-\Delta\left(\boldsymbol{w}_{\ell_{0}-1}, \mathbf{0}_{S_{\ell_{0}}}\right)\right| \leq \frac{L \mu(k)}{\sqrt{n k}}\left\|\boldsymbol{z}_{S_{\ell_{0}}}\right\|_{1},
$$

which then implies that:

$$
f_{7 t}\left(\boldsymbol{w}_{\ell_{0}-1}, \boldsymbol{z}_{S_{\ell_{0}}}\right) \leq f_{7 t}\left(\boldsymbol{w}_{\ell_{0}-1}, \mathbf{0}_{S_{\ell_{0}}}\right)+\frac{2 L \mu(k)}{\sqrt{n k}}\left\|\boldsymbol{z}_{S_{\ell_{0}}}\right\|_{1}-7 t\left\|\boldsymbol{z}_{S_{\ell_{0}}}\right\|_{1},
$$

and this quantity is smaller than $f_{7 t}\left(\boldsymbol{w}_{\ell_{0}-1}, \mathbf{0}_{S_{\ell_{0}}}\right)$ as long as $7 t \geq \frac{2 L \mu(k)}{\sqrt{n k}}$. The latter condition is satisfied if $t \geq \eta$.
In this case, we can define a new $\tilde{\ell}_{0}$ for the sequence $\boldsymbol{z}_{S_{1}}, \ldots, \boldsymbol{z}_{S_{\ell_{0}-1}}, \mathbf{0}_{S_{\ell_{0}}}, \boldsymbol{z}_{S_{\ell_{0}+1}}, \ldots, \boldsymbol{z}_{S_{q}}$. After a finite number of iteration, by using the result in Equation (29) and the definition of ℓ_{0}, we finally get that $f_{7 t}\left(\boldsymbol{w}_{\ell_{0}-1}, \boldsymbol{z}_{S_{\ell_{0}}}\right) \leq f_{t}\left(\tilde{\boldsymbol{w}}_{\ell_{0}-1}, \tilde{\boldsymbol{z}}_{S_{\ell_{0}}}\right)$ for some $\tilde{\boldsymbol{z}}_{S_{1}}, \ldots, \tilde{\boldsymbol{z}}_{S_{q}} \in \mathcal{N}_{k, R}$.

As a consequence of cases 1 and 2 , we obtain: $\forall t \geq \eta, \forall \boldsymbol{z}_{S_{1}}, \ldots, \boldsymbol{z}_{S_{q}} \in \mathcal{I}_{k, R}, \exists \tilde{\boldsymbol{z}}_{S_{1}}, \ldots, \tilde{\boldsymbol{z}}_{S_{q}} \in \mathcal{N}_{k, R}$:

$$
\sup _{\ell=1, \ldots, q} f_{7 t}\left(\boldsymbol{w}_{\ell-1}, \boldsymbol{z}_{S_{\ell}}\right)=f_{7 t}\left(\boldsymbol{w}_{\ell_{0}-1}, \boldsymbol{z}_{S_{\ell_{0}}}\right) \leq f_{t}\left(\tilde{\boldsymbol{w}}_{\ell_{0}-1}, \tilde{\boldsymbol{z}}_{S_{\ell_{0}}}\right) \leq \sup _{\ell=1, \ldots, q} f_{t}\left(\tilde{\boldsymbol{w}}_{\ell-1}, \tilde{\boldsymbol{z}}_{S_{\ell}}\right) .
$$

This last relation is equivalent to saying that $\forall t \geq 7 \eta$:

$$
\begin{equation*}
\sup _{z_{S_{1}}, \ldots, \boldsymbol{z}_{S_{q}} \in \mathcal{I}_{k, R}}\left\{\sup _{\ell=1, \ldots, q} f_{t}\left(\boldsymbol{w}_{\ell-1}, \boldsymbol{z}_{S_{\ell}}\right)\right\} \leq \sup _{\boldsymbol{z}_{S_{1}, \ldots, \boldsymbol{z}_{S_{q}} \in \mathcal{N}_{k, R}}}\left\{\sup _{\ell=1, \ldots, q} f_{t / 7}\left(\tilde{\boldsymbol{w}}_{\ell-1}, \tilde{\boldsymbol{z}}_{S_{\ell}},\right)\right\} . \tag{30}
\end{equation*}
$$

As a consequence, we have $\forall t \geq 7 \eta$:

$$
\begin{align*}
& \mathbb{P}\left(\sup _{\boldsymbol{z}_{S_{1}}, \ldots, \boldsymbol{z}_{S_{q}} \in \mathcal{I}_{k, R}}\left\{\sup _{\ell=1, \ldots, q}\left\{\left|\Delta\left(\boldsymbol{w}_{\ell-1}, \boldsymbol{z}_{S_{\ell}}\right)-\mathbb{E}\left(\Delta\left(\boldsymbol{w}_{\ell-1}, \boldsymbol{z}_{S_{\ell}}\right)\right)\right|-t\left\|\boldsymbol{z}_{S_{\ell}}\right\|_{1}\right\}\right\} \geq 0\right) \\
& \leq \mathbb{P}\left(\sup _{\boldsymbol{z}_{S_{1}}, \ldots, \boldsymbol{z}_{S_{q}} \in \mathcal{N}_{k, R}}\left\{\sup _{\ell=1, \ldots, q}\left\{\left|\Delta\left(\boldsymbol{w}_{\ell-1}, \boldsymbol{z}_{S_{\ell}}\right)-\mathbb{E}\left(\Delta\left(\boldsymbol{w}_{\ell-1}, \boldsymbol{z}_{S_{\ell}}\right)\right)\right|-\frac{t}{7}\left\|\boldsymbol{z}_{S_{\ell}}\right\|_{1}\right\}\right\} \geq 0\right) \tag{31}\\
& \leq 2\left(\frac{2 p}{k}\right)^{2}\left(\frac{6 R+1}{\epsilon}\right)^{k} \exp \left(-\frac{k n(t / 7)^{2}}{2 L^{2} \mu(k)^{2}}\right) \\
& \leq\left(\frac{4 p}{k}\right)^{2} 3^{k} \exp \left(-\frac{k n t^{2}}{98 L^{2} \mu(k)^{2}}\right) \text { by fixing } \epsilon=2 R \text { and since } R \geq 1 .
\end{align*}
$$

Thus we select t such that $t \geq 7 \eta$ and that the condition $t^{2} \geq \frac{98 L^{2} \mu(k)^{2}}{k n}\left[k \log (3)+2 \log \left(\frac{4 p}{k}\right)+\log \left(\frac{2}{\delta}\right)\right]$ holds ${ }^{1}$. To this end, we define:

$$
\tau=14 L \mu(k) \sqrt{\frac{\log (3)}{n}+\frac{\log (4 p / k)}{n k}+\frac{\log (2 / \delta)}{n k}} \geq 7 \eta .
$$

We conclude that with probability at least $1-\frac{\delta}{2}$:

$$
\sup _{\boldsymbol{z}_{S_{1}}, \ldots, \boldsymbol{z}_{S_{q}} \in \mathcal{I}_{k, R}}\left\{\sup _{\ell=1, \ldots, q}\left\{\left|\Delta\left(\boldsymbol{w}_{\ell-1}, \boldsymbol{z}_{S_{\ell}}\right)-\mathbb{E}\left(\Delta\left(\boldsymbol{w}_{\ell-1}, \boldsymbol{z}_{S_{\ell}}\right)\right)\right|-\tau\left(\left\|\boldsymbol{z}_{S_{\ell}}\right\|_{1} \vee \eta\right)\right\}\right\} \leq 0
$$

[^0]
D Proof of Theorem 4:

Proof: The proof is divided in two steps. First, we lower-bound the quantity $\Delta\left(\boldsymbol{\beta}^{*}, \boldsymbol{h}\right)$ with Theorem 3. Second, we refine this lower-bound with the use of the cone condition derived in Theorem 2 and the restricted eigenvalue condition presented in Assumption 4.2.

Step 1: Let us fix the partition of $\{1, \ldots, p\}: S_{1}=\left\{1, \ldots, k^{*}\right\}, S_{2}=\left\{k^{*}+1, \ldots, 2 k^{*}\right\}, \ldots, S_{q}-$ with $q=\left\lceil p / k^{*}\right\rceil$. Recall that $\boldsymbol{h}=\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{*}$. Then it holds $\left|S_{\ell}\right| \leq k^{*}$ and $\left\|\boldsymbol{h}_{S_{\ell}}\right\|_{1} \leq 3 R$. We thus can use Theorem 3 for the corresponding sequence $\boldsymbol{h}_{S_{1}}, \ldots, \boldsymbol{h}_{S_{q}}$ of k^{*} sparse vectors.

$$
\begin{align*}
\Delta\left(\boldsymbol{\beta}^{*}, \boldsymbol{h}\right) & =\frac{1}{n} \sum_{i=1}^{n} f\left(\left\langle\boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{\beta}^{*}+\boldsymbol{h}\right\rangle ; y_{i}\right)-\frac{1}{n} \sum_{i=1}^{n} f\left(\left\langle\boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{\beta}^{*}\right\rangle ; y_{i}\right) \\
& =\frac{1}{n} \sum_{i=1}^{n} f\left(\left\langle\boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{\beta}^{*}+\sum_{j=1}^{q} \boldsymbol{h}_{S_{j}}\right\rangle ; y_{i}\right)-\frac{1}{n} \sum_{i=1}^{n} f\left(\left\langle\boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{\beta}^{*}\right\rangle ; y_{i}\right) \\
& =\sum_{\ell=1}^{q}\left\{\frac{1}{n} \sum_{i=1}^{n} f\left(\left\langle\boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{\beta}^{*}+\sum_{j=1}^{\ell} \boldsymbol{h}_{S_{j}}\right\rangle ; y_{i}\right)-\frac{1}{n} \sum_{i=1}^{n} f\left(\left\langle\boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{\beta}^{*}+\sum_{j=0}^{\ell-1} \boldsymbol{h}_{S_{j}}\right\rangle ; y_{i}\right)\right\} \tag{32}\\
& =\sum_{\ell=1}^{q} \Delta\left(\boldsymbol{\beta}^{*}+\sum_{j=0}^{\ell-1} \boldsymbol{h}_{S_{j}}, \boldsymbol{h}_{S_{\ell}}\right) \\
& =\sum_{\ell=1}^{q} \Delta\left(\boldsymbol{w}_{\ell-1}, \boldsymbol{h}_{S_{\ell}}\right) .
\end{align*}
$$

where we have defined $\boldsymbol{w}_{\ell}=\boldsymbol{\beta}^{*}+\sum_{j=1}^{\ell} \boldsymbol{h}_{S_{j}}, \forall \ell$ and $\boldsymbol{h}_{S_{0}}=\mathbf{0}$ as in the proof of Theorem 3. Consequently, with Theorem 3, it holds with probability at least $1-\frac{\delta}{2}$:

$$
\left|\Delta\left(\boldsymbol{w}_{\ell-1}, \boldsymbol{h}_{S_{\ell}}\right)-\mathbb{E}\left(\boldsymbol{w}_{\ell-1}, \boldsymbol{h}_{S_{\ell}}\right)\right| \geq \tau\left\|\boldsymbol{h}_{S_{\ell}}\right\|_{1}, \forall \ell
$$

where $\tau=\tau\left(k^{*}\right)=14 L \mu\left(k^{*}\right) \sqrt{\frac{\log (3)}{n}+\frac{\log \left(4 p / k^{*}\right)}{n k^{*}}+\frac{\log (2 / \delta)}{n k^{*}}}$ is fixed in the rest of the proof.
As a result, following Equation (32), we have with probability at least $1-\frac{\delta}{2}$:

$$
\begin{align*}
\Delta\left(\boldsymbol{\beta}^{*}, \boldsymbol{h}\right) & \geq \sum_{\ell=1}^{q}\left\{\mathbb{E}\left(\boldsymbol{w}_{\ell-1}, \boldsymbol{h}_{S_{\ell}}\right)-\tau\left\|\boldsymbol{h}_{S_{\ell}}\right\|_{1}\right\} \\
& =\mathbb{E}\left(\sum_{\ell=1}^{q} \Delta\left(\boldsymbol{w}_{\ell-1}, \boldsymbol{h}_{S_{\ell}}\right)\right)-\sum_{\ell=1}^{q} \tau\left\|\boldsymbol{h}_{S_{\ell}}\right\|_{1} \tag{33}\\
& =\mathbb{E}\left(\Delta\left(\boldsymbol{\beta}^{*}, \boldsymbol{h}\right)\right)-\tau\|\boldsymbol{h}\|_{1} .
\end{align*}
$$

In addition, since the samples are identical drawn:

$$
\mathbb{E}\left(\Delta\left(\boldsymbol{\beta}^{*}, \boldsymbol{h}\right)\right)=\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left\{f\left(\left\langle\boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{\beta}^{*}+\boldsymbol{h}\right\rangle ; y_{i}\right)-f\left(\left\langle\boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{\beta}^{*}\right\rangle ; y_{i}\right)\right\}=\mathcal{L}\left(\boldsymbol{\beta}^{*}+\boldsymbol{h}\right)-\mathcal{L}\left(\boldsymbol{\beta}^{*}\right) .
$$

Consequently, we conclude that with probability at least $1-\frac{\delta}{2}$:

$$
\begin{equation*}
\Delta\left(\boldsymbol{\beta}^{*}, \boldsymbol{h}\right) \geq \mathcal{L}\left(\boldsymbol{\beta}^{*}+\boldsymbol{h}\right)-\mathcal{L}\left(\boldsymbol{\beta}^{*}\right)-\tau\|\boldsymbol{h}\|_{1} . \tag{34}
\end{equation*}
$$

Step 2: We now lower-bound the right-hand side of Equation (34). Since \mathcal{L} is twice differentiable, a Taylor development around $\boldsymbol{\beta}^{*}$ gives:

$$
\mathcal{L}\left(\boldsymbol{\beta}^{*}+\boldsymbol{h}\right)-\mathcal{L}\left(\boldsymbol{\beta}^{*}\right)=\nabla \mathcal{L}\left(\boldsymbol{\beta}^{*}\right)^{T} \boldsymbol{h}+\frac{1}{2} \boldsymbol{h}^{T} \nabla^{2} \mathcal{L}\left(\boldsymbol{\beta}^{*}\right)^{T} \boldsymbol{h}+o\left(\|\boldsymbol{h}\|_{2}\right) .
$$

The optimality of $\boldsymbol{\beta}^{*}$ implies $\nabla L\left(\boldsymbol{\beta}^{*}\right)=0$. In addition, Theorem 2 states that $\boldsymbol{h} \in \Lambda\left(S_{0}, \gamma_{1}, \gamma_{2}\right)$ with probability at least $1-\frac{\delta}{2}$. Consequently, we can use the restricted eigenvalue condition defined in Assumption $4.2\left(k^{*}, \gamma\right)$. However we do not want to keep the term $o\left(\|\boldsymbol{h}\|_{2}\right)$ as it can hide non trivial dependencies. To overcome this difficulty, we use the convexity of \mathcal{L} and the maximum radius $r\left(k^{*}, \gamma\right)$ introduced in the growth condition Assumption 5.2.
Case 1: If $\|\boldsymbol{h}\|_{2} \leq r\left(k^{*}\right)$ - where $r\left(k^{*}\right)$ is a shorthand for $r\left(k^{*}, \gamma\right)$ - then with Theorem 2 and Assumption $4.2(k, \gamma)$, it holds with probability at least $1-\frac{\delta}{2}$:

$$
\begin{equation*}
\mathcal{L}\left(\boldsymbol{\beta}^{*}+\boldsymbol{h}\right)-\mathcal{L}\left(\boldsymbol{\beta}^{*}\right) \geq \frac{1}{4} \kappa\left(k^{*}\right)\|\boldsymbol{h}\|_{2}^{2} . \tag{35}
\end{equation*}
$$

Case 2: If now $\|\boldsymbol{h}\|_{2} \geq r\left(k^{*}\right)$, then using the convexity of \mathcal{L} thus of $t \rightarrow \mathcal{L}\left(\boldsymbol{\beta}^{*}+t \boldsymbol{h}\right)$, we similarly obtain with same probability:

$$
\begin{align*}
\mathcal{L}\left(\boldsymbol{\beta}^{*}+\boldsymbol{h}\right)-\mathcal{L}\left(\boldsymbol{\beta}^{*}\right) & \geq \frac{\|\boldsymbol{h}\|_{2}}{r\left(k^{*}\right)}\left\{\mathcal{L}\left(\boldsymbol{\beta}^{*}+\frac{r\left(k^{*}\right)}{\|\boldsymbol{h}\|_{2}} \boldsymbol{h}\right)-\mathcal{L}\left(\boldsymbol{\beta}^{*}\right)\right\} \text { by convexity } \\
& \geq \frac{\|\boldsymbol{h}\|_{2}}{r\left(k^{*}\right)} \inf _{\substack{ \\
\boldsymbol{z} \in \Lambda\left(S_{0}, \gamma_{1}, \gamma_{2}\right) \\
\|\boldsymbol{z}\|_{2}=r\left(k^{*}\right)}}\left\{\mathcal{L}\left(\boldsymbol{\beta}^{*}+\boldsymbol{z}\right)-\mathcal{L}\left(\boldsymbol{\beta}^{*}\right)\right\} \tag{36}\\
& \geq \frac{\|\boldsymbol{h}\|_{2}}{r\left(k^{*}\right)} \frac{1}{4} \kappa\left(k^{*}\right) r\left(k^{*}\right)^{2}=\frac{1}{4} \kappa\left(k^{*}\right) r\left(k^{*}\right)\|\boldsymbol{h}\|_{2} .
\end{align*}
$$

Combining Equations (34), (35) and (36), we conclude that with probability at least $1-\delta$ the following restricted strong convexity with L1 tolerance function holds:

$$
\begin{equation*}
\Delta\left(\boldsymbol{\beta}^{*}, \boldsymbol{h}\right) \geq \frac{1}{4} \kappa\left(k^{*}\right)\|\boldsymbol{h}\|_{2}^{2} \wedge \frac{1}{4} \kappa\left(k^{*}\right) r\left(k^{*}\right)\|\boldsymbol{h}\|_{2}-\tau\|\boldsymbol{h}\|_{1} . \tag{37}
\end{equation*}
$$

To derive the condition for the L 2 tolerance function, we use our cone condition derived in Theoreme 2. We recall that S_{0} has been defined as the subset of the k^{*} highest elements of \boldsymbol{h}. It thus holds:

$$
\begin{align*}
\|\boldsymbol{h}\|_{1} & =\left\|\boldsymbol{h}_{S_{0}}\right\|_{1}+\left\|\boldsymbol{h}_{\left(S_{0}\right)^{c}}\right\|_{1} \\
& \leq \left\lvert\, \boldsymbol{h}_{S_{0}}\left\|_{1}+\frac{\alpha}{\alpha-1}\right\| \boldsymbol{h}_{S_{0}}\left\|_{1}+\frac{\sqrt{k^{*}}}{\alpha-1}\right\| \boldsymbol{h}_{S_{0}}\right. \|_{2} \text { since } \boldsymbol{h} \in \Lambda\left(S_{0}, \gamma_{1}, \gamma_{2}\right) \\
& =\frac{2 \alpha-1}{\alpha-1}\left\|\boldsymbol{h}_{S_{0}}\right\|_{1}+\frac{\sqrt{k^{*}}}{\alpha-1}\left\|\boldsymbol{h}_{S_{0}}\right\|_{2} \\
& \leq \frac{2 \alpha-1}{\alpha-1} \sqrt{k^{*}}\left\|\boldsymbol{h}_{S_{0}}\right\|_{2}+\frac{\sqrt{k^{*}}}{\alpha-1}\left\|\boldsymbol{h}_{S_{0}}\right\|_{2} \text { with Cauchy-Schwartz inequality on the } k^{*} \text { sparse vector } \boldsymbol{h}_{S_{0}} \\
& \leq \frac{2 \alpha}{\alpha-1} \sqrt{k^{*}}\|\boldsymbol{h}\|_{2} . \tag{38}
\end{align*}
$$

We thus conclude that it holds with probability at least $1-\delta$:

$$
\begin{equation*}
\Delta\left(\boldsymbol{\beta}^{*}, \boldsymbol{h}\right) \geq \frac{1}{4} \kappa\left(k^{*}\right)\|\boldsymbol{h}\|_{2}^{2} \wedge \frac{1}{4} \kappa\left(k^{*}\right) r\left(k^{*}\right)\|\boldsymbol{h}\|_{2}-\frac{2 \alpha}{\alpha-1} \tau \sqrt{k^{*}}\|\boldsymbol{h}\|_{2} . \tag{39}
\end{equation*}
$$

E Proof of Theorem 1

Proof: We now prove our main Theorem 1. Following Equation (21) we have:

$$
\Delta\left(\boldsymbol{\beta}^{*}, \boldsymbol{h}\right) \leq \lambda\left\|\boldsymbol{h}_{S_{0}}\right\|_{1}-\lambda\left\|\boldsymbol{h}_{\left(S_{0}\right)^{c}}\right\|_{1} .
$$

Thus using the restricted strong convexity derived in Theorem 4 , it holds with probability at least $1-\delta$:

$$
\begin{align*}
\frac{1}{4} \kappa\left(k^{*}\right)\left\{\|\boldsymbol{h}\|_{2}^{2} \wedge r\left(k^{*}\right)\|\boldsymbol{h}\|_{2}\right\} & \leq \frac{2 \alpha}{\alpha-1} \tau \sqrt{k^{*}}\|\boldsymbol{h}\|_{2}+\lambda\left\|\boldsymbol{h}_{S_{0}}\right\|_{1}-\lambda\left\|\boldsymbol{h}_{\left(S_{0}\right)^{c}}\right\|_{1} \\
& \leq \frac{2 \alpha}{\alpha-1} \tau \sqrt{k^{*}}\|\boldsymbol{h}\|_{2}+\lambda \sqrt{k^{*}}\left\|\boldsymbol{h}_{S_{0}}\right\|_{2} \tag{40}\\
& \leq\left(\frac{2 \alpha}{\alpha-1} \tau+\lambda\right) \sqrt{k^{*}}\|\boldsymbol{h}\|_{2} .
\end{align*}
$$

With the definitions of τ and λ as in Theorem 2 and 3, Equation (40) leads to:

$$
\begin{aligned}
\frac{1}{4} \kappa\left(k^{*}\right)\left\{\|\boldsymbol{h}\|_{2} \wedge r\left(k^{*}\right)\right\} & \leq 12 \alpha L M \sqrt{\frac{k^{*} \log \left(2 p e / k^{*}\right)}{n} \log (2 / \delta)} \\
& +\frac{28 \alpha}{\alpha-1} L \mu\left(k^{*}\right) \sqrt{\frac{\log (3)}{n}+\frac{\log \left(4 p / k^{*}\right)}{n k^{*}}+\frac{\log (2 / \delta) / k^{*}}{n k^{*}}}
\end{aligned}
$$

Exploiting Assumption $5.2\left(k^{*}, \gamma, \delta\right)$, and using that $\alpha \geq 2$, we obtain with probability at least $1-\delta$:

$$
\|\boldsymbol{h}\|_{2}^{2} \lesssim\left(\frac{\alpha L M}{\kappa\left(k^{*}\right)}\right)^{2} \frac{k^{*} \log \left(p / k^{*}\right) \log (2 / \delta)}{n}+\left(\frac{\alpha L \mu\left(k^{*}\right)}{\kappa\left(k^{*}\right)}\right)^{2} \frac{\log (3)+\log \left(4 p / k^{*}\right) / k^{*}+\log (2 / \delta) / k^{*}}{n}
$$

which concludes the proof.

F Proof of Corollary 1

Proof: In order to derive the bound in expectation, we define the bounded random variable:

$$
Z=\frac{\kappa\left(k^{*}\right)^{2}}{\alpha^{2} L^{2}}\left\|\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{*}\right\|_{2}^{2}
$$

Since Assumption $5\left(k^{*}, \gamma, \delta_{0}\right)$ is satisfied for a small enough δ_{0}, we can fix C such that $\forall \delta \in(0,1)$, it holds with probability at least $1-\delta$:

$$
Z \leq C M^{2} H \log (2 / \delta)+C \frac{\mu\left(k^{*}\right)^{2}}{n} \log (2 / \delta) \text { where } H=\frac{k^{*} \log \left(p / k^{*}\right)}{n}
$$

Then it holds $\forall t \geq t_{0}=\log (4)$:

$$
\mathbb{P}\left(Z / C \geq M^{2} H t+\frac{\mu\left(k^{*}\right)^{2}}{n} t\right) \leq 2 e^{-t} .
$$

Let $q_{0}=M^{2} H t_{0}+\frac{\mu\left(k^{*}\right)^{2}}{n} t_{0}$, then $\forall q \geq q_{0}$

$$
\mathbb{P}(Z / C \geq q) \leq 2 \exp \left(-\frac{n}{n M^{2} H+\mu\left(k^{*}\right)^{2}} q\right) \leq 2 \exp \left(-\frac{q}{M^{2} H}\right)
$$

Consequently, by integration we have:

$$
\begin{align*}
\mathbb{E}(Z) & =\int_{0}^{+\infty} C \mathbb{P}(|Z| / C \geq q) d q \\
& \leq \int_{q_{0}}^{+\infty} C \mathbb{P}(|Z| / C \geq q) d q+C q_{0} \\
& \leq \int_{q_{0}}^{+\infty} 2 C e^{-\frac{q}{M^{2} H}} d q+C q_{0} \tag{41}\\
& \leq 2 C M^{2} H e^{-\frac{q_{0}}{M^{2} H}+C q_{0}} \\
& \leq 2 C M^{2} H+C M^{2} H \log (4)+C \frac{\mu\left(k^{*}\right)}{n} \log (4) \\
& \leq C_{1}\left(M^{2} H+\frac{\mu\left(k^{*}\right)^{2}}{n}\right)
\end{align*}
$$

for $C_{1}=2 C+\log (4)$. Hence we conclude:

$$
\mathbb{E}\left(\left\|\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{*}\right\|_{2}^{2}\right) \lesssim\left(\frac{\alpha L}{\kappa\left(k^{*}\right)}\right)^{2}\left\{M^{2} \frac{k^{*} \log \left(p / k^{*}\right)}{n}+\frac{\mu\left(k^{*}\right)}{\sqrt{n}}\right\} .
$$

G Proof of Theorem 5

Proof: We fix $\tau>0$ and denote $\mathbb{X}=\left(\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{p}\right) \in \mathbb{R}^{n \times p}$ the design matrix.
For $\boldsymbol{\beta} \in \mathbb{R}^{p}$, we define $\boldsymbol{w}^{\tau}(\boldsymbol{\beta}) \in \mathbb{R}^{n}$ by:

$$
w_{i}^{\tau}(\boldsymbol{\beta})=\min \left(1, \frac{1}{2 \tau}\left|z_{i}\right|\right) \operatorname{sign}\left(z_{i}\right), \forall i
$$

where $z_{i}=1-y_{i} \boldsymbol{x}_{i}^{T} \boldsymbol{\beta}, \forall i$. We easily check that

$$
\boldsymbol{w}^{\tau}(\boldsymbol{\beta})=\underset{\|w\|_{\infty} \leq 1}{\operatorname{argmax}} \frac{1}{2 n} \sum_{i=1}^{n}\left(z_{i}+w_{i} z_{i}\right)-\frac{\tau}{2 n}\|w\|_{2}^{2} .
$$

Then the gradient of the smooth hinge loss is

$$
\nabla g^{\tau}(\boldsymbol{\beta})=-\frac{1}{2 n} \sum_{i=1}^{n}\left(1+w_{i}^{\tau}(\boldsymbol{\beta})\right) y_{i} \boldsymbol{x}_{i} \in \mathbb{R}^{p}
$$

For every couple $\boldsymbol{\beta}, \boldsymbol{\gamma} \in \mathbb{R}^{p}$ we have:

$$
\begin{equation*}
\nabla g^{\tau}(\boldsymbol{\beta})-\nabla g^{\tau}(\gamma)=\frac{1}{2 n} \sum_{i=1}^{n}\left(w_{i}^{\tau}(\gamma)-w_{i}^{\tau}(\boldsymbol{\beta})\right) y_{i} \boldsymbol{x}_{i} . \tag{42}
\end{equation*}
$$

For $\boldsymbol{a}, \boldsymbol{b} \in \mathbb{R}^{n}$ we define the vector $\boldsymbol{a} * \boldsymbol{b}=\left(a_{i} b_{i}\right)_{i=1}^{n}$. Then we can rewrite Equation (42) as:

$$
\begin{equation*}
\nabla g^{\tau}(\boldsymbol{\beta})-\nabla g^{\tau}(\boldsymbol{\gamma})=\frac{1}{2 n} \mathbb{X}^{T}\left[\boldsymbol{y} *\left(\boldsymbol{w}^{\tau}(\boldsymbol{\gamma})-\boldsymbol{w}^{\tau}(\boldsymbol{\beta})\right)\right] . \tag{43}
\end{equation*}
$$

The operator norm associated to the Euclidean norm of the matrix \mathbb{X} is $\|\mathbb{X}\|=\max _{\|\boldsymbol{z}\|_{2}=1}\|\mathbb{X} \boldsymbol{z}\|_{2}$. Let us recall that $\|\mathbb{X}\|^{2}=\left\|\mathbb{X}^{T}\right\|^{2}=\left\|\mathbb{X}^{T} \mathbb{X}\right\|=\mu_{\max }\left(\mathbb{X}^{T} \mathbb{X}\right)$ corresponds to the highest eigenvalue of the matrix $\mathbb{X}^{T} \mathbb{X}$.
Consequently, Equation (43) leads to:

$$
\begin{equation*}
\left\|\nabla L^{\tau}(\boldsymbol{\beta})-\nabla L^{\tau}(\gamma)\right\|_{2} \leq \frac{1}{2 n}\|\mathbb{X}\|\left\|\boldsymbol{w}^{\tau}(\boldsymbol{\gamma})-\boldsymbol{w}^{\tau}(\boldsymbol{\beta})\right\|_{2} . \tag{44}
\end{equation*}
$$

In addition, the first order necessary conditions for optimality applied to $\boldsymbol{w}^{\tau}(\boldsymbol{\beta})$ and $\boldsymbol{w}^{\tau}(\boldsymbol{\gamma})$ give:

$$
\begin{equation*}
\sum_{i=1}^{n}\left\{\frac{1}{2 n}\left(1-y_{i} \boldsymbol{x}_{i}^{T} \boldsymbol{\beta}\right)-\frac{\tau}{n} w_{i}^{\tau}(\boldsymbol{\beta})\right\}\left\{w_{i}^{\tau}(\gamma)-w_{i}^{\tau}(\boldsymbol{\beta})\right\} \leq 0 \tag{45}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=1}^{n}\left\{\frac{1}{2 n}\left(1-y_{i} \boldsymbol{x}_{i}^{T} \boldsymbol{\gamma}\right)-\frac{\tau}{n} w_{i}^{\tau}(\boldsymbol{\gamma})\right\}\left\{w_{i}^{\tau}(\boldsymbol{\beta})-w_{i}^{\tau}(\boldsymbol{\gamma})\right\} \leq 0 \tag{46}
\end{equation*}
$$

Then by adding Equations (45) and (46) and rearranging the terms we have:

$$
\begin{aligned}
& \tau\left\|\boldsymbol{w}^{\tau}(\gamma)-\boldsymbol{w}^{\tau}(\boldsymbol{\beta})\right\|_{2}^{2} \\
& \leq \frac{1}{2} \sum_{i=1}^{n} y_{i} \boldsymbol{x}_{i}^{T}(\boldsymbol{\beta}-\gamma)\left(w_{i}^{\tau}(\gamma)-w_{i}^{\tau}(\boldsymbol{\beta})\right) \\
& \leq \frac{1}{2}\|\mathbb{X}(\boldsymbol{\beta}-\gamma)\|_{2}\left\|\boldsymbol{w}^{\tau}(\gamma)-\boldsymbol{w}^{\tau}(\boldsymbol{\beta})\right\|_{2} \\
& \leq \frac{1}{2}\|\mathbb{X}\|\|\boldsymbol{\beta}-\gamma\|_{2}\left\|\boldsymbol{w}^{\tau}(\boldsymbol{\gamma})-\boldsymbol{w}^{\tau}(\boldsymbol{\beta})\right\|_{2}
\end{aligned}
$$

where we have used Cauchy-Schwartz inequality. We then have:

$$
\begin{equation*}
\left\|\boldsymbol{w}^{\tau}(\boldsymbol{\gamma})-\boldsymbol{w}^{\tau}(\boldsymbol{\beta})\right\|_{2} \leq \frac{1}{2 \tau}\|\mathbb{X}\|\|\boldsymbol{\beta}-\boldsymbol{\gamma}\|_{2} . \tag{47}
\end{equation*}
$$

We conclude the proof by combining Equations (44) and (47):

$$
\begin{aligned}
\left\|\nabla L^{\tau}(\boldsymbol{\beta})-\nabla L^{\tau}(\boldsymbol{\gamma})\right\|_{2} & \leq \frac{1}{4 n \tau}\|\mathbb{X}\|^{2}\|\boldsymbol{\beta}-\gamma\|_{2} \\
& =\frac{\mu_{\max }\left(n^{-1} \mathbb{X}^{T} \mathbb{X}\right)}{4 \tau}\|\boldsymbol{\beta}-\gamma\|_{2}
\end{aligned}
$$

The case of Quantile Regression: For the quantile regression loss, the same smoothing method applies. Let us simply note that:

$$
\begin{aligned}
\rho_{\theta}(x) & =\max ((\theta-1) x, \theta x)=\frac{1}{2}((2 \theta-1) x+|x|) \\
& =\max _{|w| \leq 1} \frac{1}{2}((2 \theta-1) x+w x) .
\end{aligned}
$$

Hence we can immediately use the same steps than for the hinge loss - which is a particular case of the quantile regression loss - and define the smooth quantile regression loss g_{θ}^{τ}. Its gradient is:

$$
\begin{equation*}
\nabla g_{\theta}^{\tau}(\boldsymbol{\beta})=-\frac{1}{2 n} \sum_{i=1}^{n}\left(2 \theta-1+w_{i}^{\tau}(\boldsymbol{\beta})\right) y_{i} \boldsymbol{x}_{i} \in \mathbb{R}^{p} \tag{48}
\end{equation*}
$$

where we still have $w_{i}^{\tau}=\min \left(1, \frac{1}{2 \tau}\left|z_{i}\right|\right) \operatorname{sign}\left(z_{i}\right)$ but now $z_{i}=y_{i}-\boldsymbol{x}_{i}^{T} \boldsymbol{\beta}$, $\forall i$. The Lipschitz constant of ∇g_{θ}^{τ} is still given by Theorem 5.

H Proof of Theorem 6

Proof: We still assume $\left|h_{1}\right| \geq \ldots \geq\left|h_{p}\right|$. Following Equation (21) it holds:

$$
\begin{equation*}
S(\boldsymbol{h}) \leq \Delta(\boldsymbol{h}) \leq \eta\left|\boldsymbol{\beta}^{*}\right|_{S}-\eta|\hat{\boldsymbol{\beta}}|_{S} . \tag{49}
\end{equation*}
$$

We want to upper-bound the right-hand side of Equation (49). We define the permutation $\phi \in \mathcal{S}_{p}$ such that $\left|\boldsymbol{\beta}^{*}\right|_{S}=\sum_{j=1}^{k^{*}} \lambda_{j}\left|\beta_{\phi(j)}^{*}\right|$ and $\left|\hat{\beta}_{\phi\left(k^{*}+1\right)}\right| \geq \ldots \geq\left|\hat{\beta}_{\phi(p)}\right|-\phi$ is uniquely defined. Hence it holds:

$$
\begin{align*}
\frac{1}{\eta} \Delta(\boldsymbol{h}) & \leq \sum_{j=1}^{k^{*}} \lambda_{j}\left|\beta_{\phi(j)}^{*}\right|-\max _{\psi \in \mathcal{S}_{p}} \sum_{j=1}^{p} \lambda_{j}\left|\hat{\beta}_{\psi(j)}\right| \text { by definition of Slope } \\
& \leq \sum_{j=1}^{k^{*}} \lambda_{j}\left(\left|\beta_{\phi(j)}^{*}\right|-\left|\hat{\beta}_{\phi(j)}\right|\right)-\sum_{j=k^{*}+1}^{p} \lambda_{j}\left|\hat{\beta}_{\phi(j)}\right| \text { since } \phi \in \mathcal{S}_{p} \\
& =\sum_{j=1}^{k^{*}} \lambda_{j}\left|h_{\phi(j)}\right|-\sum_{j=k^{*}+1}^{p} \lambda_{j}\left|\hat{\beta}_{\phi(j)}\right| \tag{50}\\
& \leq \sum_{j=1}^{k^{*}} \lambda_{j}\left|h_{\phi(j)}\right|-\sum_{j=k^{*}+1}^{p} \lambda_{j}\left|h_{\phi(j)}\right| .
\end{align*}
$$

Since λ is monotonically non decreasing: $\sum_{j=1}^{k^{*}} \lambda_{j}\left|h_{\phi(j)}\right| \leq \sum_{j=1}^{k^{*}} \lambda_{j}\left|h_{j}\right|$. Because $\left|h_{\phi\left(k^{*}+1\right)}\right| \geq \ldots \geq\left|h_{\phi(p)}\right|: \sum_{j=k^{*}+1}^{p} \lambda_{j}\left|h_{j}\right| \leq \sum_{j=k^{*}+1}^{p} \lambda_{j}\left|h_{\phi(j)}\right|$.
In addition, Equation (22) from Appendix B leads to, with probability at least $1-\frac{\delta}{2}$:

$$
|S(\boldsymbol{h})| \leq 14 L M \sqrt{\frac{\log (2 / \delta)}{n}} \sum_{j=1}^{p} \lambda_{j}\left|h_{j}\right| \leq \frac{\eta}{\alpha}|\boldsymbol{h}|_{S}
$$

where η is defined in the statement of the theorem. Thus, combining this last equation with Equation (50), it holds with probability at least $1-\frac{\delta}{2}$:

$$
-\frac{1}{\alpha}|\boldsymbol{h}|_{S} \leq \sum_{j=1}^{k^{*}} \lambda_{j}\left|h_{j}\right|-\sum_{j=k^{*}+1}^{p} \lambda_{j}\left|h_{j}\right|,
$$

which is equivalent to saying that with probability at least $1-\frac{\delta}{2}$:

$$
\begin{equation*}
\sum_{j=k^{*}+1}^{p} \lambda_{j}\left|h_{j}\right| \leq \frac{\alpha+1}{\alpha-1} \sum_{j=1}^{k^{*}} \lambda_{j}\left|h_{j}\right| \tag{51}
\end{equation*}
$$

that is $\boldsymbol{h} \in \Gamma\left(k^{*}, \frac{\alpha+1}{\alpha-1}\right)$.

I Proof of Corollary 2

Proof: We follow the proof of Theorem 1. Theorem 3 still holds with L1 tolerance loss function - the results for L2 is however no longer true. In addition,the restricted strong convexity derived in Lemma 4
applies for Slope. We consequently obtain with probability at least $1-\delta$:

$$
\begin{align*}
\frac{1}{4} \tilde{\kappa}\left(k^{*}, \omega\right)\left\{\|\boldsymbol{h}\|_{2}^{2} \wedge r\left(k^{*}\right)\|\boldsymbol{h}\|_{2}\right\} & \leq \tau\|\boldsymbol{h}\|_{1}+\eta \sum_{j=1}^{k^{*}} \lambda_{j}\left|h_{j}\right|-\eta \sum_{j=k^{*}+1}^{p} \lambda_{j}\left|h_{j}\right| \\
& \leq \tau\left\|\boldsymbol{h}_{S_{0}}\right\|_{1}+\eta \sum_{j=1}^{k^{*}} \lambda_{j}\left|h_{j}\right|+\tau\left\|\boldsymbol{h}_{\left(S_{0}\right)^{c}}\right\|_{1}-\eta \sum_{j=k^{*}+1}^{p} \lambda_{j}\left|h_{j}\right| \tag{52}\\
& \leq \tau\left\|\boldsymbol{h}_{S_{0}}\right\|_{1}+\eta \sum_{j=1}^{k^{*}} \lambda_{j}\left|h_{j}\right|+\left(\tau-\eta \lambda_{p}\right)\left\|\boldsymbol{h}_{\left(S_{0}\right)}\right\|_{1} .
\end{align*}
$$

We want $\tau \leq \eta \lambda_{p}$, that is $14 L \mu\left(k^{*}\right) \sqrt{\frac{\log (3)}{n}+\frac{\log (4 p / k)}{n k}+\frac{\log (2 / \delta)}{n k}} \leq 14 \alpha L M \sqrt{\frac{\log (2 e)}{n} \log (2 / \delta)}$, which is satisfied since $\mu\left(k^{*}\right) \leq \alpha M$. Hence we obtain, similarly to Section E :

$$
\begin{aligned}
\frac{1}{4} \tilde{\kappa}\left(k^{*}, \omega\right)\left\{\|\boldsymbol{h}\|_{2}^{2} \wedge r\left(k^{*}\right)\|\boldsymbol{h}\|_{2}\right\} & \leq \tau\left\|\boldsymbol{h}_{S_{0}}\right\|_{1}+\eta \sum_{j=1}^{k^{*}} \lambda_{j}\left|h_{j}\right| \\
& \leq \tau \sqrt{k^{*}}\left\|\boldsymbol{h}_{S_{0}}\right\|_{2}+\eta \sqrt{k^{*} \log \left(2 p e / k^{*}\right)}\left\|\boldsymbol{h}_{S_{0}}\right\|_{2} \\
& \leq 2 \eta \sqrt{k^{*} \log \left(2 p e / k^{*}\right)}\left\|\boldsymbol{h}_{S_{0}}\right\|_{2} \text { since } \tau \leq \eta \lambda_{p} \leq \eta \lambda_{k^{*}} \\
& \leq 28 \alpha L M \sqrt{\frac{k^{*} \log \left(2 p e / k^{*}\right)}{n} \log (2 / \delta)}\|\boldsymbol{h}\|_{2}
\end{aligned}
$$

This last equation is very similar to Equation (40) in the proof of Theorem 1. We conclude the proof identically, and obtain a similar bound in expectation by following the proof of Corollary 1.

[^0]: ${ }^{1}$ A somewhat faster proof would have consisted in fixing $\epsilon=2 R$ in the definition of the ϵ-net - of size now bounded by 3^{k} - and in noting that because of the L1-constraint, each element $\boldsymbol{z}_{S_{\ell}}$ is at a distance at most $R=\left\|\boldsymbol{z}_{S_{\ell}}\right\|_{1} / 2$ of its closest neighborhood in the ϵ-net. However, we prefer the more general proof presented herein.

