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Abstract

We prove an L2 recovery bound for a fam-
ily of sparse estimators defined as minimizers
of some empirical loss functions – which in-
clude hinge loss and logistic loss. More pre-
cisely, we achieve an upper-bound for coeffi-
cients estimation scaling as (k∗/n) log(p/k∗):
n × p is the size of the design matrix and
k∗ the dimension of the theoretical loss min-
imizer. This is done under standard assump-
tions, for which we derive stronger versions
of a cone condition and a restricted strong
convexity. Our bound holds with high prob-
ability and in expectation and applies to an
L1-regularized estimator and to a recently in-
troduced Slope estimator, which we general-
ize for classification problems. Slope presents
the advantage of adapting to unknown spar-
sity. Thus, we propose a tractable proximal
algorithm to compute it and assess its empir-
ical performance. Our results match the best
existing bounds for classification and regres-
sion problems. 1

1 Introduction

Motivated by the increasing availability of very large-
scale datasets, high-dimensional statistics has focused
on analyzing the performance of sparse estimators. An
estimator is said to be sparse if the response of an ob-
servation is given by a small number of coefficients:
sparsity delivers better interpretability and often leads
to computational efficiency. Statistical performance
and L2 consistency for high-dimensional linear regres-
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sion have been widely studied. For two polynomial-
time sparse estimators, a Lasso (Tibshirani, 1996) and
a Dantzig selector (Candes and Tao, 2007), Bickel et al.
(2009) proved a (k∗/n) log(p) rate for the L2 estima-
tion of the coefficients: n × p is the dimension of the
input matrix and k∗ the degree of sparsity of the vec-
tor used to generate the model. The optimality of
this bound is essential for a theoretical understand-
ing of the method performance. Candes and Dav-
enport (2013) and Raskutti et al. (2011) proved a
(k∗/n) log(p/k∗) lower bound for estimating the L2
norm of a sparse vector, regardless of the input ma-
trix and estimation procedure. This optimal minimax
rate is known to be achieved by a sparse but theoret-
ically intractable BIC estimator (Bunea et al., 2007)
which considers an L0 regularization. The BIC esti-
mator adapts to unknown sparsity: the degree k∗ does
not have to be specified. Recently, Bellec et al. (2016)
reached this optimal minimax bound for a Lasso es-
timator with knowledge of the sparsity k∗. They also
proved that a recently introduced and polynomial-time
Slope estimator (Bogdan et al., 2013) achieves this op-
timal rate while adapting to unknown sparsity.

Little work has been done on deriving (theoreti-
cal) upper bounds for the estimation error on high-
dimensional classification problems: the literature has
essentially focused on analysis of convergence (Tari-
gan et al., 2006; Zhang et al.). Recently, Peng et al.
(2016) proved a (k∗/n) log(p) upper-bound for L2 coef-
ficients estimation of a L1-regularized Support Vector
Machines (SVM): k∗ is now the sparsity of the the-
oretical minimizer to estimate. They recovered the
rate proposed by Van de Geer (2008), which consid-
ered a weighted L1 norm for linear models. Raviku-
mar et al. (2010) obtained a similar bound for a L1-
regularized Logistic Regression estimator in a binary
Ising graph. Their frameworks and bounds are simi-
lar to the model proposed by Belloni et al. (2011) for
L1-regularized Quantile Regression; this inspired us
to include this problem in our framework. However,
this rate of (k∗/n) log(p) is not the best known for
a classification estimator: Plan and Vershynin (2013)
proved a k∗ log(p/k∗) error bound for estimating a
single vector through sparse models – including 1-bit



Error bounds for sparse classifiers in high-dimensions

compressed sensing and Logistic Regression – over a
bounded set of vectors. Contrary to this work, our
approach does not assume a generative vector and ap-
plies to a larger class of problems (SVM, Quantile Re-
gression) and regularizations (Slope). In addition, our
framework shares similarity with Section 4.4. of Ne-
gahban et al. (2009): the authors consider some sub-
gaussian tails assumptions and restricted eigenvalue
conditions to derive a restricted strong convexity con-
dition similar to our Theorem 4. However, their re-
sults only apply to generalized linear models, and are
weaker: the parameter τ(k) proposed in the tolerance
function of the restricted strong convexity condition is
higher than ours.

What this paper is about: In this paper, we pro-
pose a theoretical framework to analyze the properties
of a general class of sparse estimators for classifica-
tion problems – which includes SVM and Logistic Re-
gression – with different regularization schemes. Our
approach draws inspiration from the least squares re-
gression case and illustrates the distinction between
regression and classification studies. Our main results
are first presented for a family of L1-regularized es-
timators. We achieve a (k∗/n) log(p/k∗) upper-bound
for coefficients estimation, which holds with high prob-
ability and in expectation. In addition, we introduce a
version of the Slope estimator for classification prob-
lems: we propose a proximal algorithm to compute the
solution, and we prove that a tractable Slope estima-
tor achieves a similar upper-bound while adapting to
unknown sparsity. To the best of our knowledge, it is
the first time any of these bounds is reached for the
estimators considered.

The rest of this paper is organized as follows. Section 2
introduces and discusses common assumptions in the
literature, and builds our framework of study in the
case of L1-regularized estimators. Section 3 proves two
essential results and derive our upper-bounds in The-
orem 1 and Corollary 1. Finally, Section 4 defines and
computes the Slope estimator for our class of problems
and discusses its statistical performance.

2 General assumptions with an L1
regularization

We consider a set of training data {(xi, yi)}ni=1,
(xi, yi) ∈ Rp × Y from an unknown distribution
P(X,y). We note our loss f and define the theoretical
loss L(β) = E (f (〈x,β〉; y)). We consider a theoretical
minimizer β∗:

β∗ ∈ argmin
β∈Rp

{E (f (〈x,β〉; y))} . (1)

In the rest of this section, we denote by k = ‖β∗‖0 the
number of non-zeros of the theoretical minimizer and
R = ‖β∗‖1 its L1 norm. We assume R ≥ 1. We study
the L1-regularized L1-constrained problem defined as:

min
β∈Rp: ‖β‖1≤2R

1

n

n∑
i=1

f (〈xi,β〉; yi) + λ‖β‖1. (2)

We consider an empirical minimizer β̂, solution of
Problem (2). The constraint 2R in Problem (2) is
somewhat arbitrary: it enforces the empirical mini-
mizer to be close enough to the theoretical minimizer,
that is, β∗: ‖β̂ − β∗‖1 ≤ 3R. The L1 regulariza-
tion in Lagrangian form is known to induce sparsity
in the coefficients of β̂. Note that Problem (2) is fully
tractable.

For a given λ, we fix a solution β̂(λ,R) of Problem (2)
– R is fixed throughout the paper. Our main result
is an error bound – achieved for a certain λ – for the
L2 norm of the difference between the empirical and
theoretical minimizers ‖β̂(λ,R)−β∗‖2. When no con-
fusion can be made, we drop the dependence upon the
parameters λ,R. Our bound is reached under standard
assumptions in the literature. In particular, it is simi-
lar to those proposed by Peng et al. (2016), Ravikumar
et al. (2010), Belloni et al. (2011). The rest of this sec-
tion presents our framework of study.

2.1 Lipschitz loss function

Our first assumption concerns the Lipschitz-continuity
of the loss f .

Assumption 1. The loss f(., y) is non-negative, con-
vex and Lipschitz continuous with constant L, that
is, |f(t1, y) − f(t2, y)| ≤ L|t1 − t2|, ∀t1, t2. In addi-
tion, there exists ∂f(., y) such that f(t2, y)−f(t1, y) ≥
∂f(t1, y)(t2 − t1), ∀t1, t2.

∂f(., y) is said to be a sub-gradient of the loss: if f(., y)
is differentiable, we simply consider its gradient. It
trivially holds ‖∂f(., y)‖∞ ≤ L, ∀y. We list three
main examples that fall into this framework.

Example 1: Support Vectors Machines We as-
sume Y = {−1, 1} and consider the L1-regularized L1-
constrained Support Vector Machines (SVM) problem.
It learns a classification rule of the data of the form
sign(〈x,β〉) by solving the problem:

min
β∈Rp: ‖β‖1≤2R

1

n

n∑
i=1

(1− yi〈xi,β〉)+ + λ‖β‖1. (3)

The hinge loss f (〈x,β〉; y) = max(0, 1 − y〈x,β〉) ad-
mits as a subgradient ∂f(., y) = 1(1 − y. ≥ 0)y. and
satisfies Assumption 1 for L = 1.
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Example 2: Logistic Regression Here, Y =
{−1, 1} and we consider the additional assumption
log (P(yi = 1|X = xi)) − log (P(yi = −1|X = xi)) =
〈xi,β〉, ∀i. The L1-regularized L1-constrained Logis-
tic Regression estimator is a solution of the problem:

min
β∈Rp: ‖β‖1≤2R

1

n

n∑
i=1

log (1 + exp(−yi〈xi,β〉))+λ‖β‖1.

(4)
The logistic loss f (〈x,β〉; y) = log(1 + exp(−y〈x,β〉))
has a derivative with respect to its first variable
|∂tf(t, y)| = |1/ (1 + eyt)| ≤ 1, hence it satisfies As-
sumption 1 for L = 1.

Example 3: Quantile Regression We now con-
sider a class of parametric quantile estimation prob-
lems. Following Buchinsky (1998), we assume that for
θ ∈ (0, 1) the conditional quantile of y given X is given
by Qθ(y|X = x) = 〈x,βθ〉, where the model is of the
form y = 〈x,βθ〉 + uθ, and uθ is unkown. The L1-
regularized L1-constrained θ-Quantile Regression esti-
mator is defined as a solution of:

min
β∈Rp: ‖β‖1≤2R

1

n

n∑
i=1

ρθ (yi − 〈xi,β〉)) + λ‖β‖1, (5)

where ρθ(t) = (θ−1(t ≤ 0))t is the quantile regression
loss. ρθ satisfies Assumption 1 for L = max(1− θ, θ).
Note that the hinge loss is a simple translation of the
quantile regression loss for θ = 0.

2.2 Differentiability of the theoretical loss

The following assumption ensures the unicity of β∗

and the twice differentiability of the theoretical loss L.
Equation (6) is equivalent to saying that the gradient
of the theoretical loss is equal to the theoretical sub-
gradient of the loss – defined in Assumption 1.

Assumption 2. The theoretical minimizer is unique.
In addition, the theoretical loss is twice-differentiable:
we denote its gradient ∇L(β) and its Hessian matrix
∇2L(β). We also assume:

∇L(.) = E (∂f (〈x, .〉; y) x) . (6)

Support Vectors Machines: Koo et al. (2008)
studied specific conditions under which Assumption
2 holds for SVM. Let f and g denote the respec-
tive conditional densities of X given y = 1 and
y = −1. The authors proved that if f and
g are continuous with common support S ⊂ Rp
and have finite second moments, then the gradient
∇L(β) = E (1 (1− y〈x,β〉 ≥ 0) yx) and the Hessian
matrix ∇2L(β) = E (δ (1− y〈x,β〉) yx) ( δ(.) is the
Dirac function ) are defined and continuous.

Logistic and Quantile Regression: The regular-
ity of∇L and∇2L are trivial for the logistic regression
loss. Equation (6) holds as the sub-gradient is simply
the gradient of the loss. For the quantile regression
loss, a study similar to the hinge loss case – using
Assumption D.1 from Belloni et al. (2011) – can be
applied to obtain Assumption 2.

2.3 Sub-Gaussian columns

We denote X the design matrix, with rows x1, . . . ,xn.
The following assumption guarantees that some ran-
dom variables of the columns (X1, . . . ,Xp) of X have
their tails bounded by a sub-Gaussian random variable
with variance proportional to n. We first recall the
definition of a sub-Gaussian random variable (Rigol-
let, 2015):

Definition 1. A random variable Z is said to be sub-
Gaussian with variance σ2 > 0 if E(Z) = 0 and

P (|Z| > t) ≤ 2 exp
(
− t2

2σ2

)
, ∀t > 0.

A sub-Gaussian variable will be noted Z ∼ subG(σ2).
We would like here to notice another important as-
pect of our contribution. Our next Theorem 3 derives
a cone condition, a necesary step to prove our main
bounds. Our approach draws inspiration from the re-
gression case with Gaussian noise. However, it relies
on a new study of sub-Gaussian random variables –
such analysis is not needed in the regression case. Our
results are derived under the following Assumption 3:

Assumption 3. There exists M > 0 such that with
the notations of Assumption 1:

n∑
i=1

∂f (〈xi,β∗〉, yi)xij ∼ subG(nL2M2), ∀j. (7)

β∗ minimizes the theoretical loss. Thus, if Assumption
2 holds, E [∂f (〈xi,β∗〉, yi)xij ] = 0,∀i, j. The next
lemma gives more insight about Assumption 3. The
proof is presented in Appendix A.2.

Lemma 1. If the rows of the design matrix are inde-
pendent and if all the entries ∂f (〈xi,β∗〉; yi)xij , ∀i, j
are sub-Gaussian with variance L2M2, then∑n
i=1 ∂f (〈xi,β∗〉; yi)xij ∼ subG(8nL2M2),∀j.

In particular, if |xi,j | ≤ M, ∀i, j, then – under
Assumption 1 – Hoeffding’s lemma guarantees that
∂f (〈xi,β∗〉; yi)xi,j ∼ subG(L2M2), ∀i, j. Thus As-
sumption 3 is satisfied. Assumption 3 is also satis-
fied if the observations x1, . . . ,xn are independently
drawn from a multivariate centered Gaussian distri-
bution. Hence, Assumption 3 is rather mild. It is
considerably much weaker than Assumption (A1) by
Peng et al. (2016) which imposes a finite bound on the
L2 norm of each column of X.
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2.4 Restricted eigenvalue conditions

The next assumption draws inspiration from the re-
stricted eigenvalue conditions defined for regression
problems (Bickel et al., 2009; Bellec et al., 2016). In
particular, for an integer k, Assumption 4.1 ensures
that some random variable is upper-bounded on the
set of k sparse vectors. Similarly, Assumption 4.2 en-
sures that the quadratic form associated to the Hessian
matrix ∇2L(β∗) is lower-bounded on a cone of Rp.
Assumption 4. Let k ∈ {1, . . . , p}. Assumption
4.1(k) is satisfied if there exists a nonnegative constant
µ(k) such that almost surely:

µ(k) ≥ sup
z∈Rp: ‖z‖0≤k

√
k‖Xz‖1√
n‖z‖1

> 0.

Let γ1, γ2 be two non-negative constants. Assumption
4.2(k, γ) holds if there exists a nonnegative constant
κ(k, γ1, γ2) which almost surely satisfies:

0 < κ(k, γ1, γ2) ≤ inf
|S|≤k

inf
z∈Λ(S,γ1,γ2)

‖zT∇2L(β∗)z‖2
‖z‖2

,

where γ = (γ1, γ2) and for every subset S ⊂ {1, . . . , p},
the cone Λ(S, γ1, γ2) ⊂ Rp is defined as:

Λ(S, γ1, γ2) = {z ∈ Rp : ‖zSc‖1 ≤ γ1‖zS‖1 + γ2‖zS‖2} .

We refer to Assumption 4(k, γ) when both Assump-
tions 4.1(k) and 4.2(k, γ) are assumed to hold.

In the SVM framework, Peng et al. (2016) define
Assumption (A4): it is similar to our Assumption
4.2(k, γ) but it considers a different cone of Rp. In ad-
dition, their Assumption (A3) defines µ(k) as an upper
bound of the quadratic form associated to n−1/2XTX –
restricted to the set of k sparse vectors. That is, under
their definition, ‖Xz‖2/

√
n ≤ µ(k)‖z‖2, ∀z : ‖z‖0 ≤ k.

Our Assumption 4.1(k) is stronger: when satisfied, we
can recover Assumption (A3) since that

∀z ∈ Rp : ‖z‖0 ≤ k,

‖Xz‖2/
√
n ≤ ‖Xz‖1/

√
n ≤ µ(k)‖z‖1/

√
k ≤ µ(k)‖z‖2

where we have used Cauchy-Schwartz inequality on the
k sparse vector z. However, Assumption 4.1(k) uses
an L1 norm, more naturally associated to the class of
L1-regularized estimators studied in this work.

Similarly, in the Logistic Regression case Ravikumar
et al. (2010) consider a dependency and incoherence
conditions for the population Fisher information ma-
trix (Assumptions A1 and A2). Finally, Assumption
D.4 for Quantile Regression (Belloni et al., 2011) is a
uniform Restricted Eigenvalue condition.

2.5 Growth condition

Since β∗ minimizes the theoretical loss, it holds
∇L(β∗) = 0. In particular, under Assumption
4.2(k∗, γ), the theoretical loss evaluated on the fam-
ily of cones Λ(S, γ1, γ2) – where |S| ≤ k∗ – is lower-
bounded by a quadratic form around β∗. By continu-
ity, we define the maximal radius on which the follow-
ing lower-bound holds:

r(k∗) = max

r :
L(β∗ + z) ≥ L(β∗) + κ(k∗)

4 ‖z‖
2
2

∀S ⊂ (p) : |S| ≤ k∗,
∀z ∈ Λ(S) : ‖z‖1 ≤ r


where the notations r(k∗), κ(k∗) and Λ(S) are short-
hands for r(k∗, γ1, γ2), κ(k∗, γ1, γ2) and Λ(S, γ1, γ2).
This definition is similar to the one proposed by Bel-
loni et al. (2011) in the proof of Lemma (3.7) . We
now define a growth condition which gives a relation
between the number of samples n, the dimension space
p, the degree of sparsity k∗, our constants introduced
in Assumption 4, and a parameter δ.

Assumption 5. Let δ ∈ (0, 1) and k ∈ {1, . . . , p}.
We say Assumption 5.1(k) is satisfied if p ≤ k

√
k. In

addition, Assumption 5.2(k, γ, δ) is said to hold if the
parameters n, p, k satisfy:

κ(k)

16αL
r(k) ≥ 3M

√
k log (2pe/k) log (2/δ)

n

+ 7µ(k)

√
log(3) + log (p/k) /k + log (2/δ)

n
.

We refer to Assumption 5(k, γ, δ) when both Assump-
tions 5.1(k) and 5.2(k, γ, δ) hold.

Assumption 5 is similar to Equation (17) from Raviku-
mar et al. (2010) for Logistic Regression. Belloni et al.
(2011) also require a growth condition for Theorem
2 to hold for quantile regression. Consequently, we
showed that Assumptions 1-5 are common assump-
tions or similar to existing ones in the literature.
The next section uses our framework to derive upper
bounds for L2 coefficients estimation scaling with the
parameters n, p, k∗.

3 Main results

This section establishes the following theorem:

Theorem 1. Let δ ∈ (0, 1), α ≥ 2 and assume As-
sumptions 1-3, 4(k∗, γ) and 5(k∗, γ, δ) hold – where

γ = (γ1, γ2) and γ1 := α
α−1 , γ2 :=

√
k∗

α−1 .

Then, the empirical estimator β̂, defined as a solution
of Problem (2) for the regularization parameter λ =

12αLM
√

log(2pe/k∗)
n log(2/δ), satisfies with probability
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at least 1− δ:

‖β̂ − β∗‖2 .
αLM

κ(k∗)

√
k∗ log (p/k∗) log (2/δ)

n

+
αLµ(k∗)

κ(k∗)

√
log(3) + log (p/k∗) /k∗ + log (2/δ) /k∗

n
.

(8)

This upper bound scales as ((k∗/n) log(p/k∗))
1/2

. It
strictly improves over existing results. Note that our
estimator is not adaptative to unknown sparsity: the
regularization parameter λ depends upon k∗. The
proof of Theorem 1 is presented in Appendix E. It
relies on two essential steps: a cone condition and
a restricted strong convexity condition: these results
are respectively derived in Theorems 2 and 4. The
two terms of the sum in Equation (8) are related to
the two parameters λ and τ respectively introduced in
these theorems.

In addition, Theorem 1 holds for any δ ≤ 1. Thus, we
obtain by integration the following bound in expecta-
tion. The proof is presented in Appendix F.

Corollary 1. If the assumptions presented in Theo-
rem are satisfied for a small enough δ, then:

E‖β̂ − β∗‖2 .
αL

κ(k∗)

(
M

√
k∗ log (p/k∗)

n
+
µ(k∗)√

n

)
.

The rest of this section follows through the steps re-
quired to prove Theorem 1 and Corollary 1.

3.1 Cone condition

Similarly to the regression case (Bickel et al., 2009;
Bellec et al., 2016), we first derive a cone condition
which applies to the difference between the empirical
and theoretical minimizers. That is, by selecting a
suitable regularization parameter, we show that this
difference belongs to the family of cones Λ(S, γ1, γ2) of
Rp defined in Assumption 4.

Theorem 2. Let δ ∈ (0, 1) and assume that Assump-
tions 1 and 3 are satisfied. Let α ≥ 2.

Let β̂ be a solution of Problem (2) with parameter

λ = 12αLM
√

log(2pe/k∗)
n log(2/δ). Then it holds with

probability at least 1− δ
2 :

h := β̂ − β∗ ∈ Λ

(
S0, γ1 :=

α

α− 1
, γ2 :=

√
k∗

α− 1

)
,

where S0 is the subset of indices of the k∗ highest co-
efficients of h.

The regularization parameter λ is selected so that it
dominates the sub-gradient of the loss f evaluated at

the theoretical minimizer β∗. The proof is presented
in Appendix B: it uses a new result to control the
maximum of independent sub-Gaussian random vari-
ables. As a result, our cone condition is stronger than
the ones proposed by Peng et al. (2016) and Raviku-
mar et al. (2010): their value of λ2 is of the order of
(k∗/n) log(p) whereas ours scales as (k∗/n) log(p/k∗).

3.2 A supremum result

The next Theorem 3 is an essential step to obtain our
main Theorem 1. It controls the supremum of the dif-
ference between an empirical random variable and its
expectation. This supremum is taken over a bounded
set of sequences of k sparse vectors with supports being
a partition of {1, . . . , p}. The restricted strong convex-
ity condition derived in Theorem 4 is a consequence of
Theorem 3.

To motivate this theorem, it helps considering the dif-
ference between the usual regression framework and
our framework for classification problems. The lin-
ear regression case assumes the generative model y =
Xβ∗ + ε. Therefore, with the notations of Theorem
3, ∆(β∗, z) = 1

n‖Xz‖
2
2 − 2

nε
TXz. By combining a

cone condition (similar to Theorem 1) with an upper-
bound of the term εTXz, we can obtain a restricted
strong convexity similar to Theorem 4. However, in
the classification case, β∗ is defined as the minimizer
of the theoretical risk. Two majors differences appear:
(i) we cannot simplify ∆(β∗, z) with basic algebra, (ii)
we need to introduce the expectation E(∆(β∗, z)) and
to control the quantity |E(∆(β∗, z))−∆(β∗, z)|. The-
orem 3 derives the cost to pay for this control.

Theorem 3. We define ∀w, z ∈ Rp:

∆(w, z) =
1

n

n∑
i=1

f (〈xi,w + z〉; yi)−
1

n

n∑
i=1

f (〈xi,w〉; yi) .

Let k ∈ {1, . . . , p} and S1, . . . Sq be a partition of
{1, . . . , p} with q = dp/ke and |Sj | ≤ k, ∀j.

Let τ(k) = 14L
√

log(3)
n + log(4p/k)

nk + log(2/δ)
nk and as-

sume that Assumptions 1, 4.1(k) and 5.1(k) hold.
Then, for any δ ∈ (0, 1), it holds with probability at
least 1− δ

2 :

sup
zS1

,...,zSq∈R
p:

Supp(zSj
)⊂Sj ∀j

‖zSj
‖1≤3R ∀j

{
sup

`=1,...,q
{Ω (w`−1, zS`

)}

}
≤ 0,with

Ω (w`−1, zS`
) := |∆ (w`−1, zS`

)− E (∆ (w`−1, zS`
))|

− τ(k)‖zS`
‖1.

Supp(.) refers to the support of a vector and we define

w` = β∗ +
∑̀
j=1

zSj ,∀`.
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The proof is presented in Appendix C. It uses Hoeffd-
ing’s inequality to obtain an upper bound of the inner
supremum for a sequence of k sparse vectors. The re-
sult is extended to the outer supremum with an ε-net
argument.

3.3 Restricted strong convexity condition

Theorem 3 applies to a sequence of k sparse vectors
with disjoint supports. In particular we can fix k = k∗

and consider h = β̂ − β∗. In addition, we can exploit
the minimality of β∗ and the cone condition proved
in Theorem 2. By pairing these points, we derive the
next Theorem 4. It says that the loss f satisfies a re-
stricted strong convexity (Negahban et al., 2009) with
curvature κ(k∗)/4. We propose two results, respec-
tively achieved with L1 and L2 tolerance function.

Theorem 4. Let h = β̂ − β∗ and δ ∈ (0, 1). Un-
der the notations of Theorem 3, if Assumptions 1-3,
4(k∗, γ) and 5(k∗, γ, δ) are satisfied, then it holds with
probability at least 1− δ:

∆ (β∗,h) ≥ 1

4
κ(k∗)

{
‖h‖22 ∧ r(k∗)‖h‖2

}
− τ(k∗)‖h‖1

≥ 1

4
κ(k∗)

{
‖h‖22 ∧ r(k∗)‖h‖2

}
− 2α

α− 1
τ(k∗)

√
k∗‖h‖2

(9)

The proof is presented in Appendix D. We convert
the L1 tolerance function into an L2 norm by using
the cone condition derived inTheorem 2. Let us note
that the parameter k∗τ(k∗)2 used for the L2 toler-
ance function scales as n−1(k∗ + log(p/k∗)), whereas
Peng et al. (2016), Ravikumar et al. (2010) and Ne-
gahban et al. (2009) all propose a parameter scaling
as n−1k∗ log(p). Hence, our restricted strong convex-
ity condition is stronger.

3.4 Deriving Theorem 1 and Corollary 1

Our main bounds – presented in Theorem 1 and Corol-
lary 1 – follow from the two preceding Theorems 2 and
4. The proofs are respectively presented in Appendix
E and F. Our family of L1-regularized L1-constrained
estimators reach a bound that strictly improve over
existing results. Our rate is the best known for the
classification problems considered here, and it holds
both with high probability and in expectation.

4 Algorithm and upper bounds for
Slope estimator

This section introduces the Slope estimator – origi-
nally presented for the linear regression case (Bogdan
et al., 2013, 2015) – to our class of problems. We pro-
pose a tractable algorithm to compute it and study its
statistical performance.

4.1 Introducing Slope for classification

We consider a sequence λ ∈ Rp such that λ1 ≥ . . . ≥
λp > 0, and we note Sp the set of permutations of
{1, . . . , p}. The Slope regularization is defined as:

|β|S = max
φ∈Sp

p∑
j=1

|λj ||βφ(j)| =
p∑
j=1

λj |β(j)|, (10)

where |β(1)| ≥ . . . ≥ |β(p)| is a non-increasing rear-
rangement of β. Consequently for η > 0, we define
the Slope estimator β̂ as the solution of the convex
minimization problem:

min
β∈Rp

1

n

n∑
i=1

f (〈xi,β〉; yi) + η|β|S . (11)

The approach presented herein uses a proximal gradi-
ent algorithm – with Nesterov smoothing (Nesterov,
2005) in the case of the hinge loss and quantile re-
gression loss – to solve Problem (11), extending the
original definition of Slope (Bogdan et al., 2013) to a
larger class of loss functions. Recently, Dedieu and
Mazumder (2019) combined similar first order meth-
ods for non-smooth convex optimization with column
with constraint generation algorithms to solve Prob-
lems (2) and (11) when f is the hinge-loss and the
number of samples and features are of the order of
tenth of thousands.

4.2 Smoothing the hinge loss

The method described in Section 4.3 to solve Problem
(11) requires f(., y) to be differentiable with Lipschitz-
continuous gradient. Among the loss functions con-
sidered in Section 2, only the logistic regression loss
satisfies this condition.

To handle the non-smooth hinge loss, we use the
smoothing scheme pioneered by Nesterov (2005). We
construct a convex function gτ with continuous Lips-
chitz gradient, which approximates the hinge loss for
τ ≈ 0. Let us first note that max(0, x) = 1

2 (x+ |x|) =
max|w|≤1

1
2 (x + wx) as this maximum is achieved for

sign(x). Consequently the hinge loss can be expressed
as a maximum over the L∞ unit ball:

1

n

n∑
i=1

max(zi, 0) = max
‖w‖∞≤1

1

2n

n∑
i=1

[zi + wizi] ,

where zi = 1 − yix
T
i β, ∀i. We apply the technique

suggested by Nesterov (2005) and define for τ > 0 the
smoothed hinge loss:

gτ (β) = max
‖w‖∞≤1

1

2n

n∑
i=1

[zi + wizi]−
τ

2n
‖w‖22. (12)
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Let wτ (β) ∈ Rn : wτi (β) = min
(
1, 1

2τ |zi|
)

sign(zi), ∀i
be the optimal solution of the right-hand side of Equa-
tion (12). The gradient of gτ is expressed as:

∇gτ (β) = − 1

2n

n∑
i=1

(1 + wτi (β))yixi ∈ Rp, (13)

and its associated Lipschitz constant is derived from
the next theorem.

Theorem 5. Let µmax(n−1XTX) be the highest eigen-
value of n−1XTX. Then ∇gτ is Lipschitz continuous
with constant Cτ = µmax(n−1XTX)/4τ .

The proof is presented in Appendix G. It follows Nes-
terov (2005) and relies on first order necessary condi-
tions for optimality. We mention how to adapt Theo-
rem 5 to the quantile regression loss.

4.3 Thresholding operator for Slope

We note g(β) = 1
n

∑n
i=1 f (〈xi,β〉; yi). Problem (11)

can be equivalently formulated as:

min
β∈Rp

g(β) + η|β|S , (14)

We now require g to be a differentiable loss with C-
Lipschitz continuous gradient. When f is the hinge or
quantile regression loss we replace g with gτ – defined
in Section 4.2. For D ≥ C, we upper-bound g around
any α ∈ Rp with the quadratic form QD(α, .) defined
as the right-hand side of the equation:

g(β) ≤ g(α) +∇g(α)T (β −α) +
D

2
‖β −α‖22. (15)

We approximate the solution of Problem (11) by con-
sidering the loss QD and solving the problem:

argmin
β

QD(α,β) + η|β|S

= argmin
β

1

2

∥∥∥∥β − (α− 1

D
∇g(α)

)∥∥∥∥2

2

+
η

D
|β|S

= argmin
β

1

2
‖β − γ‖22 +

p∑
j=1

η̃j |β(j)|,

(16)

where γ = α− 1
D∇g(α) and η̃j = η

Dλj , ∀j. To solve
Problem (16), we need to derive the proximal operator
for the sorted L1 norm. The next Lemma 2 does so by
noting that the signs of the quantities βj and γj are
all identical.

Lemma 2. Let us assume that γ̃1 ≥ . . . ≥ γ̃p ≥ 0.
Since η̃1 ≥ . . . ≥ η̃p ≥ 0, the solution of Problem (16)
can be derived from the solution of the problem:

min
β∈Rp

1
2 ‖β − γ̃‖

2
2 +

p∑
j=1

η̃jβj

s.t. β1 ≥ . . . ≥ βp ≥ 0.

(17)

Bogdan et al. (2015) proposed an efficient proximal
algorithm to solve Problem (17) called FastProxSL1:
it is guaranteed to terminate in at most p iterations.
We denote by T{η̃j}(γ) a solution for Problem (16).

4.4 First order algorithm

The following algorithm applies the accelerated gradi-
ent descent method (Beck and Teboulle, 2009) on the
smoothed version of the Slope Problem (14) by using
the thresholding operator T . The iterations continue
till the algorithm converges or a maximum number of
iterations Tmax is reached.

Input: X, y, a sequence of Slope coefficients {λj},
a regularization parameter η, a stopping criterion ε, a
maximum number of iterations Tmax.
Output: An approximate solution β for the
smoothed Slope Problem (14).

1. Initialize T = 1, q1 = 1, β1 = δ0 = 0.

2. : While ‖βT − βT−1‖2 > ε and T < Tmax do:

(a) Compute δT = T{ηλj/C}
(
βT − 1

C∇g(βT )
)
.

(b) Define qT+1 =
1+
√

1+4q2T
2 and compute

βT+1 = δT + qT−1
qT+1

(δT − δT−1).

4.5 Error bounds for Slope

We extend our previous case and study under our
framework the theoretical properties of a Slope esti-
mator. In particular, we consider the L1-constrained
Slope-regularized estimator:

min
β∈Rp: ‖β‖1≤2R

1

n

n∑
i=1

f (〈xi,β〉; yi) + η|β|S . (18)

The study of the Slope estimator shares a lot of sim-
ilarities with our work for L1-regularized estimators.
We first derive the following cone condition:

Theorem 6. Let δ ∈ (0, 1) and α ≥ 2. We fix the
Slope coefficients λj =

√
log(2pe/j),∀j, and assume

Assumptions 1 and 3 hold. Then the Slope estimator
defined as a solution of Problem (18) for the regular-
ization parameter η = 14αLM

√
n−1 log(2/δ) satisfies

with probability at least 1− δ
2 :

β̂ − β∗ ∈ Γ

(
k∗, ω∗ =

α+ 1

α− 1

)
,

where for every k ∈ {1, . . . , p} and ω > 0, the cone
Γ(k, ω) is defined as:

Γ(k, ω) =

z ∈ Rp :

p∑
j=k+1

λj |z(j)| ≤ ω
k∑
j=1

λj |z(j)|


with |z(1)| ≥ . . . ≥ |z(p)|, ∀z.
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The proof is presented in Appendix H. We conse-
quently adapt Assumption 4.2(k, δ) to the new family
of cones Γ(k, ω) introduced in Theorem 6.

Assumption 6. Let k ∈ {1, . . . , p} and ω > 0. As-
sumption 6.2(k, ω) is said to hold if there exists a non-
negative constant κ̃(k, ω) such that:

0 < κ̃(k, ω) ≤ inf
z∈Γ(k,ω)

‖zT∇2L(β∗)z‖2
‖z‖2

.

Similarly, we define a new growth condition – referred
as Assumption 8(k, ω, δ) – which adapts Assumption
5 to Slope by replacing κ(k, γ) with κ̃(k, ω) defined
above. As a consequence, the following result holds.

Corollary 2. Assume Assumptions 1-3, Asumptions
6(k∗, ω∗) and 8(k∗, ω∗, δ) hold for a small enough δ –
ω∗ is defined in Theorem 6 – and that µ(k∗) ≤ αM .

Then the bounds presented in Theorem 1 and Corol-
lary 1 are achieved by a Slope estimator, defined as
a solution of Problem (11) for the coefficients λj =√

log(2pe/j),∀j and the regularization parameter η =

14αLMn−1
√

log(2/δ) – where α ≥ 2.

The proof is presented in Appendix I. This Slope esti-
mator adapts to unknown sparsity while achieving the
same bound than the L1-regularized estimator studied
in Theorem 1 and Corollary 1.

4.6 Simulations

We finally compute a family of Slope estimators and
demonstrate their empirical performance – for L2 co-
efficients estimations and misclassification accuracy –
when compared to L1 and L2-regularized estimators.

Data Generation: We consider n independent real-
izations of a p dimensional multivariate normal cen-
tered distribution, with only k∗ dimensions being rele-
vant for classification. Half of the samples are from the
+1 class and have mean µ+ = (1k∗ , 0p−k∗). The other
half are from the −1 class and have mean µ− = −µ+.
We consider a covariance matrix Σij = ρ if i 6= j and

1 otherwise. The data of both ±1 classes respectively
have the distribution: ∀i, x±i ∼ N(µ±,Σ).

Competitors: Table 1 compares the performance of
3 approaches – each associated to a different regular-
ization – for both the SVM and the Logistic Regres-
sion problems. Method (a) computes a family of L1-
regularized estimators for a decreasing geometric se-
quence of regularization parameters η0 > . . . > ηM .
We start from a high enough η0 so that the solu-
tion of Problem (2) is the 0 estimator and we fix
ηM < 10−4η0. For the hinge loss, we solve the Lin-
ear Programming L1-SVM problem with the com-
mercial LP solver Gurobi version 6.5 with Python
interface. The L1-regularized Logistic Regression is
solved with scikit-learn Python package. In addi-
tion, method (b) returns a family of L2-regularized
estimators with scikit-learn package: we start from
η0 = maxi

{
‖xi‖22

}
as suggested by Chu et al. (2015).

Finally, method (c) computes a family of Slope-
regularized estimators, using the first order algorithm
presented in Section 4.4 for τ = 0.2. The Slope coef-
ficients {λj} are the ones proposed in Theorem 6; the
set of parameters {ηi} is identical to method (a).

Metrics: Following our theoretical results, we want to
find the estimator which minimizes the L2 estimation
error: ∥∥∥∥∥ β̂

‖β̂‖2
− β∗

‖β∗‖2

∥∥∥∥∥
2

,

where β∗ is the theoretical minimizer. β∗ is computed
on a large test set with 10, 000 samples: we solve the
SVM / Logistic Regression problem with a very small
regularization coefficient on the k∗ columns relevant
for classification. We also study the misclassification
performances on this same test set. For each family
returned by the methods (a), (b) and (c), we only
keep the estimator with lowest misclassification error
on an independent validation set of size 10, 000.

Table 1 compares the L2 estimation error (L2-E), and
the test misclassification error (Misc) of these 3 esti-
mators. Results are averaged over 10 simulations.

Table 1: Averaged L2 estimation (L2-E) and test misclassification error (Misc) for the methods (a), (b) and (c) over

10 repetitions. We use varying n, p values with k∗ = n/10 and ρ = 0.1. The Slope estimator shows impressive gains for

estimating the theoretical minimizer β∗, while achieving lower misclassification error.

n = 100, p = 1k n = 100, p = 10k n = 1k, p = 1k n = 1k, n = 10k

L2-E Misc(%) L2-E Misc(%) L2-E Misc(%) L2-E Misc(%)

L1 SVM 0.57 1.67 0.52 1.54 1.12 1.17 1.01 0.15
L2 SVM 0.54 1.73 0.52 1.54 1.11 0.18 0.91 0.11

Slope SVM 0.34 1.24 0.37 1.15 0.94 0.13 0.83 0.10

L1 LR 0.48 1.40 0.46 1.37 1.04 0.18 1.04 0.16
L2 LR 0.92 3.2 1.25 0.18 0.82 0.12 0.89 0.16

Slope LR 0.22 1.14 0.18 1.12 0.81 0.12 0.82 0.13
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