Supplementary Material

Payam Delgosha

University of California, Berkeley pdelgosha@eecs.berkeley.edu

Naveen Goela

Tanium, Data Science
ngoela@alum.mit.edu

A Overview

This document contains supplementary material for the paper "Deep Switch Networks for Generating Discrete Data and Language" accepted to the AISTATS 2019 conference.

B Approximate Gradient Calculation for the Two-Layer Network

In this section, we propose an approximate method to compute the gradients of the empirical likelihood of the two-layer switch network with respect to the model parameters. Recall from the main paper that in the two layer setup, the empirical log-likelihood has the following form

$$
\begin{gather*}
L^{(k)}:=\frac{1}{I} \sum_{i=1}^{I} \log p\left(X_{k+1}=x_{k+1}^{(i)} \mid x_{[1: k]}^{(i)} ; \theta^{(k)}\right) \\
=\frac{1}{I} \sum_{i=1}^{I} \log \sum_{f_{[1: l]}^{(k)}} p\left(f_{[1: l]}^{(k)} \mid x_{[1: k]}^{(i)} ; \theta_{1}^{(k)}\right) \times \tag{1}\\
p\left(X_{k+1}=x_{k+1}^{(i)} \mid f_{[1: l]}^{(k)} ; \theta_{2}^{(k)}\right)
\end{gather*}
$$

B. 1 Likelihood Gradient

Differentiating $L^{(k)}$ with respect to $\theta_{1}^{(k)}$, the parameters of the first layer, we get

$$
\begin{align*}
& \frac{\partial L^{(k)}}{\partial \theta_{1}^{(k)}}= \frac{1}{I} \sum_{i=1}^{I} \sum_{f_{[1: l]}^{(k)}} \frac{p\left(x_{k+1}^{(i)} \mid f_{[1: l]}^{(k)} ; \theta_{2}^{(k)}\right) \frac{\partial p\left(f_{[1: l]}^{(k)} \mid x_{[1: k]}^{(i)} ; \theta_{1}^{(k)}\right)}{\partial \theta_{1}^{(k)}}}{p\left(x_{k+1}^{(i)} \mid x_{[1: k]}^{(i)} ; \theta^{(k)}\right)} \\
&=\frac{1}{I} \sum_{i=1}^{I} \sum_{f_{[1: l]}^{(k)}} \frac{p\left(x_{k+1}^{(i)} \mid f_{[1: l]}^{(k)} ; \theta_{2}^{(k)}\right) p\left(f_{[1: l]}^{(k)} \mid x_{[1: k]}^{(i)} ; \theta_{1}^{(k)}\right)}{p\left(x_{k+1}^{(i)} \mid x_{[1: k]}^{(i)} ; \theta^{(k)}\right)} \\
& \times \frac{\partial}{\partial \theta_{1}^{(k)}} \log p\left(f_{[1: l]}^{(k)} \mid x_{[1: k]}^{(i)} ; \theta_{1}^{(k)}\right) . \tag{2}
\end{align*}
$$

Note that for each $1 \leq i \leq I$, the inner summation over $f_{[1: l]}^{(k)}$ could be written as an expectation with respect to the distribution p_{i} on $F_{[1: l]}^{(k)}$ defined as

$$
p_{i}\left(f_{[1: l]}^{(k)} ; \theta^{(k)}\right):=\frac{p\left(x_{k+1}^{(i)} \mid f_{[1: l]}^{(k)} ; \theta_{2}^{(k)}\right) p\left(f_{[1: l]}^{(k)} \mid x_{[1: k]}^{(i)} ; \theta_{1}^{(k)}\right)}{W_{i}\left(\theta^{(k)}\right)}
$$

with the normalizing constant

$$
W_{i}\left(\theta^{(k)}\right):=\sum_{\tilde{f}_{[1: l]}^{(k)}} p\left(x_{k+1}^{(i)} \mid \tilde{f}_{[1: l]}^{(k)} ; \theta_{2}^{(k)}\right) p\left(\tilde{f}_{[1: l]}^{(k)} \mid x_{[1: k]}^{(i)} ; \theta_{1}^{(k)}\right)
$$

Using this, we may write (2) as

$$
\begin{equation*}
\frac{\partial L^{(k)}}{\partial \theta_{1}^{(k)}}=\frac{1}{I} \sum_{i=1}^{I} \mathbb{E}_{p_{i}}\left[\frac{\partial}{\partial \theta_{1}^{(k)}} \log p\left(F_{[1: l]}^{(k)} \mid x_{[1: k]}^{(i)} ; \theta_{1}^{(k)}\right)\right] \tag{3}
\end{equation*}
$$

where in the expectation, on the right hand side, $F_{[1: l]}^{(k)}$ has the distribution p_{i} defined above. Similar calculation shows that

$$
\begin{equation*}
\frac{\partial L^{(k)}}{\partial \theta_{2}^{(k)}}=\frac{1}{I} \sum_{i=1}^{I} \mathbb{E}_{p_{i}}\left[\frac{\partial}{\partial \theta_{2}^{(k)}} \log p\left(x_{k+1}^{(i)} \mid F_{[1: l]}^{(k)} ; \theta_{2}^{(k)}\right)\right] \tag{4}
\end{equation*}
$$

B. 2 Metropolis-Hastings Algorithm

Now, we may use the Metropolis-Hastings algorithm to approximate the expectation for each i. The reason is that the ratio of probabilities $p_{i}\left(f_{[1: l]}^{(k)} ; \theta^{(k)}\right) / p_{i}\left(\tilde{f}_{[1: l]}^{(k)} ; \theta^{(k)}\right)$ for two configurations $f_{[1: l]}^{(k)}$ and $\tilde{f}_{[1: l]}^{(k)}$ does not depend on the normalizing constant $W_{i}\left(\theta^{(k)}\right)$ and can be computed efficiently. More precisely, for $1 \leq i \leq I$, we design a Markov Chain Monte Carlo (MCMC) algorithm with the proposal distribution

$$
g_{i}\left(\tilde{f}_{[1: l]}^{(k)} \mid f_{[1: l]}^{(k)}\right)=p\left(\tilde{f}_{[1: l]}^{(k)} \mid x_{[1: k]}^{(i)} ; \theta_{1}^{(k)}\right)
$$

With the current sample $f_{[1: l]}^{(k)}$ and the new sample $\tilde{f}_{[1: l]}^{(k)}$, the acceptance ratio takes the following form

$$
\begin{aligned}
A_{i}\left(\tilde{f}_{1: l}^{(k)} \mid f_{[1: l]}^{(k)}\right) & =\min \left(1, \frac{p_{i}\left(\tilde{f}_{[1: l]}^{(k)} ; \theta^{(k)}\right)}{p_{i}\left(f_{[1: l]}^{(k)} ; \theta^{(k)}\right)} \frac{g_{i}\left(f_{[1: l]}^{(k)} \mid \tilde{f}_{[1: l]}^{(k)}\right)}{g_{i}\left(\tilde{f}_{[1: l]}^{(k)} \mid f_{[1: l]}^{(k)}\right)}\right) \\
& =\min \left(1, \frac{p\left(x_{k+1}^{(i)} \mid \tilde{f}_{[1: l]}^{(k)} ; \theta_{2}^{(k)}\right)}{p\left(x_{k+1}^{(i)} \mid f_{[1: l]}^{(k)} ; \theta_{2}^{(k)}\right)}\right)
\end{aligned}
$$

We can interpret this procedure as generating samples given the previous k symbols, and then re-weight based on the likelihood of the symbol $k+1$.

With this setup, we iterate the above Markov chain for t steps, and repeat this procedure for r rounds. Finally, we take the average of these independent r outcomes, where each of them is the result of a Markov chain after t iterations, to approximate each term in the gradients of (3) and (4). Figure 1 illustrates the performance of this approach for one bit in the MNIST dataset and for different values of the parameters r and t. As we can see, by increasing the values of r and t, the approximate gradient converges to the actual gradient.

Figure 1: The performance of the MCMC algorithm for the two-layer switch network for bit index 629 of the MNIST data. The size of the switch network in this example is $\left(m_{1}, l, m_{2}\right)=(8,8,4)$. We run the Markov chain t steps for r independent runs and take the average to approximate the gradients. By increasing the values of r and t, the likelihood performance approaches that of the exact gradient computation. The performance of the single-layer switch network with $m=8$ is illustrated for reference.

