A SAMPLE AUGMENTATION: PROOFS

In this section we give the proofs omitted in Section 2.
Proof of Lemma 7 First, suppose that $k=d$, in which case $\operatorname{det}\left(\mathbf{A}^{\top} \mathbf{B}\right)=\operatorname{det}(\mathbf{A}) \operatorname{det}(\mathbf{B})$. Recall that by definition the determinant can be written as:

$$
\operatorname{det}(\mathbf{C})=\sum_{\sigma \in \mathscr{S}_{d}} \operatorname{sgn}(\sigma) \prod_{i=1}^{d} c_{i, \sigma_{i}}
$$

where \mathscr{S}_{d} is the set of all permutations of (1..d), and $\operatorname{sgn}(\sigma)=\operatorname{sgn}((1 . . d), \sigma) \in\{-1,1\}$ is the parity of the number of swaps from (1..d) to σ. Using this formula and denoting $c_{i j}=\left(\mathbb{E}\left[\mathbf{a b}^{\top}\right]\right)_{i j}$, we can rewrite the expectation as:

$$
\begin{aligned}
\mathbb{E}[\operatorname{det}(\mathbf{A}) \operatorname{det}(\mathbf{B})] & =\sum_{\sigma, \sigma^{\prime} \in \mathscr{S}_{d}} \operatorname{sgn}(\sigma) \operatorname{sgn}\left(\sigma^{\prime}\right) \prod_{i=1}^{d} \mathbb{E}\left[a_{i \sigma_{i}} b_{i \sigma_{i}^{\prime}}\right] \\
& =\sum_{\sigma \in \mathscr{S}_{d}} \sum_{\sigma^{\prime} \in \mathscr{S}_{d}} \operatorname{sgn}\left(\sigma, \sigma^{\prime}\right) \prod_{i=1}^{d} c_{\sigma_{i} \sigma_{i}^{\prime}} \\
& =d!\sum_{\sigma^{\prime} \in \mathscr{S}_{d}} \operatorname{sgn}\left(\sigma^{\prime}\right) \prod_{i=1}^{d} c_{i \sigma_{i}^{\prime}} \\
& =d!\operatorname{det}\left(\mathbb{E}\left[\mathbf{a b}^{\top}\right]\right)
\end{aligned}
$$

which completes the proof for $k=d$. The case of $k>$ d follows by induction via a standard determinantal formula:

$$
\begin{aligned}
\mathbb{E}\left[\operatorname{det}\left(\mathbf{A}^{\top} \mathbf{B}\right)\right] & \stackrel{(*)}{=} \mathbb{E}\left[\frac{1}{k-d} \sum_{i=1}^{k} \operatorname{det}\left(\mathbf{A}_{-i}^{\top} \mathbf{B}_{-i}\right)\right] \\
& =\frac{k}{k-d} \mathbb{E}\left[\operatorname{det}\left(\mathbf{A}_{-k}^{\top} \mathbf{B}_{-k}\right)\right]
\end{aligned}
$$

where $(*)$ follows from the Cauchy-Binet formula and \mathbf{A}_{-i} denotes matrix \mathbf{A} with the i th row removed.
Next, we state a formula which we used in the proof of Theorem 2. This lemma is an immediate implication of a result shown by [8].

Lemma 15 Given full rank $\mathbf{X} \in \mathbb{R}^{k \times d}$ and $\mathbf{y} \in \mathbb{R}^{k}$, we have:

$$
\mathbf{w}^{*}(\mathbf{X}, \mathbf{y})=\sum_{i=1}^{k} \frac{\operatorname{det}\left(\mathbf{X}_{-i}^{\top} \mathbf{X}_{-i}\right)}{(k-d) \operatorname{det}\left(\mathbf{X}^{\top} \mathbf{X}\right)} \mathbf{w}^{*}\left(\mathbf{X}_{-i}, \mathbf{y}_{-i}\right)
$$

where $\mathbf{w}^{*}(\mathbf{X}, \mathbf{y})=\mathbf{X}^{+} \mathbf{y}$ is the least squares solution for (\mathbf{X}, \mathbf{y}), and \mathbf{X}^{+}is the pseudoinverse of \mathbf{X}.

Proof Let \mathbf{I}_{-i} denote the identity matrix with i th diagonal entry set to zero. Note that we can write
$\mathbf{w}^{*}\left(\mathbf{X}_{-i}, \mathbf{y}_{-i}\right)=\left(\mathbf{I}_{-i} \mathbf{X}\right)^{+} \mathbf{y}$. Moreover, by Sylvester's theorem we have

$$
\frac{\operatorname{det}\left(\mathbf{X}_{-i}^{\top} \mathbf{X}_{-i}\right)}{\operatorname{det}\left(\mathbf{X}^{\top} \mathbf{X}\right)}=1-\mathbf{x}_{i}^{\top}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{x}_{i}
$$

Thus, it suffices to show that

$$
\mathbf{X}^{+}=\sum_{i=1}^{k} \frac{1-\mathbf{x}_{i}^{\top}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{x}_{i}}{k-d}\left(\mathbf{I}_{-i} \mathbf{X}\right)^{+}
$$

which is in fact precisely the formula shown in [8] (see proof of Theorem 5).

B VOLUME-RESCALED GAUSSIAN: PROOFS

In this section we give the proofs omitted in Section 3.
Proof of Lemma 9 Since we are conditioning on an event which may have probability 0 , this requires a careful limiting argument. Let A be any measurable event over the random matrix $\widetilde{\mathbf{X}}$ and let

$$
C_{\boldsymbol{\Sigma}}^{\epsilon} \stackrel{\text { def }}{=}\left\{\mathbf{B} \in \mathbb{R}^{d \times d}:\|\mathbf{B}-\boldsymbol{\Sigma}\| \leq \epsilon\right\}
$$

be an ϵ-neighborhood of $\boldsymbol{\Sigma}$ w.r.t. the matrix 2 -norm. We write the conditional probability of $\widetilde{\mathbf{X}} \in A$ given that $\widetilde{\mathbf{X}}^{\top} \widetilde{\mathbf{X}} \in C_{\boldsymbol{\Sigma}}^{\epsilon}$ as:

$$
\begin{aligned}
\operatorname{Pr}(\widetilde{\mathbf{X}} \in A \mid & \left.\widetilde{\mathbf{X}}^{\top} \widetilde{\mathbf{X}} \in C_{\boldsymbol{\Sigma}}^{\epsilon}\right)=\frac{\operatorname{Pr}\left(\widetilde{\mathbf{X}} \in A \wedge \widetilde{\mathbf{X}}^{\top} \widetilde{\mathbf{X}} \in C_{\boldsymbol{\Sigma}}^{\epsilon}\right)}{\operatorname{Pr}\left(\widetilde{\mathbf{X}}^{\top} \widetilde{\mathbf{X}} \in C_{\boldsymbol{\Sigma}}^{\epsilon}\right)} \\
& =\frac{\mathbb{E}\left[\mathbf{1}_{[\mathbf{X} \in A]} \mathbf{1}_{\left[\mathbf{X}^{\top} \mathbf{X} \in C_{\boldsymbol{\Sigma}}^{\epsilon}\right]} \operatorname{det}\left(\mathbf{X}^{\top} \mathbf{X}\right)\right]}{\mathbb{E}\left[\mathbf{1}_{\left[\mathbf{X}^{\top} \mathbf{X} \in C_{\boldsymbol{\Sigma}}^{\epsilon}\right]} \operatorname{det}\left(\mathbf{X}^{\top} \mathbf{X}\right)\right]} \\
& \leq \frac{\mathbb{E}\left[\mathbf{1}_{[\mathbf{X} \in E]} \mathbf{1}_{\left[\mathbf{X}^{\top} \mathbf{X} \in C_{\boldsymbol{\Sigma}}^{\epsilon}\right]} \operatorname{det}(\mathbf{\Sigma})(1+\epsilon)^{d}\right]}{\mathbb{E}\left[\mathbf{1}_{\left[\mathbf{X}^{\top} \mathbf{X} \in C_{\boldsymbol{\Sigma}}^{\epsilon}\right]} \operatorname{det}(\boldsymbol{\Sigma})(1-\epsilon)^{d}\right]} \\
& =\frac{\mathbb{E}\left[\mathbf{1}_{[\mathbf{X} \in A]} \mathbf{1}_{\left[\mathbf{X}^{\top} \mathbf{X} \in C_{\boldsymbol{\Sigma}}^{\epsilon}\right]}\right]}{\mathbb{E}\left[\mathbf{1}_{\left[\mathbf{X}^{\top} \mathbf{X} \in C_{\boldsymbol{\Sigma}}^{\epsilon}\right]}\right]}\left(\frac{1+\epsilon}{1-\epsilon}\right)^{d} \\
& =\operatorname{Pr}\left(\mathbf{X} \in A \mid \mathbf{X}^{\top} \mathbf{X} \in C_{\boldsymbol{\Sigma}}^{\epsilon}\right)\left(\frac{1+\epsilon}{1-\epsilon}\right)^{d} \\
& \xrightarrow{\epsilon \rightarrow 0} \operatorname{Pr}\left(\mathbf{X} \in A \mid \mathbf{X}^{\top} \mathbf{X}=\boldsymbol{\Sigma}\right) .
\end{aligned}
$$

We can obtain a lower-bound analogous to the above upper-bound, namely $\operatorname{Pr}\left(\mathbf{X} \in A \mid \mathbf{X}^{\top} \mathbf{X} \in C_{\boldsymbol{\Sigma}}^{\epsilon}\right)\left(\frac{1-\epsilon}{1+\epsilon}\right)^{d}$, which also converges to $\operatorname{Pr}\left(\mathbf{X} \in A \mid \mathbf{X}^{\top} \mathbf{X}=\boldsymbol{\Sigma}\right)$. Thus, we conclude that:

$$
\begin{aligned}
\operatorname{Pr}\left(\widetilde{\mathbf{X}} \in A \mid \widetilde{\mathbf{X}}^{\top} \widetilde{\mathbf{X}}=\boldsymbol{\Sigma}\right) & =\lim _{\epsilon \rightarrow 0} \operatorname{Pr}\left(\widetilde{\mathbf{X}} \in A \mid \widetilde{\mathbf{X}}^{\top} \widetilde{\mathbf{X}} \in C_{\boldsymbol{\Sigma}}^{\epsilon}\right) \\
& =\operatorname{Pr}\left(\mathbf{X} \in A \mid \mathbf{X}^{\top} \mathbf{X}=\boldsymbol{\Sigma}\right)
\end{aligned}
$$

completing the proof.

C GENERAL ALGORITHM: PROOFS

In this section we give proofs omitted in Section 4.
Proof of Lemma 12 The distribution $\operatorname{Lev}_{\widehat{\Sigma}, \mathcal{X}}$ integrates to one because for $\mathbf{x} \sim D_{\mathcal{X}}$:

$$
\mathbb{E}\left[\mathbf{x}^{\top} \widehat{\boldsymbol{\Sigma}}^{-1} \mathbf{x}\right]=\mathbb{E}\left[\operatorname{tr}\left(\mathbf{x} \mathbf{x}^{\top} \widehat{\boldsymbol{\Sigma}}^{-1}\right)\right]=\operatorname{tr}\left(\boldsymbol{\Sigma}_{\mathrm{D}_{\mathcal{X}}} \widehat{\boldsymbol{\Sigma}}^{-1}\right)
$$

Next, we use the geometric-arithmetic mean inequality for the eigenvalues of matrix $\widetilde{\boldsymbol{\Sigma}}$ to show that:

$$
\begin{aligned}
\operatorname{det}\left(\widetilde{\boldsymbol{\Sigma}} \widehat{\boldsymbol{\Sigma}}^{-1}\right) & \leq\left(\frac{1}{d} \operatorname{tr}\left(\widetilde{\boldsymbol{\Sigma}} \widehat{\boldsymbol{\Sigma}}^{-1}\right)\right)^{d} \\
& =\left(\frac{1}{d t} \sum_{i=1}^{t} \frac{d}{l_{\widehat{\boldsymbol{\Sigma}}}\left(\mathbf{x}_{i}\right)} \mathbf{x}_{i}^{\top} \widehat{\boldsymbol{\Sigma}}^{-1} \mathbf{x}_{i}\right)^{d}=1
\end{aligned}
$$

Next, we use the formula for the normalization constant in Theorem 1 but with a modified random vector. Specifically, let $\widetilde{\mathbf{x}}_{i}=\sqrt{\frac{\operatorname{tr}\left(\boldsymbol{\Sigma}_{\mathrm{D}_{\mathcal{X}}} \widehat{\boldsymbol{\Sigma}}^{-1}\right)}{l_{\widehat{\mathbf{\Sigma}}}\left(\mathbf{x}_{i}\right)}} \mathbf{x}_{i}$. Then $\mathbb{E}\left[\widetilde{\mathbf{x}}_{i} \widetilde{\mathbf{x}}_{i}^{\top}\right]=\boldsymbol{\Sigma}_{\mathrm{D}_{\mathcal{X}}}$ and

$$
\widetilde{\boldsymbol{\Sigma}}=\frac{1}{t} \sum_{i=1}^{t} \frac{d}{l_{\widehat{\boldsymbol{\Sigma}}}\left(\mathbf{x}_{i}\right)} \mathbf{x}_{i} \mathbf{x}_{i}^{\top}=\frac{d}{\operatorname{tr}\left(\boldsymbol{\Sigma}_{\mathrm{D}_{\mathcal{X}}} \widehat{\boldsymbol{\Sigma}}^{-1}\right)} \frac{1}{t} \sum_{i=1}^{t} \widetilde{\mathbf{x}}_{i} \widetilde{\mathbf{x}}_{i}^{\top} .
$$

So, using Lemma 7 on the vectors $\widetilde{\mathbf{x}}_{i}$, we have:

$$
\begin{aligned}
\mathbb{E}\left[\operatorname{det}\left(\widetilde{\boldsymbol{\Sigma}} \widehat{\boldsymbol{\Sigma}}^{-1}\right)\right] & =\left(\frac{d}{\operatorname{tr}\left(\boldsymbol{\Sigma}_{\mathrm{D}_{\mathcal{X}}} \widehat{\boldsymbol{\Sigma}}^{-1}\right)}\right)^{d} \frac{\mathbb{E}\left[\operatorname{det}\left(\sum_{i} \widetilde{\mathbf{x}}_{i} \widetilde{\mathbf{x}}_{i}^{\top}\right)\right]}{t^{d} \operatorname{det}(\widehat{\boldsymbol{\Sigma}})} \\
& =\frac{d!\binom{t}{d} \operatorname{det}\left(\mathbb{E}\left[\widetilde{\mathbf{x}}_{1} \widetilde{\mathbf{x}}_{1}^{\top}\right]\right)}{t^{d}\left(\frac{1}{d} \operatorname{tr}\left(\boldsymbol{\Sigma}_{\mathrm{D}_{\mathcal{X}}} \widehat{\boldsymbol{\Sigma}}^{-1}\right)\right)^{d} \operatorname{det}(\widehat{\boldsymbol{\Sigma}})} \\
& =\left(\prod_{i=0}^{d-1} \frac{t-i}{t}\right) \frac{\operatorname{det}\left(\boldsymbol{\Sigma}_{\mathrm{D}_{\mathcal{X}}} \widehat{\boldsymbol{\Sigma}}^{-1}\right)}{\left(\frac{1}{d} \operatorname{tr}\left(\boldsymbol{\Sigma}_{\mathrm{D}_{\mathcal{X}}} \widehat{\boldsymbol{\Sigma}}^{-1}\right)\right)^{d}} \\
& \geq\left(1-\frac{d}{t}\right)^{d} \frac{\operatorname{det}\left(\boldsymbol{\Sigma}_{\mathrm{D}_{\mathcal{X}}} \widehat{\boldsymbol{\Sigma}}^{-1}\right)}{\left(\frac{1}{d} \operatorname{tr}\left(\boldsymbol{\Sigma}_{\mathrm{D}_{\mathcal{X}}} \widehat{\boldsymbol{\Sigma}}^{-1}\right)\right)^{d}}
\end{aligned}
$$

Applying Bernoulli's inequality concludes the proof.

Proof of Lemma 13 Let $\mathbf{X} \in \mathbb{R}^{k \times d}$ be the matrix with rows \mathbf{x}_{i}^{\top} and let $q_{i}(\mathbf{X})$ denote the sampling probability in line 4 of Algorithm 2, given the set of row vectors. We will show that if $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k} \sim \mathrm{VS}_{\mathrm{D}_{\mathcal{X}}}^{k}$,
then after one step of the algorithm, the remaining row vectors. We will show that if $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k} \sim \mathrm{VS}_{\mathrm{D}_{\mathcal{x}}}^{k}$,
then after one step of the algorithm, the remaining vectors are distributed according to $\mathrm{VS}_{\mathrm{D}_{\mathcal{X}}}^{k-1}$. Let A denote a measurable event over the space $\left(\mathbb{R}^{d}\right)^{k-1}$, and let $A^{\prime}=A \times \mathbb{R}^{d}$ be that event marginalized over
the space $\left(\mathbb{R}^{d}\right)^{k}$. We wish to compute the probability and let $A^{\prime}=A \times \mathbb{R}^{d}$ be that event marginalized over
the space $\left(\mathbb{R}^{d}\right)^{k}$. We wish to compute the probability $\operatorname{Pr}(A)$ over the sample returned by the algorithm given input set $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right\}$ and sampling size $k-1$. Note that since the sample $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}$ is symmetric under
permutations, the probability of A should not depend on which index i is selected in line 5 of Algorithm 2, so we have

$$
\begin{aligned}
\operatorname{Pr}(A) & =k \operatorname{Pr}(A \mid \text { Alg. } 2 \text { selected } i=k) \\
& \propto \mathbb{E}_{\mathrm{D}_{\mathcal{X}}^{k}}\left[\mathbf{1}_{A^{\prime}} q_{k}(\mathbf{X}) \operatorname{det}\left(\mathbf{X}^{\top} \mathbf{X}\right)\right] \\
& \propto \mathbb{E}_{\mathrm{D}_{\mathcal{X}}^{k}}\left[\mathbf{1}_{A^{\prime}} \frac{\operatorname{det}\left(\mathbf{X}_{-k}^{\top} \mathbf{X}_{-k}\right)}{\operatorname{det}\left(\mathbf{X}^{\top} \mathbf{X}\right)} \operatorname{det}\left(\mathbf{X}^{\top} \mathbf{X}\right)\right] \\
& =\mathbb{E}_{\mathrm{D}_{\mathcal{X}}^{k}}\left[\mathbf{1}_{A^{\prime}} \operatorname{det}\left(\mathbf{X}_{-k}^{\top} \mathbf{X}_{-k}\right)\right] \\
& \propto \operatorname{VS}_{\mathrm{D}_{\mathcal{X}}}^{k-1}(A)
\end{aligned}
$$

where in the above we skipped constant factors, since they fall into the normalization constant. The lemma now follows by induction over increasing k.

