
Fast Algorithms for Sparse Reduced Rank Regression :
Appendix

A Summary of results
We summarize the main steps of our paper, in red for RRR and in cyan for SRRR.

Corollary 5/6 : Corollary 8/9 : Corollary 10 :
Strong convexity on cones ⇒ (proximal) PŁ inequality ⇒ Local linear convergence
of f/Fλ for RRR/SRRR with Theorem 7

We also summarize the different results obtained.

Results RRR (λ = 0) SRRR (0 < λ)

Local minima are global minima 3
Lemma 2 7

Algorithm cst_st ls cst_st ls

Global convergence to
a critical point

3
Theorem 40

3
Theorem 40

(∗)
Theorem 43

(∗)
Theorem 43

Local linear convergence 3
Corollary 10

3
Corollary 10

3(λ < λ̄)
Corollary 10

3(λ < λ̄)
Corollary 10

• cst_st : Algorithm 1 with fixed step size t ≤ 1
LX

.

• ls : Algorithm 1 with line search.

• (∗) : All limit points of the sequence are critical points. If these limit points are local minima and if for
any S ⊂ {1, . . . , p} of cardinality at least r, the matrix XT

S Y is full-rank, then Algorithm 1 converges
to a local minimum (see Appendix F.2).

B Additional definitions and classical results
In Sections B.1, B.2 and B.3, we give a few definitions that are used throughout the paper. We also recall
classical results in Fact 12 and Fact 15. In Section B.4, we present the limiting subdifferential and a result
for subanalytic functions in Lemma 20.
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B.1 Strong convexity
Definition 11. Given d > 0, µ > 0 and a convex set V ⊂ Rd, a function f : x ∈ V 7→ f(x) is µ-strongly
convex if :

for all x, y ∈ V, t ∈ [0, 1], f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− µ

2
t(1− t)||y − x||2.

Fact 12. Given d > 0, µ > 0, a convex set V ⊂ Rd and a differentiable function f : x ∈ V 7→ f(x), f is
µ-strongly convex if and only if :

for all x, y ∈ V, f(y) ≥ f(x) + 〈∇f(x), y − x〉+
µ

2
||y − x||2.

B.2 Smoothness and Lipschitz gradients
Definition 13. Given d > 0, L > 0 and a set V ⊂ Rd, we say that a differentiable function f : x ∈ V 7→ f(x)
has L-Lipschitz gradients in V if :

for all x, y ∈ V, ||∇f(x)−∇f(y)|| ≤ L||y − x||.

Definition 14. Given d > 0, L > 0 and a set V ⊂ Rd, we say that a function f : x ∈ V 7→ f(x) is L-smooth
in V if it is differentiable and such that :

for all x, y ∈ V, f(y) ≤ f(x) + 〈∇f(x), y − x〉+
L

2
||y − x||2.

Fact 15. If f has L-Lipschitz gradients and V is convex, then f is L-smooth. If f is convex and L-smooth,
then f has L-Lipschitz gradients.

B.3 Sublevel sets
Definition 16. Given a set X and a function f : x ∈ X 7→ f(x), a set V ⊂ X is called a sublevel set of the
function f if there is c ∈ R such that :

V = {x ∈ X , f(x) ≤ c} .

B.4 Subdifferentials, graph continuity and the Kurdyka-Łojasiewicz property
Definition 17. Given a real-valued extended function F : Rd 7→ R ∪ {∞}, let

dom F :=
{
x ∈ Rd | F (x) <∞

}
denote its domain. For each x ∈ dom F , the Fréchet subdifferential of F at x, written ∂̂F (x), is the set of
vectors v ∈ Rd which satisfy

lim inf
y 6=x, y→x

1

||y − x|| [F (y)− F (x)− 〈v, y − x〉] ≥ 0.

When x /∈ dom F , we set ∂̂F (x) = ∅. Given x ∈ Rd, The limiting-subdifferential ∂F (x) is defined as

∂F (x) :=
{
v ∈ Rd | ∃ xk → x, f(xk)→ f(x), vk ∈ ∂̂F (xk)→ v

}
,

dom ∂F :=
{
x ∈ Rd | ∂F (x) 6= ∅

}
and the graph of ∂F is defined as

graph(∂F ) :=
{

(x, u) ∈ Rd × Rd | u ∈ ∂F (x)
}
.
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Fact 18. (From Rockafellar and Wets, 2009) Let F : Rd 7→ R be a lower semi-continuous function and
consider a sequence {(xk, uk)}k≥0 ∈ graph(∂F )N such that the sequence {(xk, uk, F (xk))}k≥0 converges to a
point {(x, u, F (x))}. Then (x, u) ∈ graph(∂F ).

Definition 19. (From Attouch et al., 2013) The function F : Rp → R ∪ {∞} is said to have the Kurdyka-
Łojasiewicz property at x∗ ∈ dom ∂F if there exists η ∈ (0,+∞], a neighborhood U of x∗ and a continuous
concave function ϕ : [0, η)→ R+ such that :

1. ϕ(0) = 0,

2. ϕ is C1 on (0, η) and continuous at 0,

3. for all s in (0, η), ϕ′(s) > 0,

4. for all x ∈ U ∩ {y | F (x∗) < F (y) < F (x∗) + η}, the Kurdyka-Łojasiewicz inequality holds

ϕ′(F (x)− F (x∗)) dist(0, ∂F (x)) ≥ 1.

Proper lower semi-continuous functions which satisfy the Kurdyka-Łojasiewicz inequality at each point of
dom ∂F are called KŁ functions. Besides, KŁ with exponent α means the KŁ property with a function
ϕ : s 7→ cs1−α where c > 0. We denote this property KŁ-α.

Lemma 20. (From Bolte et al., 2007) Let F : Rd → R∪ {+∞} be a subanalytic function with closed domain
and assume that F |dom F is continuous. Then for any x ∈ dom F , there exist a neighborhood V ⊂ Rd of x,
an exponent θ ∈ [0, 1) and a constant C > 0 such that for all y ∈ V, we have

|F (y)− F (x)|θ ≤ Cdist(0, ∂F (y)).

Note that norms and in particular the Frobenius norm, the trace-norm and the group-Lasso norm satisfy
the KŁ property, so the functions that we consider in this paper satisfy this property.

B.5 Critical and KW-stationary points
Definition 21. We say that x ∈ Rd is a critical point of F if 0 ∈ ∂F (x) where ∂F (x) is defined in
Definition 17.

Definition 22. Given a function F := f1 − f2 + λh where f1 is differentiable while f2 and h are proper,
lower semi-continuous and convex, we say that x ∈ Rd is a KW-stationary point if there exists u(x) ∈ ∂f2(x)
and v(x) ∈ ∂h(x) such that

∇f1(x)− u(x) + v(x) = 0.

Remark 23. Note that the Definition 21 of critical points and the Definition 22 of KW-stationary points
coincide when the function f2 is differentiable.

C The Orthogonal Procrustes Problem
Given a matrix M ∈ Rp,k with p ≥ k, we use at several points in the paper the following results that were
presented in the Proof of Lemma 6 in (Ge et al., 2017).

Fact 24. If M = MT
1 M2, then

max
V ∈Rp,k: V TV=Ik

〈M,V 〉 has the same set of optima as min
V ∈Rp,k: V TV=Ik

1

2
||M2 −M1V ||2F .

Fact 25. The optimal value of the following orthogonal Procrustes problem is given by

max
V ∈Rp,k: V TV=Ik

〈M,V 〉 = ||M ||∗.
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Fact 26. If R1ΣRT2 is a complete singular value decomposition of M where R1 ∈ Rp,p is such that RT1 R1 = Ip,
Σ ∈ Rp,k+ has non-zero elements σ1 ≥ . . . ≥ σk ≥ 0 only on the diagonal and R2 ∈ Rk,k is such that RT2 R2 = Ik,
then an optimal solution of the orthogonal Procrustes problem is given by

R1

[
Ik

0p−k,k

]
RT2 ∈ argmax

V ∈Rp,k: V TV=Ik

〈M,V 〉.

Fact 27. With the same notations as in Fact 26, if M is full-rank then, although R1 and R2 are not uniquely
defined, the following Procrustes problem has a unique solution :

argmax
V ∈Rp,k: V TV=Ik

〈M,V 〉 =

{
R1

[
Ik

0p−k,k

]
RT2

}
.

Fact 28. If p = k then Ir ∈ argmaxV ∈Rp,p: V TV=Ip〈M,V 〉 if and only if M is positive-semidefinite.

Proof. Fact 24 comes by seeing that for any V ∈ Rp,k such that V TV = Ik, we have
1

2
||M2 −M1V ||2F =

1

2
||M2||2F +

1

2
||M1V ||2F − 2〈M2,M1V 〉

=
1

2
||M2||2F +

1

2
||M1||2F − 2〈MT

1 M2, V 〉.

To prove Fact 25 and Fact 26, let R1ΣRT2 be a singular value decomposition of M where R1 ∈ Rp,k is
such that RT1 R1 = Ik, Σ ∈ Rk,k+ has nonzero elements σ1 ≥ . . . ≥ σk ≥ 0 only on the diagonal and R2 ∈ Rk,k
is such that RT2 R2 = Ik. Also, let R⊥1 ∈ Rp,p−k such that R :=

[
R1 R⊥1

]
satisfies RTR = Ip. Writing

M = R1ΣRT2 and using the change of variables V = R1AR
T
2 +R⊥1 BR

T
2 , we have

max
V ∈Rp,k: V TV=Ik

〈M,V 〉 (10)

= max
A∈Rk,k, B∈Rp−k,k: ATA+BTB=Ik

〈R1ΣRT2 , R1AR
T
2 +R⊥1 BR

T
2 〉

= max
A∈Rp,p, B∈Rp−k,k: ATA+BTB=Ik

〈
[

Σ
0p−k,k

]
,

[
A
B

]
〉

= max
C∈Rp,k: CTC=Ik

〈
[

Σ
0p−k,k

]
, C〉.

Let C ∈ Rp,k such that CTC = Ik, we have

〈
[

Σ
0p−k,k

]
, C〉 =

k∑
i=1

σiCi,i

≤
k∑
i=1

σi (11)

= ||Σ||∗
= ||M ||∗.

We have Inequality (11) since Σ has only nonnegative coefficients and the columns of C have unit norm

so Ci,i ≤ 1 for all 1 ≤ i ≤ k. Besides, Inequality (11) is attained for C =

[
Ik

0p−k,k

]
which corresponds in

Problem (10) to V = R1

[
Ik

0p−k,k

]
RT2 . This proves Fact 25 and Fact 26.

To prove Fact 27, that is to say that argmaxV ∈Rp,k: V TV=Ik
〈M,V 〉 is a singleton if M is full-rank, it is

sufficient to notice that Inequality (11) is strict if all the σi are non-zero and Ci,i 6= 1 for some 1 ≤ i ≤ k.
To prove Fact 28, note that Ir ∈ argmaxV ∈Rp,p: V TV=Ip〈M,V 〉 implies tr(M) = ||M ||∗ with Fact 25 and

this is only true for positive-semidefinite matrices. Conversely, if M is positive-semidefinite, then by Fact 26,
Ir ∈ argmaxV ∈Rp,p: V TV=Ip〈M,V 〉.

4



D The Forward-Backward Descent Algorithm 1
Given U ∈ Rp,r, we recall that we compute the forward direction for Algorithm 1 with the gradient XTXU of
U ′ 7→ 1

2 ||XU ′||2F and zU a subgradient of U ′ 7→ ||Y TXU ′||∗ whose computation is detailed in Appendix D.1.2.
Setting with a slight abuse of notation ∇f(U) := XTXU − zU , t and U+ are then obtained with Algorithm 2
such that the (LS) condition F̃λt,U (U+) ≥ Fλ(U+) is satisfied where

U+ = argmin
U ′∈Rp,r

f(U) + 〈∇f(U), U ′ − U〉+
1

2t
||U ′ − U ||2F + λ||U ′||1,2. (12)

D.1 Subgradients for the descent direction
If we strictly applied the subgradient-type algorithm proposed by Khamaru and Wainwright (2018) and
computed a forward direction for Algorithm 1 with Fact 29, we could only prove global convergence to a
KW-stationary point. Instead, we introduce in Appendix D.1.2 an additional condition on the subgradient
that is leveraged in Appendix F to guarantee convergence to a critical point.

D.1.1 Subgradients of U 7→ ||Y TXU ||∗.
Thanks to Fact 25 and Fact 26, we can easily compute subgradients of f2 : U 7→ ||Y TXU ||∗.

Fact 29. Let n, p ≥ 0, r ≤ min(n, p), X ∈ Rn,p, Y ∈ Rn,k, U ∈ Rp,r and R1DR
T
2 be a singular value

decomposition of Y TXU with R1 ∈ Rk,r, RT1 R1 = Ir, D ∈ Rr,r a diagonal matrix with nonnegative
coefficients, R2 ∈ Rr,r and RT2 R2 = Ir. We denote V = R1R

T
2 ∈ Rk,r. For any U ′ ∈ Rp,r, we have

||Y TXU ′||∗ ≥ ||Y TXU ||∗ + 〈XTY V,U ′ − U〉.

Therefore, XTY V is a subgradient of f2 : U ′ 7→ ||Y TXU ′||∗ at U .

Proof. Let U ∈ Rp,r and V ∈ Rk,r be defined as in Fact 29. Since V TV = R2R
T
1 R1R

T
2 = Ir, we have by

Fact 25 and Fact 26 :
||Y TXU ||∗ = 〈V, Y TXU〉. (13)

By Fact 25, we also have for any U ′ ∈ Rp,r,

||Y TXU ′||∗ ≥ 〈V, Y TXU ′〉. (14)

Combining Equation (13) and Equation (14), we obtain

||Y TXU ′||∗ ≥ ||Y TXU ||∗ + 〈V, Y TX(U ′ − U)〉.

Remark 30. We could also obtain subgradients of f2 using Danskin’s Theorem (Danskin, 1967) but the
proposed analysis in the proof of Fact 29 seems more explicit. Besides, the choice of a specific subgradient in
Lemma 32 is pivotal for the global convergence analysis in Appendix F, as explained in Remark 31.

D.1.2 Computations of zU for Algorithm 1.

Here, we present how, given U ∈ Rp,r, the subgradient of f2 : U 7→ ||Y TXU ||∗ is built for Algorithm 1 and
we do not assume necessarily that XTX is full-rank. Therefore, we denote (XTX)

†
2 a square-root of the

pseudo-inverse of XTX and, PSQT the reduced singular value decomposition of (XTX)
†
2XTY . If the latter

has rank ` then P ∈ Rp,` and Q ∈ Rk,` have orthonormal columns and S ∈ R`,` is the diagonal matrix
with singular values s1 ≥ . . . ≥ s` > 0. We also denote M ∈ Rk,r a matrix whose columns are orthonormal
and belong to Im Y TX(XTX)

†
2 , we compute this matrix only once at the beginning of Algorithm 1 with a
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Gram-Scmidt process. When XTX is invertible, the computational cost is significantly reduced since we
then have Im Y TX(XTX)

†
2 = Im Y TX.

To compute zU for Algorithm 1 - given U ∈ Rp,r - we first compute a singular value decomposition
LDRT2 of Y TXU with c = rank(Y TXU), L ∈ Rk,r, LTL = Ir, D ∈ Rr,r a diagonal matrix with nonnegative
coefficients, R2 ∈ Rr,r and RT2 R2 = Ir. The computational cost is O(kr2) and we write

L =
[
L>0 L0

]
, with L>0 ∈ Rk,c, L0 ∈ Rk,r−c,

D =

[
D>0 0c,r−c

0r−c,c 0r−c,r−c

]
, with D>0 ∈ Rc,c,

R2 =
[
R>0

2 R0
2

]
, with R>0

2 ∈ Rr,c, R0
2 ∈ Rr,r−c,

so that

Y TXU = LDRT2 =
[
L>0 L0

] [ D>0 0c,r−c
0r−c,c 0r−c,r−c

] [
R>0,T

2

R0,T
2

]
.

Clearly, the columns of L>0 are in Im Y TX since D>0R>0
2 ∈ Rc,r is full-rank. Then we apply the

Gram-Schmidt process to the columns of the matrix[
L>0 M

]
∈ Rk,c+r

starting from the first column of M and until we obtain r− c new orthogonal vectors. The computational cost
is again O(kr2). Extracting these r−c vectors and denoting L̄ ∈ Rk,r−c the matrix obtained by concatenation,
we define R1 :=

[
L>0 L̄

]
∈ Rk,r and

Y TXU = R1DR
T
2 =

[
L>0 L̄

] [ D>0 0c,r−c
0r − c, c 0r−c,r−c

] [
R>0,T

2

R0,T
2

]
.

Thus we obtain a singular value decomposition R1DR
T
2 of Y TXU with Im R1 ⊂ Im Y TX(XTX)

†
2 at a

computational cost of O(kr2). Eventually, given U ∈ Rp,r, the subgradient of U ′ 7→ ||Y TXU ||∗ at U that we
choose for Algorithm 1 is:

zU = XTY R1R
T
2 . (15)

Remark 31. In this paper, the condition Im R1 ⊂ Im Y TX(XTX)
†
2 is only used in Lemma 32 to guarantee

that zU ∈ ∂(−f2)(U) where f2 : U ′ 7→ ||Y TXU ′||∗. This property can then be leveraged to prove global
convergence for RRR and SRRR of the iterates produced by Algorithm 1 to a critical point in the sense of
Definition 21. If we do not impose this extra condition and compute a subgradient as in Fact 29, all the
results still hold except for the fact that we only guarantee global convergence to a KW-stationary point in
the sense of Definition 22. When XTX is invertible, we have shown that the induced computations have the
same complexity O(kr2) as the computation of the SVD of Y TXU .

Lemma 32. Given U ∈ Rp,r let R1DR
T
2 be a singular value decomposition of Y TXU with R1 ∈ Rk,r,

RT1 R1 = Ir, Im R1 ⊂ Im Y TX(XTX)
†
2 , D ∈ Rr,r a diagonal matrix with nonnegative coefficients, R2 ∈ Rr,r

and RT2 R2 = Ir. The matrix −zU := −XTY R1R
T
2 belongs to the limiting subdifferential presented in

Definition 17 of the concave function U ′ 7→ −||Y TXU ′||∗.

Proof. First, with the notations of Lemma 32 and Proposition 6 of (Grave et al., 2011) that is recalled in
Proposition 66, we know that when Y TXU is full-rank, the function f2 : U ′ 7→ ||Y TXU ′||∗ is differentiable at
U with gradient XTY R1R

T
2 so −XTY R1R

T
2 ∈ ∂(−f2)(U).

Secondly, we assume that Y TXU has rank c < r. To prove that −XTY R1R
T
2 ∈ ∂(−f2)(U), we exhibit a

sequence (Uk)k≥0 ∈ (Rp,r)N such that, as in Definition 17,

Uk → U, ||Y tXUk||∗ → ||Y TXU ||∗, and XTY R1R
T
2 ∈ ∂̂(−f2)(Uk), (16)

6



where ∂̂(−f2) is the Fréchet subdifferential presented in Definition 17. Indeed, for ε > 0, consider

Uε := U + ε(XTX)
†
2PS−1QTR1R

T
2 ,

where PSQT is the reduced singular value decomposition of (XTX)
†
2XTY . We have

Y TXUε = Y TXU + εY TX(XTX)
†
2PS−1QTR1R

T
2

= R1DR
T
2 + εQQTR1R

T
2

= R1DR
T
2 + εR1R

T
2 (17)

= R1(D + εIr)R
T
2 .

Equation (17) is due to the fact that QQTR1 = R1 since we assumed that Im R1 ⊂ Im Y TX(XTX)
†
2 and

the columns of Q form an orthonormal basis of Im Y TX(XTX)
†
2 . The trace norm is therefore differentiable

at Y TXUε that is full-rank and the gradient of U ′ 7→ ||Y TXU ′||∗ at Uε is XTY R1R
T
2 . Defining Uk := U 1

k
for

all k > 0 leads to (16).

D.2 The proximal operator of the group-Lasso norm
In order to highlight the fact that U+ is simply obtained by computing ∇f and the proximal operator of the
group-Lasso norm, we could equivalently write Equation (12) as

U+ = argmin
U ′∈Rp,r

1

2
||U ′ − (U − t∇f(U))||2F + λt||U ′||1,2. (18)

An explicit form of this proximal operator is for instance given in Equation (3.7) in (Bach et al., 2012).
Given 1 ≤ i ≤ p, let [U+]i, : and [U − t∇f(U)]i, : denote the i-th lines of the matrices U+ and U − t∇f(U)
respectively. Assume that [U − t∇f(U)]i, : 6= 0, then we have

[U+]i, : = max

(
0, 1− λt

||[U − t∇f(U)]i, :||2

)
[U − t∇f(U)]i, :.

E The Line Search Procedure in Algorithm 2

Given t > 0 and U ∈ Rp,r, we recall the definitions of f̃t,U , F̃λt,U and γt(U) :

f̃t,U (U ′) = f(U) + 〈∇f(U), U ′ − U〉+
1

2t
||U ′ − U ||2F ,

F̃λt,U (U ′) = f̃t,U (U ′) + λ||U ′||1,2, (19)

γt(U) = −1

t
min
U ′∈Rd

[
F̃λt,U (U ′)− Fλ(U)

]
. (20)

E.1 A lower-bound for the decrease in terms of function values
As announced in Section 5.3, we prove that tγt(U) is a lower bound for the decrease at each iteration in
terms of function values.

Fact 33. Given U ∈ Rp,r, t and U+ obtained with Algorithm 2, the quantity tγt(U) is a lower bound for the
decrease in terms of function values from U to U+ :

tγt(U) ≤ Fλ(U)− Fλ(U+).
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Proof. Indeed, we have

tγt(U) = − min
U ′∈Rp,r

[
F̃λt,U (U ′)− Fλ(U)

]
(21)

= Fλ(U)− F̃λt,U (U+) (22)

≤ Fλ(U)− Fλ(U+). (23)

Equation (21) comes from the definition of γt in Equation (20). Equation (22) follows from the definition
of U+ in Equation (18). We have Equation (23) since the (LS) condition F̃λt,U (U+) ≥ Fλ(U+) is satisfied for
t and U+.

E.2 A lower bound on the step size with the Line Search Procedure
In this section, we prove two additional results : that the (LS) condition is satisfied as soon as t ≤ 1

LX
and,

that there exists k̄ ∈ N such that for all k ≥ k̄, we have tk > β
LX

.

Lemma 34. Let LX > 0 be the largest eigenvalue of XTX. For any t ≤ 1
LX

and U, U ′ ∈ Rp,r, we have

f(U ′) + λ||U ′||1,2 ≤ f(U) + 〈∇f(U), U ′ − U〉+
1

2t
||U ′ − U ||2F + λ||U ′||1,2 (24)

where yU := XTXU is the gradient of U ′ 7→ 1
2 ||XU ′||2F , zU is any subgradient of U ′ 7→ ||Y TXU ′||∗ and, with a

slight abuse of notation, ∇f(U) := yU − zU . Equivalently, for any t ≤ 1
LX

, the (LS) condition is satisfied i.e.
we have

Fλ(U ′) ≤ F̃λt,U (U ′). (25)

In particular, Lemma 34 implies that Algorithm 2 terminates. This is illustrated in Figure 4.

Proof. Let U ∈ Rp,r. On the one hand, we have for all U ′ ∈ Rp,r,
1

2
||XU ′||2F =

1

2
||X(U + (U ′ − U))||2F

≤ 1

2
||XU ||2F + 〈XTXU,U ′ − U〉+

1

2
||X(U ′ − U)||2F

≤ 1

2
||XU ||2F + 〈XTXU,U ′ − U〉+

LX
2
||U ′ − U ||2F , (26)

since LX > 0 is the largest eigenvalue of XTX. On the other hand, since zU is a subgradient of
U ′ 7→ ||Y TXU ′||∗, we have for any U ′ ∈ Rp,r,

− ||Y TXU ′||∗ ≤ −||Y TXU ||∗ − 〈zU , U ′ − U〉. (27)

Summing Equation(26) and Equation(27), we obtain

f(U ′) ≤ f̃ 1
LX

, U (U ′).

Additionally, for any 0 < t ≤ 1
LX

, we have

f̃ 1
LX

, U (U ′) ≤ f̃t, U (U ′).

Consequently, for any U, U ′ ∈ Rp,r and 0 < t ≤ 1
LX

, we have

Fλ(U ′) = f(U ′) + λ||U ′||1,2 ≤ f̃t, U (U ′) + λ||U ′||1,2 = F̃λt,U (U ′)

which is the (LS) condition.
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Umin
t

Umin
βt

U0

F(U)
̃Fλ1/LX,U0̃U)
̃Fλt,U0̃U)
̃Fλβt,U0̃U)

Figure 4: Schematic representation of the Line Search Procedure in Algorithm 2. According to Equation (25),
we have F̃λ1/LX ,U0

≥ Fλ, these functions correspond to the dashed green line and the blue line. Given
U0 ∈ Rp,r and t > 0, we have represented F̃λt,U0

and F̃λβt,U0
under the assumptions βt < 1

LX
< t and

F̃λt,U (Umin
t ) < Fλ(Umin

t ) where Umin
t is the minimizer of F̃λt,U0

. First, Umin
t is computed in Algorithm 2. As

F̃λt,U (Umin
t ) < Fλ(Umin

t ), the (LS) condition is not satisfied. The minimizer Umin
βt of F̃λβt,U0

is then computed
and since, the (LS) condition is now satisfied, U+ is set to Umin

βt . Indeed, with Lemma 34, we are guaranteed
to find j ∈ N such that F̃λβjt,U (Umin

βjt ) ≥ Fλ(Umin
t ) where Umin

βjt is the minimizer of F̃λβjt,U .

Fact 35. Let k ≥ 0, Uk ∈ Rp,r and tk−1 > 0. Let t > 0 be defined as in Algorithm 2 : with probability
π ∈ (0, 1], t is set to tk−1

β , otherwise, t is set to tk−1. Let also t̄ denote the initial step size, tk and tk+1 the
stepsizes produced by Algorithm 2 at iteration k and k + 1. We have the following properties :

• If β
LX

< t ≤ 1
LX

, then tk = t and tk+1 = t
β or tk+1 = t depending on the (LS) condition at iteration

k + 1. In both cases, we have tk+1 >
β
LX

.

• If t ≤ β
LX

, then tk = t and tk+1 = t
β with probability π, otherwise tk+1 = t.

• If t > 1
LX

, then tk > β
LX

.

• For all k ≥ 0, we have tk ≥ min( β
LX

, t̄).

Proof. First, in Lemma 34, we have shown that the (LS) condition is satisfied as soon as t ≤ 1
LX

. Therefore,
if t ≤ 1

LX
, the step is accepted in Algorithm 2 and tk = t. At iteration k + 1, the step size is set to tk

β

with probability π and otherwise set to tk. The step might only be rejected if the step size is set to tk
β and

tk
β > 1

LX
. It would then be decreased by a multiplicative factor β and the step would be accepted with

tk+1 = tk × 1
β × β ≤ 1

LX
.

Secondly, assume that t ≤ β
LX

. Then t ≤ 1
LX

since β < 1, the step is accepted in Algorithm 2 and tk = t.
At iteration k + 1, t is set to tk

β with probability π and otherwise set to tk−1. Anyway, we have at the next
iteration t ≤ 1

LX
so the (LS) condition is satisfied and the step is accepted.

Thirdly assume that t > 1
LX

. By contradiction, suppose that tk ≤ β
LX

. The backtracking line search in
Algorithm 2 ensures that there exists j ∈ N such that tk ≤ β

LX
< βjt ≤ 1

LX
and that the step size βjt was

rejected because the (LS) condition was not satisfied. By Lemma 34, this is not possible since βjt ≤ 1
LX

.
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Consequently, if tk > β
LX

for a given k ≥ 0, then for all k′ ≥ k we have tk′ > β
LX

. Thus, if t̄ > β
LX

then
for all k ≥ 0, we have tk > β

LX
. If t̄ ≤ β

LX
, the algorithm progressively increases the value of t and after a few

first iterations, say k, we have tk > β
LX

: the step size t will be larger than β
LX

after a number of steps which
is finite in expectation.

F Study of the global convergence
Khamaru and Wainwright (2018) study the convergence of subgradient-type algorithms to KW-stationary
points (see Definition 22) of non-convex and non-smooth functions that can be written as a sum of three
terms F = f1− f2 + λh where f1 is a smooth function, f2 is a continuous and convex function, h is a possibly
non-smooth, convex penalty and λ ≥ 0. Some of their results can be adapted to (RRR) and (SRRR) by
taking

f1(U) :=
1

2
||XU ||2F ,

f2(U) := ||Y TXU ||∗,
and h(U) := ||U ||1,2.

First, we introduce the following results by Khamaru and Wainwright (2018) that we invoke in Section F.1
and Section F.2 .

Lemma 36. (From Lemma 5 in Khamaru and Wainwright, 2018) Let λ ≥ 0 and (Uk)k≥0 be the sequence
generated by Algorithm 1 and (zk)k≥0 the corresponding sequence of subgradients of f2. For all k ≥ 0, there
is a subgradient sk+1 of U 7→ ||U ||1,2 at Uk+1 such that

Uk+1 = Uk − tk [∇f1(Uk)− zk + λsk+1] , (28)

Fλ(Uk)− Fλ(Uk+1) ≥ 1

2tk
||Uk+1 − Uk||2F . (29)

Furthermore, for any convergent subsequence (Ukj )j≥0 of the sequence (Uk)k≥0 with Ukj → Ū , we have

lim
j→+∞

||Ukj+1||1,2 = ||Ū ||1,2. (30)

Lemma 36 is due to the choice of the forward-backward Algorithm 1 while the following Lemma 37 comes
from the property of subanalytic functions (Bolte et al., 2007; Attouch et al., 2010, and references therein)
given by Lemma 20. Indeed, norms and in particular the Frobenius norm, the trace-norm and the group-Lasso
norm are subanalytic so the functions f and Fλ that we consider are subanalytic.

Lemma 37. (From Lemma 6 in Khamaru and Wainwright, 2018) Let λ ≥ 0, (Uk)k≥0 be the sequence
generated by Algorithm 1 and (zk)k≥0 the corresponding sequence of subgradients of f2. The function Fλ is
constant on the set of limit points Ū of the sequence (Uk)k≥0. We denote F̄λ this limit. If we assume that Ū
contains only critical points of Fλ, then there exists constants θ ∈ [0, 1), C > 0 and k1 ∈ N such that for all
k ≥ k1, we have

|Fλ(Uk)− F̄λ|θ ≤ Cdist(0,∇f1(Uk)− zUk + λ∂|| · ||1,2(Uk)). (31)

F.1 Global convergence to a critical point with Algorithm 1 for RRR
The function U 7→ 1

2 ||XU ||2F is continuously differentiable and LX -smooth where LX is the largest eigenvalue of
XTX. The function U 7→ ||Y TXU ||∗ is continuous and convex and the difference f(U) = 1

2 ||XU ||2F −||Y TXU ||∗
is bounded below by − 1

2 ||Y ||2F , indeed we have used in Section 3.1 the fact that for any U ∈ Rp,r, we have

1

2
||XU ||2F − ||Y TXU ||∗ +

1

2
||Y ||2F = min

V ∈Rk,r:V TV=Ir

1

2
||Y −XUV T ||2F ≥ 0.
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Besides, f satisfies the Kurdyka-Łojasiewicz property, presented in Definition 19, since it is the difference of
two semi-algebraic functions. Therefore, our setting satisfies the conditions of Theorem 1 and Theorem 3 in
Khamaru and Wainwright (2018) and we can prove that Algorithm 1 converges to a critical point from any
initial point.

F.1.1 Limit points are critical points

The following result, whose proof is inspired from Theorem 1 by Khamaru and Wainwright (2018), ensures
that any limit point Ū of the sequence generated by Algorithm 1 for RRR satisfies 0 ∈ ∂f(Ū).

Theorem 38. Let (Uk)k≥0 be the sequence generated by Algorithm 1 with λ = 0. The sequence of function
values is decreasing and convergent. Besides, any limit point is a critical point of the function f .

Proof. Equation (29) guarantees that the sequence of function values is decreasing. Since f has a finite
lower-bound, the sequence of function values is convergent. Additionally, the iterates are bounded since the
function is coercive i.e. f(U)→ +∞ if ||U ||F →∞.

To establish that the limit points are critical, consider a subsequence (Ukj )j≥0 that converges to Ū and
let (zkj )j≥0 be the associated subsequence of subgradients. Since the sequence (Ukj )j≥0 converges to Ū , we
must have by Equation (28), ||∇f1(Ukj ) − zkj ||F → 0. The function f1 : U 7→ 1

2 ||XU ||2F being continuously
differentiable, we have ∇f1(Ukj ) → ∇f1(Ū) and consequently zkj → z̄ := ∇f1(Ū). Besides, we know by
Lemma 32 that for any j ≥ 0, we have −zkj ∈ ∂(−f2)(Ukj ).

We conclude like in the proof of Theorem 1 by Khamaru and Wainwright (2018), using the graph continuity
of limiting subdifferentials which we recall in Fact 18, that −z̄ ∈ ∂(−f2)(Ū) and ∇f1(Ū)− z̄ = 0, meaning
that 0 ∈ ∂(f1 − f2)(Ū) = ∂f(Ū).

Remark 39. Khamaru and Wainwright (2018) proved in an abstract but similar framework that the limit
points are KW-stationary point in the sense of Definition 22, meaning that they can be stationary points
for Algorithm 1. Instead, Theorem 38 guarantees, more standardly, that the limit points are critical in
the sense that the limiting subdifferentials at these points contain the element 0. This is permitted by
Lemma 32 which we obtained by imposing the condition Im R1 ⊂ Im Y TX when computing a subgradient
XTY R1R

T
2 of U ′ 7→ −||Y TXU ′||∗, where R1DR

T
2 is a singular value decomposition of Y TXU . If the condition

Im R1 ⊂ Im Y TX was removed, exactly the same proof as for Theorem 38 would show that the limit points
are KW-stationary points.

F.1.2 Convergence for RRR of Algorithm 1

Since f satifies the KŁ property, we can prove the convergence to a critical point.

Theorem 40. (From Theorem 3 Khamaru and Wainwright, 2018) The sequence (Uk)k≥0 produced by
Algorithm 1 for RRR converges to a critical point.

The proof of Theorem 40 is identical to the proof of Theorem 3 by Khamaru and Wainwright (2018). We
reproduce it here for completeness.

Proof. To prove that the sequence (Uk)k≥0 has a finite length i.e.
∑+∞
k=0 ||Uk − Uk+1||F < +∞, we use the

KŁ property for subanalytic functions given by Lemma 37. Let θ ∈ [0, 1), C > 0, k1 ∈ N be defined as in
Lemma 37, k ≥ k1 and let f̄ denote the limit of the sequence {f(Uk)}k≥0. We have

(f(Uk)− f̄)1−θ − (f(Uk+1)− f̄)1−θ ≥ (1− θ)(f(Uk)− f̄)−θ [f(Uk)− f(Uk+1)] (32)

≥ (1− θ)
2tk

(|f(Uk)− f̄ |)−θ||Uk − Uk+1||2F (33)

≥ (1− θ)
2Ctk||∇f1(Uk)− zk||F

||Uk − Uk+1||2F (34)

≥ (1− θ)
2C

||Uk − Uk+1||F . (35)
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Inequality (32) follows from the concavity of t 7→ t1−θ and the inequalities f(Uk) ≥ f(Uk+1) ≥ f̄ . In-
equality (33) comes from Equation (29) and the fact that {f(Uk)}k≥0 is decreasing and converges to f̄ .
Inequality (34) comes from Lemma 37. Finally, Inequality (35) follows from Equation (28). Summing both
sides of Inequality (35) from k = k1 to k = +∞, we obtain

(f(Uk1)− f̄)1−θ =

+∞∑
k=k1

(f(Uk)− f̄)1−θ − (f(Uk+1)− f̄)1−θ

≥ (1− θ)
2C

+∞∑
k=k1

||Uk − Uk+1||F

which proves the finite length property and the convergence of the sequence (Uk)k≥0. With Theorem 38, we
know that this limit is a critical point.

F.2 Global convergence to critical points with Algorithm 1 for SRRR
In this section, we justify global convergence of Algorithm 1 for SRRR to critical points and present conditions
leveraged in Lemma 44 that ensure convergence to a unique point.

F.2.1 Limit points are critical points

The function f1 is smooth and convex, the function f2 is continuous and convex. In addition, the function
h : U 7→ ||U ||1,2 is clearly proper, lower semi-continuous and convex and Fλ which is bounded below satisfies
the KŁ property. Consequently, our setting for proximal gradient descent satisfies the conditions of the first
part of Theorem 2 in Khamaru and Wainwright (2018) and we can adapt this result to SRRR.

Theorem 41. Let (Uk)k≥0 be the sequence generated by Algorithm 1 with λ > 0. The sequence of function
values is decreasing and convergent. Besides, any limit point is a critical point of the function Fλ.

Proof. Equation (29) guarantees that the sequence of function values is decreasing. Since Fλ has a finite
lower-bound, the sequence of function values is convergent. Additionally, the iterates are bounded since the
function is coercive i.e. Fλ(U)→ +∞ if ||U ||F →∞.

To establish that the limit points are critical, consider a subsequence (Ukj )j≥0 that converges to Ū ∈ Rp,r
and let (zkj )j≥0 be the associated subsequence of subgradients, like in Equation (15). Since the sequence
(Ukj )j≥0 converges to Ū and f2 is continuous, the sequence {f2(Uk)}k≥0 converges to f2(Ū). Given the form
of the subgradients (zkj )j≥0 in Equation (15), they are bounded and we can assume, passing to a subsequence
if necessary, that they converge to z̄ ∈ Rd. Besides, we know by Lemma 32 that for any j ≥ 0, we have
−zkj ∈ ∂(−f2)(Ukj ). Therefore,

{
(Ukj ,−zkj ,−f2(Ukj ))

}
j≥0

converges to (Ū ,−z̄,−f2(Ū)) and, using the
graph continuity of limiting subdifferentials which we recall in Fact 18, we have −z̄ ∈ ∂(−f2)(Ū).

We now show that −∇f1(Ū) + z̄ ∈ ∂(λ|| · ||1,2)(Ū). Since (||Ukj − Ukj+1||F )j≥0 converges to zero, the
sequence (Ukj+1)j≥0 converges to Ū and by Equation (28), the sequence (||∇f1(Ukj )− zkj + λskj+1||F )j≥0

also converges to zero. Since f1 is smooth, we know that
{
∇f1(Ukj )

}
j≥0

converges to ∇f1(Ū). Combined
with the convergence of (zkj )j≥0 to z̄, it shows that (λskj+1)j≥0 converges to s̄ := −∇f1(Ū) + z̄. With
Equation (30) in Lemma 36, we also have that (λ||Ukj+1||1,2)j≥0 converges to λ||Ū ||1,2. All this leads to the
convergence of

{
(Ukj+1, λskj+1, λ||Ukj+1||1,2)

}
j≥0

to (Ū , λs̄, ||Ū ||1,2). Consequently, the graph continuity in
Fact 18 guarantees that λs̄ ∈ ∂(λ|| · ||1,2)(Ū). Finally, we conclude that ∇f1(Ū)− z̄ + λs̄ = 0 ∈ ∂Fλ(Ū) i.e.
Ū is a critical point of Fλ.

Remark 42. The same comments as in Remark 39 hold for Theorem 41 and the comparison between its
proof and the proof of Theorem 2 by Khamaru and Wainwright (2018).
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F.2.2 Convergence for SRRR of Algorithm 1

In order to prove convergence of the sequence (Uk)k≥0, Theorem 4 of Khamaru and Wainwright (2018)
formally requires that f2 is a smooth function, a requirement which is not met by U 7→ ||Y TXU ||∗. Nonetheless,
an inspection of the proof shows that local smoothness in a neighborhood of the critical points of the function
is sufficient. More precisely, the same proof as for Theorem 4 in Khamaru and Wainwright (2018) can be used
for SRRR as long as we can guarantee that there exists k1 ≥ 0 such that for all k ≥ k1, the iterates (Uk)k≥k1
lie in a compact subset where f is locally smooth. We denote Ū the set of limit points of the sequence (Uk)k≥0

and for any S ⊂ {1, . . . , p}, XS is the matrix formed by keeping the columns of X indexed by S.

Theorem 43. Assume that

• H1 : The step sizes (tk)k≥0 produced by Algorithm 1 are upper bounded by a constant d > 0.

• H2 : The set of limit points Ū of the sequence produced by Algorithm 1 is a subset of the local minima
of Fλ and contains only matrices with at least r non-zero rows.

• H3 : For any S ⊂ {1, . . . , p} of cardinality at least r, the matrix XT
S Y is full-rank.

Then the sequence (Uk)k≥0 produced by Algorithm 1 for SRRR converges to a critical point.

The assumptions H1 and H2 are used in the proof of Theorem 43. The assumption H2 will hold unless
local minima are so sparse that the number of selected variables is strictly smaller than r in which case the
rank constraint becomes essentially useless. The assumption H3 will hold with probability one if X and Y
contain for example additive noise. It is leveraged in Appendix K.1 to prove Lemma 44 that we introduce
below with Lemma 45 and Lemma 46 before giving the proof of Theorem 43.

Lemma 44. With Assumption H3, any local minimum U∗ of (SRRR) which has at least r non-zero rows
must be full-rank.

Put differently, Assumption H2 and Assumption H3 combined with Lemma 44 imply that the set of limit
points Ū contains only full-rank matrices. The next lemma ensures that the function f2 : U 7→ ||Y TXU ||∗ is
differentiable at such points, it is proved in Appendix K.2.

Lemma 45. With Assumption H3, let U∗ be a full-rank local minimum of (SRRR). Necessarily, Y TXU∗ is
full-rank.

Lemma 45 is essential to prove locally a Lipschitz gradients property which is formalized in Lemma 46,
proved in Appendix K.3.

Lemma 46. With Assumption H2 and Assumption H3, there exists M > 0 and k1 ≥ 0 such that for any
k ≥ k1, f is differentiable at Uk, Uk+1 and we have

||∇f(Uk)−∇f(Uk+1)||F ≤M ||Uk − Uk+1||F . (36)

Proof of Theorem 43 . Let k1 ≥ 0 be defined as in Lemma 46. For k ≥ k1 we denote zk a gradient of f2

obtained through the update in Algorithm 1 and sk a subgradient of U 7→ λ||U ||1,2 at Uk. Let k > k1, we have

||∇f1(Uk)− zk + λsk||F = ||(∇f1(Uk)− zk) + (zk−1 −∇f1(Uk−1)) +
1

tk−1
(Uk−1 − Uk)||F (37)

≤ ||(∇f1(Uk)− zk)− (∇f1(Uk−1)− zk−1)||F +
1

tk−1
||Uk−1 − Uk||F (38)

= ||∇f(Uk)−∇f(Uk−1)||F +
1

tk−1
||Uk−1 − Uk||F

≤ (M +
1

tk−1
)||Uk − Uk−1||F . (39)
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Inequality (37) follows from the update in Algorithm 1. Inequality (38) comes from the triangle inequality.
Inequality (39) is due to Equation (36).

The second argument we give is similar to Equation (35) in the proof of Theorem 40. Since the functions
we consider are subanalytic, we can consider θ ∈ [0, 1), C > 0 and k2 ≥ k1 defined as in Lemma 37. Let F̄λ
denote the limit of the sequence

{
Fλ(Uk)

}
k≥0

and k ≥ k2, we have

(Fλ(Uk)− F̄λ)1−θ − (Fλ(Uk+1)− F̄λ)1−θ ≥ (1− θ)
[
Fλ(Uk)− F̄λ

]−θ [
Fλ(Uk)− Fλ(Uk+1)

]
(40)

≥ (1− θ)
2tk

[
|Fλ(Uk)− F̄λ|

]−θ ||Uk − Uk+1||2F (41)

≥ (1− θ)
2Ctk||∇f(Uk) + λsk||F

||Uk − Uk+1||2F (42)

≥ (1− θ)
2Cd||∇f(Uk) + λsk||F

||Uk − Uk+1||2F . (43)

Inequality (40) follows from the concavity of t 7→ t1−θ and the inequalities Fλ(Uk) ≥ Fλ(Uk+1) ≥ F̄λ.
Inequality (41) comes from Equation (29) and the fact that

{
Fλ(Uk)

}
k≥0

is decreasing and converges to F̄λ.
Inequality (42) comes from Lemma 37. Finally, Inequality (43) follows from Assumption H1 in Theorem 43.
Combining Inequality (39) with Inequality (43), we obtain

(Fλ(Uk)− F̄λ)1−θ − (Fλ(Uk+1)− F̄λ)1−θ ≥ (1− θ)
2Cd(M + 1

tk−1
)

||Uk − Uk+1||2F
||Uk−1 − Uk||F

≥ (1− θ)
2Cd(M + 1

min( β
LX

, t−1)
)

||Uk − Uk+1||2F
||Uk−1 − Uk||F

. (44)

Equation (44) follows from Fact 35. The rest of the proof leads to the finite length property and completely
follows the proof of Theorem 4 in Khamaru and Wainwright (2018) since they also leverage only the local
property of Lipschitz gradients in a compact set. We denote

∆k := C ′
[
(Fλ(Uk)− F̄λ)1−θ − (Fλ(Uk+1)− F̄λ)1−θ] (45)

where C ′ :=
2Cd

[
M + max(LXβ , 1

t−1
)
]

(1− θ) .

Equation (44) can be rewritten

||Uk − Uk+1||F ≤
√

∆k||Uk−1 − Uk||F .

Summing from j = k2 + 1 to j = k, we obtain

k∑
j=k2+1

||Uj − Uj+1||F ≤
k∑

j=k2+1

√
∆j ||Uj−1 − Uj ||F

≤
k∑

j=k2+1

1

2
∆j +

1

2
||Uj−1 − Uj ||F (46)

≤ C ′

2
(Fλ(Uk2+1)− F̄λ)1−θ +

1

2

k∑
j=k2+1

||Uj−1 − Uj ||F . (47)
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Inequality (46) follows from the inequality of arithmetic and geometric means. Inequality (47) comes from
Equation (45). Rewriting Inequality (47), we have for all k ≥ k2 + 2,1

2

k−1∑
j=k2+1

||Uj − Uj+1||F

+

1

2

k∑
j=k2+2

||Uj−1 − Uj ||F

+ ||Uk − Uk+1||F

≤ C ′

2
(Fλ(Uk2+1)− F̄λ)1−θ +

1

2

k∑
j=k2+2

||Uj−1 − Uj ||F

+
1

2
||Uk2 − Uk2+1||F .

This last inequality implies that

1

2

k−1∑
j=k2+1

||Uj − Uj+1||F ≤
C ′

2
(Fλ(Uk2+1)− F̄λ)1−θ +

1

2
||Uk2 − Uk2+1||F − ||Uk − Uk+1||F

≤ C ′

2
(Fλ(Uk2+1)− F̄λ)1−θ +

1

2
||Uk2 − Uk2+1||F

< +∞.

Eventually, we conclude that the sequence (Uk)k≥0 has finite length and therefore converges to an element
Ū ∈ Rp,r. With Theorem 41, we know that Ū is a critical point.

G Proofs for section 5.1
In this section, we are going to prove Equation (7), Lemma 1 and Lemma 2. We maintain the following
assumptions :

r ≤ `, (48)

s1 > . . . > s`. (49)

At first, to widen the scope of our results, we will not make the assumption

XTX is invertible. (50)

Assumption (50) will play a key role in the analysis and impact the results. We will precise what it implies
for the analysis when it is satisfied and when it is not.

G.1 Proof of Equation (7)
While we assumed that X is full-rank in the core of the article, we do not make this assumption in this
section to prove a more general result than Equation (7). Of course, the latter can be obtained as a special
case. Let m ≤ p be the rank of X and consider

KD2KT the reduced singular value decomposition of XTX,

with K ∈ Rp,m, KTK = Im and D ∈ Rm,m a diagonal matrix with positive entries on the diagonal. We also
write

(XTX)† := KD−2KT the pseudo-inverse of XTX,

(XTX)
†
2 := KD−1KT a square-root of (XTX)†,

and
(XTX)

1
2 := KDKT a square root of XTX.

15



Let
K⊥ ∈ Rp,p−m such that

[
K K⊥

]T [
K K⊥

]
= Ip.

Here, we denote PSQT the reduced singular values of (XTX)
†
2XTY , with ` := rank(XTX)

†
2XTY ≤ min(m, k),

P ∈ Rp,`, S ∈ R`,` and Q ∈ R`,k. We also define P⊥ ∈ Rp,m−` such that the columns of the matrix
[
P P⊥

]
form an orthonormal basis of Im XT . If X is full-rank, this definition corresponds indeed with the matrices
that were introduced in Section 5.1. The definition of τ is :

τ :

 R`,r × Rm−`,r × Rp−m,r → Rp,r

(A,C,N) 7→ (XTX)
†
2

[
P P⊥

] [S 0
0 Im−`

] [
A
C

]
+K⊥N

. (51)

Of course, under the additional assumption that XTX is invertible, the term K⊥N would be removed and τ
would be the same as the one we defined in Equation (6).

We define fa,c,n := f ◦ τ and we prove

fa,c,n(A,C,N) =
1

2
||SA||2F − ||S2A||∗ +

1

2
||C||2F . (52)

Equation (7) can be obtained similarly if XTX is invertible.

Proof of Equation (52). Let (A,C,N) ∈ R`,r × Rm−`,r × Rp−m,r, we have

fa,c,n(A,C,N) = f ◦ τ(A,C,N) (53)

= f((XTX)
†
2 (PSA+ P⊥C) +K⊥N) (54)

=
1

2
||(XTX)

1
2 ((XTX)

†
2 (PSA+ P⊥C) +K⊥N)||2F

− ||Y TX((XTX)
†
2 (PSA+ P⊥C) +K⊥N)||∗ (55)

=
1

2
||(XTX)

1
2 (XTX)

†
2 (PSA+ P⊥C)||2F − ||Y TX(XTX)

†
2 (PSA+ P⊥C)||∗ (56)

=
1

2
||PSA||2F +

1

2
||P⊥C||2F − ||QSPT (PSA+ P⊥C)||∗, (57)

=
1

2
||SA||2F +

1

2
||C||2F − ||QS2A||∗ (58)

=
1

2
||SA||2F − ||S2A||∗ +

1

2
||C||2F . (59)

Equation (53) follows from the definition of fa,c,n and Equation (54) from the definition of τ . Equation (55)
follows from the definition of f and since for all M ∈ Rp,r, we have ||XM ||2F = ||(XTX)

1
2M ||2F . We have

Equation (56) since XK⊥ = 0. Equation (57) comes from the facts that P, P⊥ ∈ Im X and (XTX)
1
2 (XTX)

†
2

acts like the identity on Im XT for the first term and QSPT = Y TX(XTX)
†
2 for the second term. We have

Equation (58) because
[
P P⊥

]
is orthogonal and Equation (59) because the columns of Q are orthogonal.

G.2 Proof of Lemma 1
We denote Ω∗a the set of minima of fa : A ∈ R`,r 7→ 1

2 ||SA||2F − ||S2A||∗ where S = diag(s1 > . . . > s`) ∈ R`,`.
To prove that Ω∗a =

{
ĨR | R ∈ Or

}
with Ĩ = (1i=j)1≤i≤`, 1≤j≤r ∈ R`,r, first note that the two following

problems have the same optimal value :

min
A∈R`,r, V ∈R`,r

fa,v(A, V ) where fa,v(A, V ) :=
1

2
||S − SAV T ||2F , (60)

min
A∈R`,r, V ∈R`,r: V TV=Ir

fa,v(A, V ). (61)
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Indeed, for any A, V ∈ R`,r, there exists A′, V ′ ∈ R`,r such that V TV = Ir and AV T = A′V ′T . For instance,
the matrices can be obtained from the singular value decomposition R1ΣRT2 of AV T by taking A′ = R1Σ
and V ′ = R2. Besides, given A ∈ R`,r and V ∈ R`,r, we have

fa,v(A, V ) =
1

2
||S − SAV T ||2F =

1

2
||S||2F +

1

2
||SAV T ||2F − 〈S, SAV T 〉.

Defining VA ∈ argmaxV ∈R`,r: V TV=Ir 〈S, SAV T 〉 and using Fact 25, we obtain

1

2
||S − SAV TA ||2F =

1

2
||S||2F +

1

2
||SA||2F − ||S2A||∗.

Consequently, if A is a minimizer of
min
A∈R`,r

fa(A), (62)

where fa(A) = 1
2 ||SA||2F − ||S2A||∗, then (A, VA) is a minimizer of Problem (60). This means in particular

that SAV TA is a minimizer of

min
M∈R`,`: rank(M)≤r

1

2
||S −M ||2F .

The matrix SAV TA must be equal to the best low-rank approximation for the Frobenius norm of S and, by the

Eckart-Young-Mirsky theorem, this best approximation is SĨĨT with Ĩ =

[
Ir
0

]
∈ R`,r since we have assumed

that the values on the diagonal of S are strictly decreasing.

The matrix S is invertible so we must have AV T = Ĩ ĨT which is equivalent, if A =

[
A1

A2

]
and V =

[
V1

V2

]
with A1, V1 ∈ Rr,r and A2, V2 ∈ R`−r,`−r, to :[

A1V
T
1 A1V

T
2

A2V
T
1 A2V

T
2

]
=

[
Ir 0
0 0

]
(63)

The second line A2V
T = 0 implies A2 = 0 since V TV = Ir. From the first line of the matrices in Equation (63),

A1V
T
1 = Ir implies that A1 is invertible so A1V

T
2 = 0 implies that V2 = 0 and A1 has to be orthogonal as it is

the inverse of V T1 . Put differently, AT =
[
V T1 0r,`−r

]
= V T1 Ĩ

T where V1 is an orthogonal square matrix i.e
an orthogonal matrix. Thus, any optimum A belongs to Ω∗a :=

{
ĨR | R ∈ Or

}
. Conversely, for any R ∈ Or

we have fa(ĨR) = 1
2 ||SĨ||2F − ||S2Ĩ||∗ : this implies that all the elements in Ω∗a are optima.

G.3 Proof of Lemma 2
We show that all local minima of fa are global. The result is the same for f given that f ◦ τ(A,C) =
fa(A) + 1

2 ||C||2F and τ is the invertible linear transformation defined in Equation (51). First we start by
eliminating the possibility of having a local maximum other than 0 with the following result.

Lemma 47. Only 0 can be a local maximum of fa.

Proof. For any A, the restriction of fa to the one-dimensional set DA := {αA, α ≥ 0} is a convex polynomial
function of degree 2. Indeed, for any α > 0, we have

fa(αA) =
α2

2
||SA||2F − α||S2A||∗.

Since S ∈ R`,` is an invertible diagonal matrix, only 0 can be a local maximum of fa.

Corollary 48. The zero matrix is indeed a local maximum of the function fa.
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Proof. Thanks to the equivalence of norms in finite dimensions and the fact that S has only positive elements
on its diagonal, we know that there exists c, d > 0 such that for any A ∈ R`,r, t > 0, we have

fa(0 + tA) ≤ c||A||2F t2 − d||A||F t.

The zero matrix is necessary a local maximum.

To deal with critical points, we treat separately rank-deficient matrices and full-rank matrices. The
following result, proved in Appendix K.4, considers the case of rank-deficient matrices.

Lemma 49. Let A ∈ R`,r be a rank-deficient matrix, there exists B ∈ R`,r such that ||B||F = 1 and δ > 0
such that for all −δ < t < δ, we have

fa(A+ tB) ≤ fa(A)− s2
`

2
|t|.

Therefore, no rank-deficient matrix can be a local minimum of fa.

In order to deal with full-rank matrices and having already described the set of optima, we characterize the
set of full-rank critical points. Consider the set P of permutations π : [[1; `]]→ [[1; `]] such that π(1) < . . . < π(r)
and simultaneously π(r + 1) < . . . < π(`). For any π ∈ P, we denote

Ππ := (1i=π(j))1≤i≤`, 1≤j≤r ∈ R`,r. (64)

Note that the sole purpose of the condition π(r + 1) < · · · < π(`) is to have a one-to-one correspondence
between the set of permutations P and the set of matrices {Ππ | π ∈ P}. We have the following result, proved
in Appendix K.5.

Lemma 50. If the values of the diagonal matrix S are strictly decreasing i.e. S = diag (s1 > . . . > s`), then
the set Ωsa of differentiable critical points for problem (62) is the image by linear transformations from Rr,r to
R`,r of Or :

Ωsa = {ΠπR| π ∈ P, R ∈ Or}
Besides, Ωsa contains only global minima and saddle points.

We could have an even more precise description of the behavior of fa around the saddle points with
Theorem 55 and Corollary 57 (given below). Saddle points are in fact strict saddle points i.e. the Hessian at
these points has at least one negative eigenvalue. However, that is not necessary here.

We can now prove Lemma 2.

Proof of Lemma 2. We know from Lemma 49 that a rank-deficient matrix can not be a local minimum. The
function fa is differentiable at A ∈ R`,r if and only if A is full-rank1. Finally, Lemma 50 details all critical
points where A is full-rank, they are either global minima or saddle points.

H Proofs for Section 5.2

H.1 Proof of Lemma 3
In Section 5.2, we have introduced for any A ∈ Rp,r,

ΠΩ∗a
(A) := argmin

B∈Ω∗a

‖B −A‖2F

and
Ca(R) := {A ∈ R`,r | ĨR ∈ ΠΩ∗a

(A)}. (65)

1Details about the derivative of the trace-norm are given in Proposition 66.

18



First, we prove Equation (8) that describes Ca(Ir). According to Lemma 1, Ω∗a =
{
ĨR | R ∈ Or

}
, so with

Fact 24, we could have equivalently defined ΠΩ∗a
(A) with A =

[
A1

A2

]
, A1 ∈ Rr,r and A2 ∈ R`−r,r as

argmin
ĨR: R∈Or

‖ĨR−A‖2F = argmax
ĨR: R∈Or

〈ĨR,A〉 = Ĩ argmax
R∈Or

〈R, ĨTA〉 = Ĩ argmax
R∈Or

〈R,A1〉. (66)

By Fact 28, we have that Ir ∈ argmaxR: R∈Or 〈R,A1〉 if and only if A1 is positive-semidefinite. This proves
Equation (8).

Secondly, the equality Ca(R) = {AR | A ∈ Ca(Ir)} basically stems from the definition of ΠΩ∗a
since

‖Ĩ −A‖2F = ‖ĨR−AR‖2F . (67)

Indeed, Equation (67) implies that A ∈ Ca(Ir) if and only if AR ∈ Ca(R).
Finally, to prove that ∪R∈OrCa(R) = R`,r, consider M ∈ R`,r and BM ∈ argminB∈Ω∗a

‖B − M‖2F .
According to Lemma 1, Ω∗a :=

{
ĨR | R ∈ Or

}
is compact. Therefore, there exists R ∈ Or such that BM = ĨR.

Obviously, the definition of Ca(R) given in Equation (65) implies that M ∈ Ca(R).
The following fact gives more details on the structure of the cones that we built.

Fact 51. The relative interiors2 of all the cones partition the set of matrices [AT1 AT2 ]T such that A1 ∈ Rr,r
is invertible and A2 ∈ R`−r,r.

Proof. First, since the relative interior of the set S+
r of positive-semidefinite matrices is the set S++

r of
positive-definite matrices, given R ∈ Or, the relative interior of the cone Ca(R) is the set{[

A1

A2

]
R | A1 ∈ S++

r , A2 ∈ R`−r,r
}
.

Secondly, according to Equation (66), the matrix A = [AT1 AT2 ]T ∈ Ca(R) with R ∈ Or if and only if
R ∈ argmaxR′∈Or 〈R′, A1〉. According to Fact 27, there is a unique element in argmaxR′∈Or 〈R′, A1〉 if A1 has
full rank. Therefore, given [AT1 AT2 ]T such that A1 ∈ Rr,r is invertible and A2 ∈ R`−r,r, there is a unique
R ∈ Or such that A ∈ Ca(R).

H.2 Proof of Theorem 4
First, in order to simplify the computations, we introduce the change of variables M = SA and the function

fm : M ∈ R`,r 7→ 1

2
||M ||2F − ||SM ||∗.

Note that for any M ∈ R`,r, we have fm(M) = fa(S−1M) and minM fm(M) is the form taken by (RRR) if
X is the identity and Y = S is a diagonal matrix.

As in section G.3, we consider the set P of permutations π : [[1; `]]→ [[1; `]] such that π(1) < . . . < π(r)
and simultaneously π(r + 1) < . . . < π(`). For any π ∈ P, we denote

Ππ := (1i=π(j))1≤i≤`, 1≤j≤r ∈ R`,r. (68)

With the proposed change of variables, the differentiable critical points of fm are simply obtained from the
critical points of fa given in Lemma 50.

Lemma 52. If the values of the diagonal matrix S are strictly decreasing, then the set Ωsm of differentiable
critical points of fm is the image by linear transformations from Rr,r to R`,r of Or :

Ωsm = {SΠπR| π ∈ P, R ∈ Or} .
2Given a set in a Euclidean space, its relative interior is the interior of this set within the subspace spanned by its elements.
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The following result describes the eigenvectors of the Hessian of fm at a critical point SΠπR. It is proved
in Appendix K.6. We write S2 = diag(σ1 > . . . > σ`) with σ` > 0. For 1 ≤ i0 ≤ `, 1 ≤ j0 ≤ r, we denote
Ei0, j0 = ei0e

T
j0
∈ R`,r.

Theorem 53. Let SΠπR be a differentiable critical point of fm, with π ∈ P and R ∈ Or. Then fm is twice
differentiable at SΠπR, let Hm denote its Hessian at SΠπR.

• For 1 ≤ i < j ≤ r, S−1(Eπ(i),j + Eπ(j),i)R is an eigenvector of Hm associated to the eigenvalue 1.

• For 1 ≤ i ≤ r, S−1Eπ(i),iR is an eigenvector of Hm associated to the eigenvalue 1.

• For 1 ≤ i < j ≤ r, S(Eπ(i),j − Eπ(j),i)R is an eigenvector of Hm associated to the eigenvalue 0.

• For r + 1 ≤ k ≤ `, 1 ≤ j ≤ r, Eπ(k),jR is an eigenvector of Hm associated to the eigenvalue 1− σπ(k)

σπ(j)
.

Remark 54. At an optimum SĨR of fm with R ∈ Or, the largest eigenvalue of the Hessian is 1 and the
smallest positive eigenvalue is 1− σπ(r+1)

σπ(r)
.

Since we used the change of variables M = SA, Theorem 53 can be adapted to the function fa.

Theorem 55. Let ΠπR be a differentiable critical point of fa, with π ∈ P and R ∈ Or. Then fa is twice
differentiable at ΠπR, let Ha denote its Hessian at ΠπR.

• For 1 ≤ i < j ≤ r, (Eπ(i),j + Eπ(j),i)R is an eigenvector of Ha associated to the eigenvalue
(σ−1
π(i) + σ1

π(j))
−1.

• For 1 ≤ i ≤ r, Eπ(i),iR is an eigenvector of Ha associated to the eigenvalue σπ(i).

• For 1 ≤ i < j ≤ r, (Eπ(i),j − Eπ(j),i)R is an eigenvector of Ha associated to the eigenvalue 0.

• For r + 1 ≤ k ≤ `, 1 ≤ j ≤ r, Eπ(k),jR is an eigenvector of Ha associated to the eigenvalue

σπ(k)

(
1− σπ(k)

σπ(j)

)
.

Proof. Let π ∈ P, R ∈ Or and ∆ ∈ R`,r. Using the change of variables M = SA and denoting Ha and Hm
the Hessian of respectively fa at ΠπR and fm at SΠπR, we have the equality :

Ha[∆, ∆] = Hm[S∆, S∆].

After normalizing the eigenvectors of Hm given in Theorem 53, we obtain :

Ha[∆R, ∆R] = Hm[S∆R, S∆R] =
∑

1≤i<j≤r

〈
(σ−1
π(i) + σ1

π(j))
− 1

2S−1(Eπ(i),j + Eπ(j),i), S∆
〉2

+
∑

1≤i≤r

〈
σ

1
2

π(i)S
−1Eπ(i),i, S∆

〉2

+
∑

r+1≤k≤`, 1≤j≤r

(
1− σπ(k)

σπ(j)

)〈
Eπ(k),j , S∆

〉2
=

∑
1≤i<j≤r

(σ−1
π(i) + σ1

π(j))
−1
〈
Eπ(i),j + Eπ(j),i, ∆

〉2
+
∑

1≤i≤r
σπ(i)

〈
Eπ(i),i, ∆

〉2
+

∑
r+1≤k≤`, 1≤j≤r

σπ(k)

(
1− σπ(k)

σπ(j)

)〈
Eπ(k),j , ∆

〉2
.
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As a direct corollary of Theorem 55, we have the following result.

Corollary 56. With the notations used in Equation (68), an optimum ĨR of fa corresponds to the identity
permutation π = Id. At an optimum, the largest eigenvalue of the Hessian Ha is σ1 and σπ(`)

(
1− σπ(r+1)

σπ(r)

)
> 0

is a lower bound of the positive eigenvalues of Ha.

The following result is also a straightforward corollary of Theorem 55.

Corollary 57. All full-rank critical points that are not global minima are strict saddle points i.e. the Hessian
at these points has a negative eigenvalue.

Proof. Consider R ∈ Or and a permutation π : [[1; `]]→ [[1; `]] such that π(1) < . . . < π(r) and simultaneously
π(r + 1) < . . . < π(`) while π 6= Id. Necessarily, π(r + 1) < πr and σπ(r+1)(1− σπ(r+1)

σπ(r)
) < 0 is an eigenvalue

of Ha at ΠπR by Theorem 55.

We can now prove Theorem 4.

Proof of Theorem 4. Consider a minimum ĨR of fa with R ∈ Or. From Lemma 3, we know that

Ca(R) =

{[
A1

A2

]
R | A1 ∈ S+

r , A2 ∈ R`−r,r
}
.

We denote the subspace spanned by Ca(R)

E+
R := span [Ca(R)] =

{[
A1

A2

]
R | A1 ∈ Sr, A2 ∈ R`−r,r

}
,

where Sr is the set of symmetric matrices in Rr,r. We know from Theorem 55 that E+
R is exactly the

subspace spanned by the eigenvectors of the Hessian HĨR of fa at ĨR associated to positive eigenvalues. Let
σmin := σ`(1− σr+1

σr
). As pointed out in Corollary 56, σmin is a lower bound for the positive eigenvalue of the

Hessian HĨR. Thus, for all M ∈ span (Ca(R)),

Vec(M)THĨRVec(M) ≥ σmin||M ||2F ,

where Vec(M) ∈ R`,r is the vectorization of M ∈ R`,r. Given the form of the Hessian for the trace norm in
Proposition 6 of (Grave et al., 2011) that is recalled in Proposition 66, the existence of continuous bases for
the singular subspaces (Stewart, 2012) of S2Ĩ and the converse of Taylor’s Theorem in (Oliver, 1954), we
obtain that the Hessian of fa is continuous at ĨR. Therefore, for any γ < 1 < δ, there exists α > 0 such that
for all M ∈ E+

R and A ∈ B(ĨR, α) ∩ E+
R where B(ĨR, α) is the ball with center ĨR and radius α, we have

δσ1||M ||2F ≥ Vec(M)THAVec(M) ≥ γσmin||M ||2F . (69)

Consider two elements M,N ∈ B(ĨR, α). The Taylor expansions gives

fa(N) = fa(M) + 〈∇fa(M), N −M〉+
1

2

∫ 1

0

Vec(N −M)THtN+(1−t)MVec(N −M)dt

≥ fa(M) + 〈∇fa(M), N −M〉+
γσmin

2
||N −M ||2F .

This inequality implies that fa is γσmin-strongly convex in B(ĨR, α)∩E+
R . We conclude by defining a sublevel

set Va inside ∪R∈OrB(ĨR, α).
Similarly, we could show from Equation (69) that for any A, A′ ∈ Va such that [A,A′] ⊂ Va, the function

fa has δσ1-Lipschitz gradients on [A,A′]. Unfortunately, we can not deduce from this observation that fa
has δσ1-Lipschitz gradients or is δσ1-smooth in Va since the latter might be nonconvex. However, as in
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Equation 24 of Lemma 34, s2
1 being the largest eigenvalue of S2, we have for any A, A′ ∈ R`,r, such that fa

is differentiable at A,

fa(A′) ≤ fa(A) + 〈∇fa(A), A′ −A〉+
s2

1

2
||A′ −A||2F .

Therefore, the function fa is s2
1-smooth.

Remark 58. Note that the assumption sr > sr+1 is essential here. In order to highlight its importance, we
can give an example to demonstrate that Theorem 4 would not be true if this assumption was not satisfied.
Consider Y = X = I2 ∈ R2,2 and r = 1. Here, the assumptions sr > sr+1 is violated since s1 = s2 = 1. The

cones are R+ × R and R− × R. The matrix U =

[
1
0

]
is an optimum of

min
U∈R2,1

1

2
||XU ||2F − ||Y TXU ||∗ = min

U∈R2,1

1

2
||U ||2F − ||U ||∗.

However, in the direction ∆α :=

[
0
α

]
, there is no strong convexity. Indeed we have

1

2
||X(U + ∆α)||2F =

1

2
||U + ∆α||2F =

1

2
(1 + α2)

and
||Y TX(U + ∆α)||∗ = ||U + ∆α||∗ =

√
1 + α2 = 1 +

1

2
α2 + o(α2).

By taking the difference of these two equations we prove that there is no second order dependance and

consequently no strong convexity in the direction
[
0
1

]
. It could have been seen directly with Theorem 55 : with

r = 1, ` = 2, π = Id, Eπ(2),1 = E2,1 =

[
0
1

]
is an eigenvector associated to the eigenvalue σ1(1− σ2

σ1
) = 0 since

σ1 = σ2 = 1.

H.3 Proof of Corollary 5
Here, we do not assume that XTX is invertible and prove a more general result. We show that for any
R ∈ Or and N ∈ Rp−m,r, the function f restricted to the affine cone C(R,N) = τ(Ca(R),Rm−`,r, N), where
τ is the function defined in Equation (51), is strongly convex in a neighborhood of the optimum τ(R, 0, N) of
f . If we assumed that XTX is invertible, the proof would be very similar since we would have m = p and the
value of f ◦ τ does not depend on N .

Given R ∈ Or and N ∈ Rp−m,r, consider U and U ′ in the same cone C(R,N) as τ(R, 0, N). Using the
linear change of variables τ , we know that there exists A,A′ ∈ Ca(R) and C,C ′ ∈ Rm−`,r such that :

U = (XTX)
†
2 (PSA+ P⊥C) +K⊥N

= (XTX)
†
2 (PM + P⊥C) +K⊥N with M = SA,

and similarly U ′ = (XTX)
†
2 (PM ′ + P⊥C ′) +K⊥N with M ′ = SA′.

We know from Equation (52) that:

f(U) =
1

2
||M ||2F − ||SM ||∗ +

1

2
||C||2F .

In Theorem 53, we have computed the eigenvectors and the eigenvalues of fm : M ′′ 7→ 1
2 ||M ′′||2F − ||SM ′′||∗

at SĨR which is a minimum of fm. We invoke the same arguments as in the proof of Theorem 4 : given the
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form of the Hessian for the trace norm in Proposition 6 of (Grave et al., 2011) that is recalled in Proposition 66,
the existence of continuous bases for the singular subspaces (Stewart, 2012) of S2Ĩ and the converse of
Taylor’s Theorem in (Oliver, 1954), we obtain that the Hessian of fm is continuous at SĨR. Therefore, for
any γ < 1 < δ, there exists α > 0 such that if S−1M, S−1M ′ ∈ B(ĨR, α) ∩ E+

R where B(ĨR, α) is the ball
with center ĨR and radius α, we have

γ

2
(1− s2

r+1

s2
r

)||M ′ −M ||2F ≤ fm(M)− fm(M ′)− 〈∇fm(M ′), M −M ′〉 ≤ δ

2
||M ′ −M ||2F (70)

since the smallest positive eigenvalue of the Hessian of fm at SĨR is 1− s2r+1

s2r
and the largest is 1.

The variables U and U ′ being obtained from (M,C,N) and (M ′, C ′, N) with a linear transformation,
we can define a neighborhood V(R,N) ⊂ C(R,N) of τ(ĨR, 0, N) such that U, U ′ ∈ V(R,N) if and only if
S−1M, S−1M ′ ∈ B(ĨR, α) ∩ E+

R and then transfer Equation (70) to U and U ′ :

γ

2
(1− s2

r+1

s2
r

)

[
||C − C ′||2F +

1

2
||M ′ −M ||2F

]
≤ 1

2
||C − C ′||2F +

γ

2
(1− s2

r+1

s2
r

)||M ′ −M ||2F
≤ f(U)− f(U ′)− 〈∇f(U ′), U − U ′〉.

Also, since U − U ′ = (XTX)
†
2 (P (M −M ′) + P⊥(C − C ′)) we have the following inequality

||U − U ′||2F ≤ d2
max

[
||M −M ′||2F + ||C − C ′||2F

]
,

where dmax is the largest eigenvalue of (XTX)
†
2 . If XTX is invertible, 1

d2max
is the smallest eigenvalue of

XTX. Eventually, we obtain

γ

2d2
max

(1− s2
r+1

s2
r

)||U − U ′||2F ≤ f(U)− f(U ′)− 〈∇f(U ′), U − U ′〉.

Setting µ := γ
d2max

(1− s2r+1

s2r
), we have proved that the restriction of f to the affine cone C(R,N) is µ-strongly

convex in the neighborhood V(R,N) of the optimum τ(ĨR, 0, N). We conclude by defining a sublevel set
V0 ⊂ ∪R∈Or, N∈Rp−m,rV(R,N) of the function f .

The LX -smoothness of the function f is obtained directly from Equation (24) in Fact 34.

Remark 59. Similarly, we can show from Equation (70) that there exists M > LX such that for any
U, U ′ ∈ V0 with [U,U ′] ⊂ V0, the function f has M-Lipschitz gradients on [U,U ′], since the Hessian is
bounded in V0. Unfortunately, we can not deduce from this observation that f has M -Lipschitz gradients in
V0 or is M -smooth in V0 since the latter might be nonconvex.

H.4 Proof of Corollary 6
To extend to (SRRR) the result that we proved for (RRR), we assume that XTX is invertible.

Proof of Corollary 6. Let µ < νX

(
1
s2r
s2r+1

)
where νX is the samellest eigenvalue of XTX and V0 be defined

as in Corollary 5. As XTX is invertible, we know from the orthogonal invariance of f(U) and λ||U ||1,2 that for
any R ∈ Or, a minimum of Fλ(U) = f(U) + λ||U ||1,2 is attained in each cone C(R). Theorem 6.4 of Bonnans
and Shapiro (1998) guarantees, if its conditions are satisfied, the existence of λ̌ such that for any R ∈ Or, the
minimum in each cone C(R) depends continuously on λ ∈ [0, λ̌). The assumptions of the Theorem 6.4 are
indeed satisfied and we detail those below :
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(a) The objective Fλ of (SRRR) is locally strongly convex on the cone C(Ir) around the minimum : indeed,
the restriction to C(Ir) of f : U 7→ 1

2 ||XU ||2F − ||Y TXU ||∗ is strongly convex according to Corollary 5
and λ||U ||1,2 is convex.

(b) For every fixed λ in some interval [0, λ̃), f is locally Lipschitz with a constant that does not depend on
λ and the group-Lasso norm is Lipschitz.

(c) The difference Fλ − F 0 = λ‖ · ‖1,2 is locally Lipschitz with a constant √pλ which is O(λ).

Thus, according to Theorem 6.4 of Bonnans and Shapiro (1998), there exists 0 < λ̄ < λ̌ such that for any
0 ≤ λ ≤ λ̄, the optimum of (SRRR) in each cone remains in the neighborhood V0 where f is LX -smooth and
Fλ is µ-strongly convex, with the same constants as f for (RRR). To conclude and obtain Corollary 6, there
only remains to define a new open sublevel set Vλ of Fλ inside the sublevel set V0 of f .

I Proofs for Section 5.3

I.1 Proof of Theorem 7
The sequence of inequalities to prove Theorem 7 is the same as in Proof B.1 of Csiba and Richtárik (2017)
except for the line search condition that plays the role of their smoothness condition. Indeed, the result
remains true if the function is not smooth as long as the condition (LS) is satisfied. Let Fλ,∗ denote the
minimum of Fλ. We define define the optimality gap function

ξ : x 7→ Fλ(x)− Fλ,∗.

Given t > 0 and a point x ∈ Rd, we have also defined

f̃t,x(x′) : = f(x) + 〈∇f(x), x′ − x〉+
1

2t
||x′ − x||2F ,

F̃λt,x(x′) : = f̃t,x(x′) + λh(x′), (71)

and x+ is the unique minimum of the strongly convex function F̃λt,x.

Proof of Theorem 7. Let x ∈ Rd and t > 0 such that the condition (LS) is satisfied i.e. F̃λt,x(x+) ≥ Fλ(x+).
We have

ξ(x+) = Fλ(x+)− Fλ,∗ (72)

≤ F̃λt,x(x+)− Fλ,∗ (73)

= f(x) + λh(x)− Fλ,∗ + 〈∇f(x), x+ − x〉+
1

2t
||x+ − x||2 + λh(x+)− λh(x) (74)

= ξ(x) + min
y∈Rd

[
〈∇f(x), y − x〉+

1

2t
||y − x||2 + λh(y)− λh(x)

]
(75)

= ξ(x)− tγt(x) (76)
= ξ(x) [1− tαt(x)] (77)

Equation (72) follows from the definition of ξ. We have Equation (73) since the condition (LS) is satisfied.
Equation (74) comes from Equation (71). Equation (75) follows from the definition of x+, Equation (76)
from the definition of γt and Equation (77) from the definitions of αt and ξ.

Remark 60. A similar result would hold if we used stochastic block coordinate descent as in Lemma 13 of
Csiba and Richtárik (2017), the proof would again follow Proof B.1 in Csiba and Richtárik (2017), with the
same modification about the condition (LS).
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J Proofs for Section 5.4

J.1 Proof of Corollary 8
Let µ and V0 be defined as in Corollary 5. Let R ∈ Or and U ∈ C(R) ∩ V0. According to Corollary 5, f is
µ-strongly convex on C(R) ∩ V0. Since the minimal value f∗ of f is attained on each cone, let U∗ ∈ C(R) be
an optimum of f . As C(R)∩V0 defines a sublevel set of the restriction of f to C(R) that is a convex function,
it is a convex set. Therefore, the segment [U∗, U ] is included in C(R) ∩ V0.

As a µ-strongly convex function, the restriction f |C(R)∩V0 of f to the convex set C(R) ∩ V0 satisfies

f |C(R)∩V0(U∗) ≥ f |C(R)∩V0(U) + 〈∇f |C(R)∩V0(U), U∗ − U〉+
µ

2
||U∗ − U ||2F .

Since
〈∇f |[U,U∗](U), U ′ − U〉 = lims→0+

f(U + s(U ′ − U))− f(U)

s
= 〈∇f(U), U ′ − U〉,

we obtain

f(U)− f∗ ≤ 〈∇f(U), U − U∗〉 − µ

2
||U − U∗||2F

=
µ

2

(
|| 1
µ
∇f(U)||2F − ||U − U∗ −

1

µ
∇f(U)||2F

)
≤ 1

2µ
||∇f(U)||2F .

J.2 Proof of Corollary 9
First, we need to introduce the following lemma. It is a light modification of Theorem 15 of Csiba and
Richtárik (2017). Apart from the substitution of the Lipschitz constant with 1

t , the proof follows Proof B.2 of
Csiba and Richtárik (2017).

Lemma 61. Let λ ≥ 0, µ ≥ 0, C ⊂ Rp,r a convex set, f : Rp,r → R be a differentiable function such that its
restriction to C is µ-strongly convex, h : Rp,r → R be a convex function and Fλ = f + λh. We denote f̄ , h̄
and F̄λ the restrictions of f , h and Fλ to C. Fλ,∗ denotes the optimal value of F̄λ in C. Given U, U ′ ∈ C
and t > 0, we denote

˜̄Fλ(U ′) := f̄(U) + 〈∇f̄(U), U ′ − U〉+
1

2t
||U ′ − U ||2F + λh̄(U ′) (78)

γ̄t(U) := −1

t
min
U ′∈C

[
˜̄Fλ(U ′)− F̄λ(U)

]
. (79)

Let U ∈ C, t > 0 and U+ = argminU ′∈C
[

˜̄Fλ(U ′)− F̄λ(U)
]
. We have

γ̄t(U) ≥ min

(
1

2t
, µ

)[
F̄λ(U)− F̄λ,∗

]
.

Proof. Let U ∈ C such that F̄λ > F̄λ,∗, t > 0 and U+ = argminU ′∈C
[

˜̄Fλ(U ′)− F̄λ(U)
]
. We have

tγ̄t(U) = − min
U ′∈C

[
〈∇f̄(U), U ′ − U〉+

1

2t
||U ′ − U ||2F + λh̄(U ′)− h̄(U)

]
(80)

= F̄λ(U)− min
U ′∈C

[
f̄(U) + 〈∇f̄(U), U ′ − U〉+

1

2t
||U ′ − U ||2F + λh̄(U ′)

]
≥ F̄λ(U)− min

U ′∈C

[
f̄(U ′)− µ

2
||U ′ − U ||2F +

1

2t
||U ′ − U ||2F + λh̄(U ′)

]
(81)

= F̄λ(U)− min
U ′∈C

[
F̄λ(U ′)− 1

2

(
µ− 1

t

)
||U ′ − U ||2F

]
(82)
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Equation (80) follows from Equation (78) and Equation (79). Equation (81) is due to the µ-strong convexity
of f̄ . We denote U∗ ∈ C the optimum of F̄λ and for all U ′ ∈ C, ξ(U ′) := F̄λ(U ′) − F̄λ,∗. Let 0 ≤ δ ≤ 1,
setting U ′ = U + δ(U∗ − U) in Equation (82), we obtain :

tγ̄t(U) ≥ F̄λ(U)− F̄λ(δU∗ + (1− δ)U) +
1

2
δ2

(
µ− 1

t

)
||U∗ − U ||2F

≥ F̄λ(U)− δF̄λ(U∗)− (1− δ)F̄λ(U) +
1

2

[
µδ(1− δ) + δ2

(
µ− 1

t

)]
||U∗ − U ||2F (83)

= δ
(
ξ(U) +

µ

2
||U∗ − U ||2F

)
− δ2

2t
||U∗ − U ||2F (84)

Equation (83) comes from the µ-strong convexity of F̄λ. We impose

δ = min

(
1,
ξ(U) + µ

2 ||U − U∗||2F
1
t ||U − U∗||2F

)
. (85)

Consider the two possible values for δ in Equation (85). First, if 1
t ||U − U∗||2F ≤ ξ(U) + µ

2 ||U − U∗||2F we have
δ = 1 and (

µ− 1

t

)
||U − U∗||2F ≥

(
µ

2
− 1

t

)
||U − U∗||2F ≥ −ξ(U). (86)

Combining Equation (84) with Equation (86) in the case δ = 1, we obtain

tγ̄t(U) ≥ ξ(U) +
1

2

(
µ− 1

t

)
||U∗ − U ||2F ≥

1

2
ξ(U). (87)

Secondly, if 1
t ||U − U∗||2F ≥ ξ(U) + µ

2 ||U − U∗||2F , we obtain with Equation (84)

tγ̄t(U) ≥
(
ξ(U) + µ

2 ||U∗ − U ||2F
)2

2
t ||U∗ − U ||2F

. (88)

Therefore, with Equation (87) and Equation (88), we have

γ̄t(U) ≥ min

(
1

2t
ξ(U),

(
ξ(U) + µ

2 ||U∗ − U ||2F
)2

2||U∗ − U ||2F

)

≥ min

(
1

2t
ξ(U),

2ξ(U)µ||U∗ − U ||2F
2||U∗ − U ||2F

)
(89)

≥ min

(
1

2t
, µ

)
ξ(U) = min

(
1

2t
, µ

)[
F̄λ(U)− F̄λ,∗

]
.

Equation (89) comes from the inequality of arithmetic and geometric means.

We can now prove Corollary 9. Let Vλ be the sublevel set defined in Corollary 6. Let R ∈ Or and
U ∈ C(R) ∩ Vλ. According to Corollary 6, Fλ is µ-strongly convex on C(R) ∩ Vλ. Since the minimal value
Fλ,∗ is attained on each cone, let U∗ ∈ C(R) be an optimum of Fλ,∗. As C(R) ∩ Vλ defines a sublevel set of
the restriction of Fλ to C(R) that is a convex function, it is a convex set. Therefore, the segment [U∗, U ] is
included in C(R) ∩ Vλ.

We define for any U ′ ∈ [U, U∗] the surrogate (F̃λ|[U,U∗])t,x(U ′) of the restriction of Fλ to [U,U∗] like in
section 5.3 :

(F̃λ|[U,U∗])t,U (U ′) = f(U) + 〈∇f |[U,U∗](U), U ′ − U〉+
1

2t
||U ′ − U ||2F + λ||U ′||1,2.
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From Lemma 61, we obtain the following inequality for any U ′ ∈ [U,U∗] such that the condition (LS) is
satisfied :

− 1

t
min

U ′∈[U,U∗]

[
(F̃λ|[U,U∗])t,U (U ′)− Fλ|[U,U∗](U)

]
≥ min(

1

2t
, µ)

[
Fλ(U)− Fλ,∗

]
. (90)

Since
〈∇f |[U,U∗](U), U ′ − U〉 = lims→0+

f(U + s(U ′ − U))− f(U)

s
= 〈∇f(U), U ′ − U〉,

Inequality (90) becomes :

−1

t
min

U ′∈[U,U∗]

{
F̃λt,U (U ′)− Fλ(U)

}
≥ min(

1

2t
, µ)

[
Fλ(U)− Fλ,∗

]
.

The minimum over the segment being lower bounded by the minimum over the whole space, we deduce that

γt(U) ≥ min(
1

2t
, µ)

[
Fλ(U)− Fλ,∗

]
.

J.3 Proof of Corollary 10
Let λ ≥ 0 and Vλ be a non-empty sublevel set of Fλ such that for all U ∈ Vλ, Fλ satisfies the t-strong
proximal -PL inequality, as in Corollary 9. Let k ≥ 0, tk−1 >

β
LX

and Uk ∈ Vλ. If Uk+1 and tk are generated
as in Algorithm 1 from Uk ∈ Vλ and tk−1 such that the (LS) condition Fλ(Uk+1) ≤ F̃λtk,Uk(Uk+1) is satisfied,
then we know from Fact 35 that the inequality tk > β

LX
is satisfied.

Besides, since

Fλ(Uk+1) ≤ F̃λtk,Uk(Uk+1) = min
U ′∈Rp,r

F̃λtk,Uk(U ′) ≤ F̃λtk,Uk(Uk) = Fλ(Uk)

and Vλ is a sublevel set, it is clear that Uk+1 ∈ Vλ.
To obtain Equation (10), we can apply Theorem 7 since Fλ satisfies the tk-strong proximal -PL inequality

by Corollary 9 with α(tk) := min( 1
2tk
, µ) :

Fλ(Uk+1)− Fλ,∗ ≤ [1− tkα(tk)]
[
Fλ(Uk)− Fλ,∗

]
≤
[
1−min(

1

2
, µtk)

] [
Fλ(Uk)− Fλ,∗

]
≤ [1− ρ]

[
Fλ(Uk)− Fλ,∗

]
where ρ = min( 1

2 , β
µ
LX

) ≤ min( 1
2 , µtk).

K Supplementary Results and Proofs

K.1 Proof of Lemma 44
First, we prove the following fact.

Fact 62. If U is a local minimizer of Fλ, then denoting

VU ∈ argmax
V ∈Rk,r: V TV=Ir

〈V, Y TXU〉, (91)

the matrix W := UV TU ∈ Rp,k has to be a local minimizer of Fw : W 7→ 1
2 ||XW ||2F − 〈Y,XW 〉 + λ||W ||1,2

among matrices of Rp,k whose rank is smaller than r.
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Proof. We prove Fact 62 by contradiction, supposing that W := UV TU is not a local minimizer. Without
loss of generality, we can assume since Fλ is invariant when its argument is multiplied on the right by an
orthogonal matrix that the columns of U are orthogonal. Indeed, if the SVD of U is R1ΣRT2 , we can consider
instead U ′ = R1Σ and modify VU accordingly. With this assumption, the right singular vectors of W := UV TU
with VU defined by Equation (91) are exactly the columns of VU . Since we supposed that W is not a local
minimizer, there exists a sequence of matrices (Wk)k≥0 with rank smaller than r and with limit W such that
for each k ≥ 0, Fw(Wk) < Fw(W ). For each k ≥ 0, let Vk be a matrix with r columns containing at least
the right singular vectors of Wk such that V Tk Vk = Ir. In particular, using the continuity of the singular
spaces (Stewart, 2012, Theorem V.2.7), we can impose that the sequence (Vk)k≥0 has limit VU . The sequence
(Uk)k≥0 defined for each k ≥ 0 by Uk = WkVk has limit U . For k ≥ 0, this would mean Wk = UkV

T
k and

f(Uk) + λ||Uk||1,2 = Fλ(Uk) ≤ Fw(UkV
T
k ) < Fw(UV TU ) = f(U) + λ||U ||1,2.

This would contradict the fact that U is a local minimizer. Therefore W = UV TU must be a local minimizer
of Fw.

Proof of Lemma 44. We assume that for any S ⊂ {1, . . . , p} of cardinality at least r, the matrix XT
S Y is

full-rank, where XS is the matrix formed by keeping the columns of X indexed by S. We prove Lemma 44
by contradiction, assuming that U is a local minimum which has at least r non-zero rows and a rank strictly
smaller than r. Again, we denote VU ∈ argmaxV TV=Ir 〈V, Y TXU〉 and consider W := UV TU . First, we write
without loss of generality

W =

[
WS

0

]
, with |S| ≥ r and WS ∈ R|S|,k only has non-zero rows.

Secondly, rank(WS) < r since WS is extracted from W whose rank is smaller than r. According to Fact 62,
W is a local minimizer of Fw among matrices with rank smaller than r so for any vectors u ∈ Rp, v ∈ Rk, the
function t 7→ 1

2 ||Y −X(W + tuvT )||2F + λ||W + tuvT ||1,2 has a minimum at zero. The first-order condition is :

uTXT (Y −XW )v + λ
∑
i

uiz
T
i v = 0,

where ui ∈ R and denoting Wi,: the i-th row of W , zTi =
Wi,:

||Wi,:||2 if Wi,: is different from zero and zi has a
norm smaller than 1 otherwise. If we impose v ∈ Ker WS , we get Wv = 0 and zTi v = 0 for i ∈ S. Therefore
we have,

uTXTY v + λ
∑
i/∈S

uiz
T
i v = 0. (92)

Since Equation (92) holds in particular for any u ∈ Rp such that ui = 0 when i /∈ S, we necessarily have for
any v ∈ Ker WS ,

XT
S Y v = 0.

In other words, we have Ker WS ⊂ Ker XT
S Y . This implies that dim(Ker XT

S Y ) ≥ dim(Ker WS) > k − r
since WS has rank strictly smaller than r. Therefore XT

S Y ∈ R|S|,k has rank strictly smaller than r. This is
in contradiction with the assumption in Lemma 44.

K.2 Proof of Lemma 45
Let U∗ be a full-rank local minimum of Fλ : U 7→ 1

2‖XU‖2F −||Y TXU ||∗+λ||U ||1,2. Without loss of generality,
we denote S the support of the rows of U∗ and we write

U∗ =

[
US

0p−m,r

]
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where m is the number of non-zero rows of U and US ∈ Rm,r. We also denote

X =
[
XS XSc

]
with XS ∈ Rn,m and XSc ∈ Rn,p−m. Let V ∈ argminV ∈Rk,r: V TV=Ir 〈Y TXU∗, V 〉 and Gλ : U 7→ 1

2‖XU‖2F −
〈Y TXU, V 〉+λ||U ||1,2. By Fact 25, we have on the one hand Gλ ≥ Fλ and on the other hand Gλ(U∗) = Fλ(U∗)
so U∗ is a local minimum of Gλ. The first order conditions restricted to the rows in the set S are

XT
SXSUS −XT

S Y V + λZS = 0 (93)

where ZS := DUS ∈ R|S|,r with D := diag( 1
‖U∗1 ‖2

, . . . , 1
‖U∗m‖2 ) ∈ R|S|,|S| and ‖U∗1 ‖2, . . . , ‖U∗m‖2 are the norms

of the rows of US . In particular, Equation (93) implies

UTS
[
XT
SXS +D

]
US = UTSX

T
S Y V.

Since we assumed that |S| ≥ r, the matrix UTS
[
XT
SXS +D

]
US has rank r. Necessarily, UTSX

T
S Y = U∗TXTY

also has rank r.

K.3 Proof of Lemma 46
Lemma 44 and Lemma 45 combined with Assumption H2 ensure that for any limit point U ∈ Ū , the matrix
Y TXU is full-rank. Since the set of limit points Ū is closed and bounded, there exist ζ > 0 and δ > 0 such that
for all U ∈ Rp,r, dist(U, Ū) ≤ δ implies that the eigenvalues of Y TXU are lower bounded by ζ, where dist(U, Ū)
is the Euclidean distance between U and the compact set Ū . We denote Kδ :=

{
U ∈ Rp,r|dist(U, Ū) ≤ δ

}
and K δ

2 :=
{
U ∈ Rp,r|dist(U, Ū) ≤ δ

2

}
.

Proposition 6 of (Grave et al., 2011) that is recalled in Proposition 66, describes the Hessian of the
trace-norm at full-rank matrices : since for any U ∈ Kδ, the eigenvalues of Y TXU are lower bounded by ζ,
there exists M > 0 such that the Hessian of f is bounded on Kδ by M . Therefore, for any U, U ′ ∈ Kδ such
that [U, U ′] ⊂ Kδ, we have

||∇f(U)−∇f(U ′)||F ≤M ||U − U ′||F . (94)

Fact 35 and Lemma 36 ensure that limk→+∞ ||Uk+1 − Uk||F = 0 so there exists k1 ≥ 0 such that for any
k ≥ k1, Uk ∈ K

δ
2 and ||Uk+1−Uk||F ≤ δ

2 . The triangle inequality implies that [Uk, Uk+1] ⊂ Kδ. Consequently
we have, by Equation (94), for all k ≥ k1 :

||∇f(Uk)−∇f(Uk+1)||F ≤M ||Uk − Uk+1||F .

K.4 Proof of Lemma 49
Let A ∈ R`,r be a rank deficient matrix and R1DR

T
2 be a singular value decomposition of the matrix

S2A. Since S2A is rank deficient, we can assume R1 ∈ R`,r−1, D ∈ Rr−1,r−1 and R2 ∈ Rr,r−1. Up to a
multiplication on the right by an orthogonal matrix, we can assume, using the orthogonal invariance of fa,
that

S2A = R1D
[
Ir−1 0r−1

]
, where Ir−1 ∈ Rr−1,r−1, 0r−1 ∈ Rr−1.

Let er ∈ Rr be the vector whose components are 0 except for the last one that is 1. Let t ∈ R and ã ∈ R` be
a unit-norm vector such that S2ã is orthogonal to the columns of R1 and therefore to the columns of S2A.
We have ||ãeTr ||F = 1. On the one hand, we can separate the Frobenius norm of S(A+ tãeTr ) as follows,

1

2
||S(A+ tãeTr )||2F =

1

2
||SA||2F +

1

2
t2||SãeTr ||2F =

1

2
||SA||2F +

1

2
t2||Sã||2F =

1

2
||SA||2F + o(t).

On the other hand, for any t 6= 0, a singular value decomposition of S2(A+ tãeTr ) is

S2(A+ tãeTr ) =
[
R1

S2ã
||S2ã||F

] [D 0
0 |t|||S2ã||F

] [
Ir−1 0r−1

0Tr−1
t
|t|

]
.
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We can therefore easily compute the trace norm of S2(A+ tãeTr ),

||S2(A+ tãeTr )||∗ = ||S2A||∗ + |t|||S2ã||F ≥ ||S2A||∗ + |t|s2
` ,

where s` is the smallest eigenvalue of S. So finally, we obtain

fa(A+ tãeTr ) ≤ fa(A)− s2
` |t|+ o(t).

K.5 Proof of Lemma 50
Proof. LetA be a critical point of fa : A 7→ 1

2 ||SA||2F−||S2A||∗ and denote VA ∈ argmaxV ∈R`,r:V TV=Ir 〈S, SAV T 〉.
We know from Lemma 49 that A is full-rank and applying Danskin’s Theorem (Danskin, 1967), we have

∇fa(A) = S2(A− VA) = 0. (95)

Besides, writing ΠΣR the singular value decomposition of S2A with Π ∈ R`,r a matrix whose columns
are orthogonal, Σ ∈ Rr,r a diagonal matrix whose entries are denoted σ1, . . . , σ` and R ∈ Rr,r an orthogonal
matrix, we know that A = VA from Equation (95) and that VA = ΠR by Fact 27. Therefore, we have

S2A = S2ΠR

⇒ ΠΣR = S2ΠR since ΠΣR is the SVD of S2A,

⇒ ΠΣ = S2Π since RRT = Ir. (96)

Let i ∈ [[1, r]], w := (w1, . . . , w`)
T be the i-th column of Π. Equation (96) implies that

σiw =

s
2
1w1

...
s2
`w`

 ,
⇒ ∀j ∈ [[1, r]], (σi − s2

j )wj = 0.

Since we assumed that s1, . . . , s` are all different, only one wj can be different from zero and must be 1
since w has norm 1. Given that the columns of the matrix Π are orthogonal and contain only one nonzero
coefficient, up to a permutation of its columns, the matrix Π has the form given in Lemma 50.

With Lemma 47, we know that A is not a local maximum of fa. If A = ĨR, we have proved in Lemma 1
that A is a global minimum. Now assume that A = ΠπR, with π and Ππ as in Equation (64) and that there
exists i ∈ {1, . . . , r} such that π(i) > i and for all i′ < i, π(i′) = i′. We have

1

2
||S(A+ teie

T
i R)||2F =

1

2
||SA||2F +

t2

2
s2
i . (97)

Since the Frobenius norm of the i-th column of S2(A + teie
T
i R) is

√
s4
π(i) + t2s4

i and the columns of

S2(A+ teie
T
i R) have disjoint supports, we also have

||S2(A+ teie
T
i R)||∗ = ||S2A||∗ − s2

π(i) +
√
s4
π(i) + t2s4

i = ||S2A||∗ − s2
π(i) + s2

π(i)

(
1 +

t2

2

s4
i

s4
π(i)

)
+O(t4) (98)

Combining Equation (97) with Equation (98), we obtain

fa(A+ teie
T
i R)− fa(A) =

t2s2
i

2

(
1− s2

i

s2
π(i)

)
+O(t4).

Since we have assumed that π(i) > i and the eigenvalues of the matrix S are strictly decreasing, we have(
1− s2i

s2
π(i)

)
< 0 and A is not a local minimum.

30



K.6 Proof of Theorem 53
As in section G.3, we consider a permutation π : [[1; `]]→ [[1; `]] such that simultaneously π(1) < . . . < π(r)
and π(r + 1) < . . . < π(`). We denote

Ππ := (1i=π(j))1≤i≤`, 1≤j≤r ∈ R`,r,

and define for i0 ∈ [[1, `]] and j0 ∈ [[1, r]],

Ei0,j0 = (1i=i0, j=j0)1≤i≤`, 1≤j≤r ∈ R`,r.

We want to compute the Hessian Hm of fm : M 7→ 1
2 ||M ||2F − ||SM ||∗ at the matrix M = SΠπR. It is

well defined according to Proposition 6 in (Grave et al., 2011) since SM = S2ΠπR is full-rank. We recall
this result below in Proposition 66. In order to introduce the different eigenvectors of the Hessian of fm,
we need the singular value decomposition and the polar decomposition of SM . Since M = SΠπR and
S2Ππ = Ππdiag(s2

π(1), . . . , s
2
π(r)), a singular value decomposition of SM is given by

SM = Ππdiag(s2
π(1), . . . , s

2
π(r))R, ΠT

πΠπ = Ir and RTR = Ir.

We have s2
π(1) > . . . > s2

π(r) because we assumed s1 > . . . > s` > 0 and π(1) < . . . < π(r). Defining
V = ΠπR ∈ R`,r and K = RTdiag(s2

π(1), . . . , s
2
π(r))R ∈ Rr,r, we obtain the polar decomposition of SM :

SM = V K, V TV = Ir and K ∈ S++

r (99)

with S++
r the set of positive-definite matrices in Rr,r. We also denote Sr = {H ∈ Rr,r | HT = H} the set of

symmetric matrices in Rr,r.
First we focus on a set of directions where the restriction of fm is exactly a quadratic strongly convex

function.

Fact 63. The restriction of M ′ 7→ ||SM ′||∗ to the affine subspace {M + S−2MH | H ∈ Sr} is linear in a
neighborhood of M , its Hessian at M is zero. Consequently, the Hessian of fm : M 7→ 1

2 ||M ||2F − ||SM ||∗
restricted to the subspace TK := {S−2MH | H ∈ Sr} is exactly the identity. A basis for TK is the concatenation
of (S−1(Eπ(i),j + Eπ(j),i)R)1≤i<j≤r with (S−1Eπ(i),iR)1≤i≤r.

Proof. For any matrix M̃ such that the polar decomposition of SM̃ has the form V B with B ∈ S+
r , we have

||SM̃ ||∗ = 〈SM̃, V 〉. Indeed, if QDQT is a singular value decomposition of B with Q ∈ Rr,r, QTQ = Ir and
D ∈ Rr,r a diagonal matrix, then (V Q)DQT is a singular value decomposition of V B. Using Fact 25 and
Fact 27, we have

||SM̃ ||∗ = 〈SM̃, (V Q)QT 〉 = 〈SM̃, V 〉.
Consequently, we have

fm(M̃) =
1

2
||M̃ ||2F − 〈SM̃, V 〉.

In particular, for any ∆ = S−1V H with H ∈ Sr such that K +H ∈ S+
r , we have M + ∆ = S−1V (K +H)

since M = S−1V K according to Equation (99) and

fm(M + ∆) =
1

2
||M + ∆||2F − 〈S(M + ∆), V 〉.

Therefore, the Hessian of ∆ 7→ fm(M + ∆) restricted to the subspace TK := {S−1V H, H ∈ Sr} is locally the
identity. Note that S−1V = S−2SΠπR = S−2M since V = ΠπR and M = SΠπR so

TK = {S−2MH, H ∈ Sr}.
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We can also use M = SΠπR to write

TK = {S−1ΠπRH, H ∈ Sr}
= {S−1ΠπHR, H ∈ Sr}. (100)

For Equation (100), we have used the fact that for any orthogonal matrix R ∈ Rr,r, the application
H 7→ RTHR is an automorphism of Sr. We then obtain a basis for TK using the fact that the concatenation
of (Ei,j + Ej,i)1≤i<j≤r with (Ei,i)1≤i≤r is a basis of Sr and for any 1 ≤ i, j ≤ r, ΠπEi,j = Eπ(i),j .

Secondly, the invariance of fm when its argument is multiplied on the right by an orthogonal matrix gives
a set of directions included in the kernel of the Hessian.

Fact 64. The subspace TR := {MT | TT = −T, T ∈ Rr,r} is included in the Kernel of the Hessian of fm at
M = SΠπR. Additionally, TK⊕⊥TR = {MF | F ∈ Rr,r} and a basis for TR is (S(Eπ(i),j−Eπ(j),i)R)1≤i<j≤r.

Proof. Since M is a critical point of fm which is invariant when its argument is multiplied on the right by
an orthogonal matrix, then by (Li et al., 2016, Theorem 2), the subspace that is tangent to the manifold
{MR′ | R′ ∈ Or} is included in the Kernel of the Hessian of fm atM . In Example 4, Li et al. (2016) show that
this subspace is exactly TR := {MT | T ∈ Rr,r, TT = −T}. Since M = SΠπR and the set of antisymmetric
matrices of Rr,r can be written {RTTR | T ∈ Rr,r, TT = −T}, a basis for TR is (S(Eπ(i),j−Eπ(j),i)R)1≤i<j≤r.

To show that {MF | F ∈ Rr,r} can be decomposed with the given orthogonal sum, it is first important to
notice that

TK = {S−1V H | H ∈ Sr}
= {MK−1H | H ∈ Sr}. (101)

We have used Equation (99) to obtain Equation (101). It is then sufficient to notice that both TK =
{MK−1H | H ∈ Sr} and TR = {MT | TT = −T, T ∈ Rr,r} are included in {MF,F ∈ Rr,r}, they are also
orthogonal given the bases that we have introduced and finally, their dimensions are respectively r(r+1)

2 and
r(r−1)

2 since M is full-rank so their sum must be equal to {MF | F ∈ Rr,r} which is of dimension r2.

What remains to study is the eigenvectors and the corresponding eigenvalues of the Hessian of fm at M
in the subspace that is orthogonal to {MF | F ∈ Rr,r}.

Fact 65. For r + 1 ≤ k ≤ ` and 1 ≤ j ≤ r, the matrix Eπ(k),jR is an eigenvector of the Hessian of fm

restricted to the subspace TV ⊥ := {C ∈ R`,r |MTC = 0} and the corresponding eigenvalue is 1− s2π(k)

s2
π(j)

.

To prove Fact 65, we use the following result.

Proposition 66. (Grave et al., 2011, Proposition 6) Let ` ≥ r, N ∈ R`,r be a full-rank matrix and
WΣZT ∈ R`,r be its singular value decomposition, withW ∈ R`,r, WTW = Ir, Σ = diag(σ1 ≥ . . . ≥ σr) ∈ Rr,r
with σr > 0, Z ∈ Rr,r and ZTZ = Ir. Let W0 ∈ R`,`−r such that WT

0 W0 = I`−r and WTW0 = 0. We denote
(wi)1≤i≤r the columns of W , (zj)1≤j≤r the columns of Z and (wk)r+1≤k≤` the columns of W0. For any
∆ ∈ R`,r, we have :

||N + ∆||∗ = ||N ||∗ + 〈WZT ,∆〉

+
1

2

∑
1≤i≤r, 1≤j≤r

(wTi ∆zj − wTj ∆zi)
2

2(σi + σj)

+
1

2

∑
r+1≤k≤`, 1≤j≤r

(wTk ∆zj)
2

σj
+ o(||∆||2F ). (102)
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Proof of Fact 65. Given a perturbation ∆R of the matrix M , we have

||SM + S∆R||∗ = ||S2ΠπR+ S∆R||∗, (103)

= ||S2Ππ + S∆||∗ (104)

Equation (103) comes from M = SΠπR and we have Equation (104) since the trace-norm is orthogonal
invariant. Thus, we apply Proposition 66 for a perturbation S∆ of the matrix S2Ππ whose singular value
decomposition is Ππdiag(s2

π(1) > . . . > s2
π(r)). With the notations of Proposition 66, this corresponds to

W = Ππ, Σ = diag(s2
π(1) > . . . > s2

π(r)) and Z = Ir. Let W0 ∈ R`,`−r be the matrix whose columns wk are
the eπ(k) for r + 1 ≤ k ≤ `, then WT

0 W0 = I`−r and WTW0 = 0. We have

||S2Ππ + S∆||∗ = ||S2Ππ||∗ + 〈WZT , S∆〉

+
1

2

∑
1≤i≤r, 1≤j≤r

(wTi S∆zj − wTj S∆zi)
2

2(s2
π(i) + s2

π(j))

+
1

2

∑
r+1≤k≤`, 1≤j≤r

(wTk S∆zj)
2

s2
π(j)

+ o(||∆||2F )

= ||S2Ππ||∗ + 〈Ππ, S∆〉

+
1

2

∑
1≤i≤r, 1≤j≤r

(sπ(i)e
T
π(i)∆ej − sπ(j)e

T
π(j)∆ei)

2

2(s2
π(i) + s2

π(j))

+
1

2

∑
r+1≤k≤`, 1≤j≤r

s2
π(k)

s2
π(j)

(eTπ(k)∆zj)
2 + o(||∆||2F ).

Note that in the first sum, ∆ only intervenes through a product with the transpose of an element eπ(i) that
belongs to Im M . Since we already studied the effect of the Hessian on the subspace {MF | F ∈ Rr,r} in
Fact 63 and Fact 64, we focus on the effect of the Hessian in the orthogonal subspace that is described in the
second sum. Given a perturbation ∆ of the form W0FZ

T with F ∈ R`−r,r, we have on the one hand

||S2Ππ + S∆||∗ = ||S2Ππ||∗ + 〈Ππ, S∆〉

+
1

2

∑
r+1≤k≤`, 1≤j≤r

s2
π(k)

s2
π(j)

(eTπ(k)W0FZ
T zj)

2 + o(||∆||2F )

= ||S2Ππ||∗ + 〈Ππ, S∆〉

+
1

2

∑
r+1≤k≤`, 1≤j≤r

s2
π(k)

s2
π(j)

F 2
k−r,j + o(||∆||2F ). (105)

Equation (105) comes from eTπ(k)W0 = (1i=k−r)T1≤i≤`−r and ZT zj = (1i=j)1≤i≤r.
On the other hand,

1

2
||M + ∆R||2F =

1

2
||M ||2F +

1

2
||∆R||2F + 〈M, ∆R〉

=
1

2
||M ||2F +

1

2
||∆||2F + 〈SΠπR, ∆R〉 (106)

=
1

2
||M ||2F +

1

2
||W0FZ

T ||2F + 〈SΠπ, ∆〉 (107)

=
1

2
||M ||2F +

1

2

∑
1≤i≤`−r, 1≤j≤r

F 2
i,j + 〈SΠπ, ∆〉. (108)
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Equation (106) follows from M = SΠπR, Equation (107) from ∆ = W0FZ
TR and Equation (108) from

WT
0 W0 = I`−r and Z = Ir. Combining Equation (105) with Equation (108), we obtain for ∆ = W0FZ

T

fm(M + ∆R) = fm(M) +
1

2

∑
r+1≤k≤`, 1≤j≤r

(
1−

s2
π(k)

s2
π(j)

)
F 2
k−r,j + o(||∆||2F ).

Since W0 ∈ R`,`−r is the matrix whose columns are the eπ(k) for r+ 1 ≤ k ≤ ` and Z = Ir, we obtain the last
eigenvectors of the Hessian of fm : for r + 1 ≤ k ≤ ` and 1 ≤ j ≤ r, the matrix Eπ(k),jR is an eigenvector

associated to the eigenvalue 1− s2π(k)

s2
π(j)

.

Remark 67. Note that we could have directly used Equation (102) to prove simultaneously Fact 63, Fact 64
and Fact 65 but we believe that the proposed analysis helps understanding the structure of the eigenspaces.

Eventually, we have proved that the Hessian of fm at M is block diagonal on the three orthogonal
subspaces :

• TK := {S−2MH | H ∈ Sr} where the eigenvalues are all equal to 1.

• TR := {MT | TT = −T} where the eigenvalues are all 0.

• TV ⊥ := {W0C | C ∈ R`−r,r} where the eigenvalues are the 1− s2π(k)

s2
π(j)

for r + 1 ≤ k ≤ `, 1 ≤ j ≤ r.

We summarize the eigenvectors of the Hessian of fm : M ′ 7→ 1
2 ||M ′||2F − ||SM ′||∗ at M = SΠπR in the

table below.

Eigenvectors and Eigenvalues of the Hessian of fm : M ′ 7→ 1
2 ||M ′||2F − ||SM ′||∗ at M = ΠπR

Indices Number of elements Eigenvectors Eigenvalues

1 ≤ i ≤ r r S−1Eπ(i),iR 1

1 ≤ i < j ≤ r r(r−1)
2 S−1(Eπ(i),j + Eπ(j),i)R 1

1 ≤ i < j ≤ r r(r−1)
2 S(Eπ(i),j − Eπ(j),i)R 0

r + 1 ≤ k ≤ `, 1 ≤ j ≤ r r(`− r) Eπ(k),jR 1− s2π(k)

s2
π(j)

L KŁ with exponent 1
2

As announced at the end of Section 5.4, we show in Section L.1 that the geometric structure leveraged in
Corollary 9 can be used to prove that Fλ has the KŁ property with exponent 1

2 near the set of optima. While
in the core of the article, we proposed a direct proof of Corollary 10 based on Corollary 9 and Theorem 7, we
present in Section L.2 an application of the framework developed by Csiba and Richtárik (2017) to show that
the KŁ property with exponent 1

2 (instead of the PŁ inequality) also leads to linear convergence. The proofs
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appear simpler than the ones encountered in (Attouch and Bolte, 2009; Attouch et al., 2013; Chouzenoux
et al., 2014; Frankel et al., 2015) as the algorithms considered in these papers are more general while we
restrain our study to the proximal gradient algorithm with line search.

L.1 KŁ-1
2
on cones for (RRR / SRRR)

We assume that XTX is invertible. Let span C(Ir) be the subspace spanned by C(Ir) = τ(Ca(Ir),Rp−`,r)
with τ defined in Equation (6) and Ca(Ir) defined in Equation (8). Let FλIr be the restriction of Fλ to C(Ir) :
it is defined for any U ∈ span C(Ir) as FλIr (U) = Fλ(U) if U ∈ C(Ir) and FλIr (U) = +∞ otherwise. From the
structure described in Corollary 6, and since τ is a linear invertible change of variables, we know that FλIr ◦ τ
is strongly convex in a neighborhood of (Ĩ , 0p−`,r) = (

[
Ir

0`−r,r

]
, 0p−`,r) included in Ca(Ir).

Fact 68. Let F be a proper lower semi-continuous function. If F is µ-strongly convex in a set V ⊂ Rd then
given x∗ ∈ V, F has the Kurdyka-Łojasiewicz property at x∗ ∈ dom ∂F with exponent 1/2 : there exists η > 0
and a neighborhood U of x∗ such that for all x ∈ U ∩ {y | F (x∗) < F (y) < F (x∗) + η}, we have

c√
F (x)− F (x∗)

dist(0, ∂F (x)) ≥ 1. (109)

Proof. Let x∗ ∈ V. First, if 0 /∈ ∂F (x∗), then by Lemma 2 of Attouch et al. (2010), there is c > 0 and a
neighborhood U of x∗ such that for any x ∈ U , we have

dist(0, ∂F (x)) ≥ 1

c
and F (x)− F (x∗) ≤ 1,

so Equation (109) holds for any x ∈ U .
Secondly, assume that 0 ∈ ∂F (x∗). Let x ∈ V such that F (x) > F (x∗) and v ∈ ∂F (x). Since F is

µ-strongly convex, we have :

F (x)− F (x∗) ≤ 〈v, x− x∗〉 − µ

2
||x− x∗||2

=
µ

2

[
1

µ2
||v||2 − 1

µ2
||v||2 + 2〈 1

µ
v, x− x∗〉 − ||x− x∗||2

]
=
µ

2

[
1

µ2
||v||2 − ||x− x∗ − 1

µ
v||2
]

≤ 1

2µ
||v||2.

Therefore, we obtain Equation (109) with c = 1√
2µ

:

1√
2µ

1√
F (x)− F (x∗)

dist(0, ∂F (x)) ≥ 1.

Since FλIr is strongly convex, it is a KŁ- 1
2 function by Fact 68. This is key to apply the following result.

Theorem 69. (Theorem 3.2 in Li and Pong, 2017) Consider a ≥ b ≥ 1, g : Rb → R a proper closed function
and h : Ra → Rb a continuously differentiable mapping. Suppose in addition that g is a KŁ function with
exponent α ∈ [0, 1) and the Jacobian Jh(x̄) ∈ Rb,a is a surjective mapping at some x̄ ∈ dom g ◦ h. Then g ◦ h
has the KŁ property at x̄ with exponent α.
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Let Ip−`,r : Rp−`,r 7→ Rp−`,r be the identity function and σ̄ : R`,r → C(Ir) be the function defined for
full-rank matrices based on the polar decomposition :

σ̄ :

[
B1

B2

]
R ∈ R`,r 7→

[
B1

B2

]
,

where B1 ∈ S++
r , R ∈ Or. This definition is correct as the polar decomposition of a full-rank matrix B1 is

unique. Given the orthogonal invariance of Fλ and Fλ ◦ τ , we have

Fλ = FλIr ◦ τ ◦ (σ̄, Ip−`,r) ◦ τ−1.

Before applying Theorem 69 with g = FλIr ◦ τ and h = σ̄ ◦ τ−1, we first have to prove that its assumptions are
satisfied. Clearly, the Jacobian of τ , τ−1 and Ip−`,r are surjective since these are linear invertible functions.

Proposition 70. Let A =

[
A1

A2

]
∈ R`,r such that A1 ∈ Rr,r is a square invertible matrix and A2 ∈ R`−r,r.

The Jacobian Jσ̄(A) is a surjective mapping.

Proof. Thanks to the polar decomposition, we know that there exists B1 ∈ S++
r , B2 ∈ R`−r,r and R ∈ Or

such that
A =

[
B1

B2

]
R.

Consequently, we have σ̄(A) =

[
B1

B2

]
.

Also, given ∆ =

[
∆1

∆2

]
∈ R`,r such that ∆1 ∈ Rr,r, ∆2 ∈ R`−r,r and A + ∆ ∈ CR, we can write[

∆1

∆2

]
=

[
M1

M2

]
R where M1 ∈ Rr,r is a symmetric matrix, M2 ∈ R`−r,r and

σ̄(A+ ∆) = (A+ ∆)RT = σ̄(A) + ∆RT = σ̄(A) +

[
M1

M2

]
.

Therefore, we can identify the differential of σ̄ on the set of matrices
[
M1

M2

]
R with M1 symmetric with

the linear application M 7→MRT . The surjectivity of this differential is obvious.

Corollary 71. Let 0 ≤ λ < λ̄ and a sublevel set Vλ be defined as in Corollary 6. The function Fλ has the
KŁ property with exponent 1/2 in the sublevel set Vλ.

Proof. According to Fact 68, FλIr ◦ τ is a KŁ-1
2 function around its optimum since it is locally strongly convex.

Consequently, Fλ =
[
FλIr ◦ τ

]
◦
[
(σ̄, Ip−`,r) ◦ τ−1

]
is the composition in the sublevel set Vλ of a KŁ- 1

2 function
with a smooth function that has a surjective Jacobian mapping, according to Proposition 70. We deduce
with Theorem 69 that Fλ has the KŁ property with exponent 1

2 in Vλ.

L.2 From KŁ with exponent 1
2
to (t-strong proximal PŁ)

Here, we prove that the KŁ- 1
2 property in Vλ for the function Fλ of SRRR leads to linear convergence in

Algorithm 1. This result differs from Theorem 15 of Csiba and Richtárik (2017) for which they assumed
strong-convexity instead of the KŁ property with exponent 1

2 .
As in Theorem 43 we make the assumptions H2 and H3 in this section so that we can use Lemma 46.

Indeed, we need these extra assumptions because although the function f we consider for SRRR is LX -smooth
with LX the largest eigenvalue of XTX, it may not have Lipschitz gradients in the entire sublevel set defined
in Corollary 6, mainly because the latter is not convex.
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We denote for any U ∈ Vλ, and t > 0 :

F̃λt,U (U ′) := f(U) + 〈∇f(U), U ′ − U〉+
1

2t
||U ′ − U ||2 + λ||U ′||1,2, (110)

γt(U) := −1

t
min

U ′∈Rp,r

[
F̃λt,U (U ′)− Fλ(U)

]
. (111)

Before obtaining in Proposition 73 a result similar to the (t-strong proximal PŁ) property, we first need
to introduce the following result. It is highly similar to Lemma 36 but is is adapted to the present context.

Lemma 72. Let U ∈ Vλ and U+ := argminU ′∈Rp,r
[
F̃λt,U (U ′)− Fλ(U)

]
. There is a subgradient sU+ of || · ||1,2

at U+ such that

U+ − U = −t (∇f(U) + λsU+
), (112)

γt(U) ≥ 1

2
||∇f(U) + λsU+ ||2. (113)

Proof. Equation (112) is a direct consequence of the first-order optimal conditions for Problem (111). We
also have

F̃λt,U (U+)− Fλ(U) = f(U) + 〈∇f(U), U+ − U〉+
1

2t
||U+ − U ||2F + λ||U+||1,2 − f(U)− λ||U ||1,2 (114)

= 〈∇f(U) + λsU+ , U+ − U〉+
t

2
||∇f(U) + λsU+

||2F
+ λ

[
||U+||1,2 + 〈sU+ , U − U+〉 − ||U ||1,2

]
, (115)

≤ − t
2
||∇f(U) + λsU+

||2F . (116)

In Equation (114), we simply use Equation (110). Equation (115) follows from Equation (112). Equation (116)
follows again from Equation (112) and from the convexity of || · ||1,2. Therefore, we have

γt(x) ≥ 1

2
||∇f(x) + λsU+ ||2.

Proposition 73. Let k1 ≥ 0 be defined as in Lemma 46, k ≥ k1 and assume that Uk ∈ Vλ\Ω∗. Let
Uk+1 = argminU ′∈Rp,r

[
F̃λtk,Uk(U ′)− Fλ(Uk)

]
. We have

c2(1 + (Mtk)2)γtk(Uk) ≥ Fλ(Uk+1)− Fλ,∗. (117)

Proof. We know from Lemma 72 that there exists a subgradient sUk+1
of U ′ 7→ ||U ′||1,2 at Uk+1 such that

Uk+1 = Uk − tk
[
∇f(Uk) + λsUk+1

]
. (118)

We have

||∇f(Uk+1) + λsUk+1
||2 ≤ 2||∇f(Uk) + λsUk+1

||2 + 2||∇f(Uk)−∇f(Uk+1)||2 (119)

≤ 2||∇f(Uk) + λsUk+1
||2 + 2M2||Uk − Uk+1||2 (120)

≤ 2||∇f(Uk) + λsUk+1
||2 + 2(Mtk)2||∇f(Uk) + λsUk+1

||2 (121)

≤ 2(1 + (Mtk)2)||∇f(Uk) + λsUk+1
||2 (122)

≤ 4(1 + (Mtk)2)γt(Uk) (123)
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We obtain Equation (119) using the triangle inequality and the inequality of arithmetic and geometric means.
Equation (120) is due to Lemma 46. We have Equation (121) thanks to Equation (112). Equation (122)
follows from Equation (113) in Lemma 72.

Since ||∇f(Uk+1) + λsUk+1
||2 is an upper bound of dist(0, ∂Fλ(Uk+1))2, Equation 123 implies that

dist(0, ∂Fλ(Uk+1))2 ≤ 4(1 + (Mtk)2)γtk(Uk).

Besides, we know from Corollary 71 that there exists c > 0 such that for any U ′ ∈ Vλ, the function Fλ
satisfies the inequality :

dist
(
0, ∂Fλ(U ′)

)
≥ 2

c

√
Fλ(U ′)− Fλ,∗. (124)

The element Uk+1 being in the sublevel set Vλ since Fλ(Uk+1) ≤ Fλ(Uk) and Uk ∈ Vλ, we finally obtain
with Equation (124) :

(1 + (Mtk)2)γt(Uk) ≥ 1

c2
(Fλ(Uk+1)− Fλ,∗)

Remark 74. Note that Equation (t-strong proximal PŁ) in Section 5.3, that is to say in the PŁ framework,
can be written

γt(U) ≥ c1[Fλ(U)− Fλ,∗] with c1 > 0,

while Equation 117, in the KŁ framework, can be written,

γt(U) ≥ c2[Fλ(U+)− Fλ,∗] with c2 > 0.

The right term depends either on U or U+ and this is the main reason for the differences found in the
computations between the two frameworks.

We denote
ξ : U ′ 7→ Fλ(U ′)− Fλ,∗.

Proposition 73 finally leads to local linear convergence, as encountered in Proposition 5.1 of Li and Pong
(2017) for batch proximal gradient descent. As in Proposition 5.1 of Li and Pong (2017), we have to use an
upper bound d > 0 on the step size t while this was not necessary when we used the Polyak-Łojasiewicz
inequality instead of the Kurdyka-Łojasiewciz inequality.

Proposition 75. Let k1 ≥ 0 be defined as in Lemma 46. Assume that there is d > 0 such that for any
k ≥ k1, we have tk ≤ d. There is 0 < ρ < 1 such that for any k ≥ k1, if Uk ∈ Vλ\Ω∗, then we have :

ξ(Uk+1) ≤ (1− ρ)ξ(Uk).

Therefore, the convergence of Algorithm 1 is locally linear.

Proof. Let k ≥ k1, Uk ∈ Vλ and

Uk+1 = argmin
U ′∈Rp,r

[
F̃λtk,Uk(U ′)− Fλ(Uk)

]
.

First, from Equation (117) in Proposition 73, we have

γtk(Uk)

ξ(Uk+1)
≥ 1

c2(1 + (Mtk)2)
. (125)
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Secondly, we have

ξ(Uk+1) ≤ ξ(Uk)− tkγtk(Uk) (126)

≤ ξ(Uk)− tk
γt(Uk)

ξ(Uk+1)
)ξ(Uk+1)

≤ ξ(Uk)− tk
1

c2(1 + (Mtk)2)
ξ(Uk+1) (127)

≤ ξ(Uk)− tk
1

c2(1 + (Md)2)
ξ(Uk+1). (128)

Equation (126) comes from Fact 33. Equation (127) follows from Equation 125 and Equation (128) follows
from the assumption tk ≤ d. Consequently, we have

ξ(Uk+1) ≤ 1

1 + tk
c2(1+(Md)2)

ξ(Uk)

≤ 1

1 + β
c2LX(1+(Md)2)

ξ(Uk) (129)

≤ (1− ρ)ξ(Uk) with ρ := 1− 1

1 + β
c2LX(1+(Md)2)

.

We have Inequality (129) since tk > β
LX

for k sufficiently large by Fact 35.

Proposition 75 finally leads to local linear convergence for the forward-backward algorithm applied to
(SRRR). The proof in this section is different from the core of the article since we used KŁ inequalities instead
of PŁ inequalities for the proof.

M Additional details and results on the experiments

M.1 Algorithm of Park et al. (2016)
To evaluate the performance ofAlgorithm 1 for RRR, we compare it with the algorithm proposed in Park et al.
(2016), which minimizes the biconvex formulation of Problem (1) i.e. with the form of Equation (4) . To avoid
the scaling issue due to the invariance of the objective by any transformation (U, V ) 7→ (UC, V C−T ) where C
is a square invertible matrix, the formulation they propose to add a regularizer (U, V ) 7→ 1

4 ||UTU − V TV ||2F
which does not change the optimal value of the function. With this differentiable function, simultaneous
gradient descent in U and V is feasible. However, this regularization scheme is not applicable if a group-Lasso
penalty is added, because the latter is not compatible with imposing the constraint UTU = V TV at the
optimum.

M.2 Different values of the correlation coefficient ρ

Given that the choice of ρ has a strong impact on the running time, we report in Figure 5 and Figure 6
additional results for different values of the parameter ρ. Apart from this modification, we test the algorithms
with the same setting as in Section 6. This change corresponds to modifying the correlation between the
columns of the design matrix X. Although the speed of the algorithms decreases when ρ increases, the
relative order of the methods remains the same.

M.3 Different sparsity scenarios
To assess the quality of the algorithm when the proportion of zero rows in W0 varies, we present Figure 7
where the proportion of zero rows p0 is respectively 0.5 and 0.8, that is W0 has 50% and 80% of zero rows.
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Figure 5: (Left) RRR : ρ = 0.4. (Right) RRR : ρ = 0.8. Times reported are times to reach a gap of 10−4
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Figure 6: (Left) SRRR : ρ = 0.4. (Right) SRRR : ρ = 0.8. Times reported are times to reach a gap of 10−4.
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Figure 7: (Left) SRRR : ρ = 0.6, p0 = 0.5 and λ = 0.02. (Right) SRRR : ρ = 0.6, p0 = 0.8 and λ = 0.02.
Times reported are times to reach a gap of 10−4.
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