
Probabilistic Semantic Inpainting with Pixel Constrained CNNs

Emilien Dupont Suhas Suresha
Schlumberger Software Technology Innovation Center

Abstract

Semantic inpainting is the task of inferring
missing pixels in an image given surrounding
pixels and high level image semantics. Most
semantic inpainting algorithms are determin-
istic: given an image with missing regions,
a single inpainted image is generated. How-
ever, there are often several plausible inpaint-
ings for a given missing region. In this paper,
we propose a method to perform probabilis-
tic semantic inpainting by building a model,
based on PixelCNNs, that learns a distribu-
tion of images conditioned on a subset of vis-
ible pixels. Experiments on the MNIST and
CelebA datasets show that our method pro-
duces diverse and realistic inpaintings.

1 Introduction

Image inpainting algorithms find applications in many
domains such as the restoration of damaged paintings
and photographs (Bertalmio et al., 2000), the removal
or replacement of objects in images (Liu et al., 2018)
or the generation of maps from sparse measurements
(Dupont et al., 2018). In these applications, a par-
tially occluded image is passed as input to an algo-
rithm which generates a complete image constrained
by the visible pixels of the original image. As the miss-
ing or hidden regions of the image are unknown, there
is an inherent uncertainty related to the inpainting of
these images. For each occluded image, there are typ-
ically a large number of plausible inpaintings which
both satisfy the constraints of the visible pixels and are
realistic (see Fig. 1). As such, it is desirable to sam-
ple image inpaintings as opposed to generating them
deterministically. Even though recent algorithms have
shown great progress in generating realistic inpaint-

Proceedings of the 22nd International Conference on Ar-
tificial Intelligence and Statistics (AISTATS) 2019, Naha,
Okinawa, Japan. PMLR: Volume 89. Copyright 2019 by
the author(s).

Occluded
Image

Plausible Completions

Figure 1: Example of probabilistic inpainting.

ings, most of these algorithms are deterministic (Liu
et al., 2018; Yeh et al., 2016; Yu et al., 2018a).

In this paper, we propose a method to sample in-
paintings from a distribution of images conditioned on
the visible pixels. Specifically, we propose a model
that simultaneously (a) generates realistic images, (b)
matches pixel constraints and (c) exhibits high sam-
ple diversity. Our method, which we term Pixel Con-
strained CNN, is based on a modification of PixelC-
NNs (van den Oord et al., 2016; Oord et al., 2016) to
allow for conditioning on arbitrary sets of pixels as op-
posed to only the ones above and to the left as in the
original PixelCNN framework.

Further, our model can estimate the likelihood of gen-
erated inpaintings. This allows us, for example, to
rank the various generated inpaintings by their likeli-
hood. To the best of our knowledge, this is the first
method for efficiently estimating the likelihood of in-
paintings of arbitrary missing pixel regions.

To validate our method, we perform experiments on
the MNIST and CelebA datasets. Our results show
that the model learns to generate realistic inpaintings
while exhibiting high sample diversity. We also evalu-
ate our method both qualitatively and quantitatively
and show that it compares favourably with current
state of the art methods. Finally, we measure, through
a user survey, how well our likelihood estimates corre-
late with human perception of plausible inpaintings.

Probabilistic Semantic Inpainting with Pixel Constrained CNNs

2 Related Work

Early approaches for image inpainting were mostly
based on propagating the information available in the
occluded image. Methods based on minimizing the to-
tal variation, for example, are able to fill small holes in
an image (Shen and Chan, 2002; Afonso et al., 2011).
Other methods directly propagate information from
visible pixels to fill in hidden pixel regions (Bertalmio
et al., 2000; Ballester et al., 2001; Telea, 2004). As
these methods use only the information available in
the image, they are unable to fill in large holes or
holes where the color or texture have high variance.
More importantly, these algorithms are also determin-
istic and so generate a single inpainting given an oc-
cluded image.

Other methods are based on finding patches in the
occluded image or in other image datasets to infill
the hidden regions (Efros and Freeman, 2001; Kwa-
tra et al., 2005). This family of methods also includes
PatchMatch (Barnes et al., 2009) which has a random
component. This randomness is however limited by
the possible matches that can be found in the avail-
able datasets.

Learning based approaches have also been popular for
inpainting tasks (Iizuka et al., 2017; Yang et al., 2017;
Song et al., 2017; Li et al., 2017; Yu et al., 2018b). Im-
portantly, these methods often learn a prior over the
image distribution and can take advantage of both this
information and the pixel information available in the
occluded image. Liu et al. (2018) for example achieve
impressive results using partial convolutions, but these
approaches are deterministic and the inpainting oper-
ation often corresponds to a forward pass of a neural
network. Our method, in contrast, is able to generate
several samples given a single inpainting task.

Several methods for image inpainting are also based
on optimizing the latent variables of generative mod-
els. Pathak et al. (2016); Yeh et al. (2016) for exam-
ple, train a Generative Adversarial Network (GAN) on
unobstructed images (Goodfellow et al., 2014). Using
the trained GAN, these algorithms optimize the latent
variables to match the visible pixels in the occluded
image. These methods are pseudo random in the sense
that different initializations of the latent variable can
lead to different minima of the optimization problem
that matches the generated image with the visible pix-
els. However, the resulting completions are typically
not diverse (Bellemare et al., 2017). Further, since the
final images are generated by the GAN, the lack of
diversity of samples sometimes observed in GANs can
also be limiting (Arjovsky et al., 2017). Our approach,
in contrast, is based on PixelCNNs which typically ex-
hibit high sample diversity (Dahl et al., 2017).

Recently, Xu and Teh (2018) proposed a model for
controllable image inpainting. Their approach also
uses an autoregressive model to generate image com-
pletions, but their focus is on controlling generated
content as opposed to sampling diverse plausible com-
pletions. If we view image inpainting as regressing
a function to match the visible pixels in an image,
then Neural Processes (Garnelo et al., 2018; Kim et al.,
2019) can also be considered as tools for image inpaint-
ing. We compare our approach with these methods in
Section 5.

3 Review of PixelCNNs

PixelCNNs (Oord et al., 2016; van den Oord et al.,
2016) are probabilistic generative models which aim to
learn a distribution of images p(x). These models are
based on sampling each pixel in an image conditioned
on all the previously sampled pixels. Specifically, let-
ting x denote the set of pixels of an n by n image
and numbering the pixels from 1 to n2 row by row (in
raster scan order), we can write p(x) as:

p(x) = p(x1, x2, ..., xn2)

=

n2∏
i=1

p(xi|xi−1, ..., x1)
(1)

We can then build a model for each pixel i, which takes
as input the previous i−1 pixels and outputs the prob-
ability distribution p(xi|xi−1, ..., x1). We could, for ex-
ample, build a CNN which takes as input the first i−1
pixels of an image and outputs the probability distri-
bution over pixel intensities for the ith pixel. PixelC-
NNs use a hierarchy of masked convolutions to enforce
this conditioning order, by masking pixels to the bot-
tom and the right of each pixel, so that each pixel i can
only access information from pixels i−1, i−2, The
model is then trained by maximizing the log likelihood
on real image data.

PixelCNNs are not only used to estimate p(x) but also
to generate samples from p(x). To generate a sample,
we first initialize all pixels of an image to zero (or
any other number). After a forward pass of the image
through the network, the output at pixel 1 is the distri-
bution p(x1). The value of the first pixel of the image
can then be sampled from p(x1). After setting pixel 1
to the sampled value, we pass the image through the
network again to sample from p(x2|x1). We then set
pixel 2 to the sampled value and repeat this procedure
until all pixels have been sampled.

However, PixelCNNs can only generate images in
raster scan order. For example, if pixel 3 is known,

Emilien Dupont, Suhas Suresha

then we cannot sample p(x2|x1, x3) since this does not
match the sampling order imposed by the masking. In
image inpainting, an arbitrary set of pixels is fixed and
known, so we would like to be able to sample from dis-
tributions conditioned on any subset of pixels. A triv-
ial way to enforce this conditioning is to modify the
PixelCNN architecture to take in the visible pixels as
a conditioning vector (see Conditional PixelCNNs for
more details (van den Oord et al., 2016)). However,
our initial experiments showed that the conditioning is
largely ignored and the model tends to generate images
which do not match the conditioning pixels. Similar
problems have been observed when using PixelCNNs
for super resolution (Dahl et al., 2017).

4 Pixel Constrained CNN

In this section we introduce Pixel Constrained CNN,
a probabilistic generative model that can generate im-
age samples conditioned on arbitrary subsets of pixels.
Specifically, given a set of known constrained pixel val-
ues c (e.g. c = {x17, x52, x134}) we would like to model
and sample from p(x|c), i.e. we would like to sample
all the pixels x in an image, given the visible pixels c.
We factorize p(x|c) as

p(x|c) =
∏

i:xi /∈c

p(xi|xi−1, ..., x1, c) (2)

where the product is over all the missing pixels in
the image. As noted in section 3, PixelCNNs enforce
this factorization by hiding pixels with a hierarchy of
masked convolutions. In the constrained pixel case,
we would like to hide pixels in the same order ex-
cept for the known pixels c which should be visible
to all output pixel distributions. Therefore, building
the constrained model amounts to using the same fac-
torization as the original PixelCNN, but modifying the
masking to make the constrained pixels visible to all
pixels. This can be achieved by building a model com-
posed of two subnetworks, a prior network and a con-
ditioning network.

The prior network is a PixelCNN, which takes as in-
put the full image and outputs logits which encode
information from pixels i− 1, i− 2, ... for each pixel i.
The conditioning network is a CNN with regular (non
masked) convolutions which takes as input the masked
image, containing only the visible pixels c, and out-
puts logits which encode the information in the visible
pixels. Since the conditioning network does not use
masked convolutions, each pixel in the logit output
will have access to every visible pixel in the input (as-
suming the network is deep enough for the receptive
field to cover the entire image).

+

...

Input
Image

Masked
Image

Prior
logits

Masked
Conv

Masked
Conv

...

Cond
logits

Regular
Conv

Regular
Conv

Output
logits

Prior
network

Conditioning
network

Figure 2: Pixel Constrained CNN architecture. The
complete input image is passed through the prior net-
work and the masked image is passed through the con-
ditioning network. The light green pixel corresponds
to the ith pixel which can access information from all
the pixels in dark green, i.e xi−1, xi−2, ..., x0 and c.

Finally, the prior logits and conditional logits are
added to output the final logits. The softmax
of these logits models the probability distribution
p(xi|xi−1, ..., x1, c) for each pixel i. This approach is
illustrated in Fig. 2. Note that a similar approach has
been used in the context of super resolution, where the
conditioning network takes in a low resolution image
instead of a masked image (Dahl et al., 2017).

4.1 Model Inputs

During training, the prior network takes as input
a fully visible image while the conditioning network
takes as input a masked version of the same image,
representing the constrained pixels c. More precisely,
the constrained pixels c can be thought of as a func-
tion c(x,M) of the image x and a mask M . The mask
M ∈ {0, 1}n×n is a binary matrix, where 1 represents
a visible pixel and 0 a hidden pixel. The input image
x ∈ Rn×n×c (where c is the number of color channels)
is masked by elementwise multiplication with M . To
differentiate between masked pixels and pixels which
are visible but have a value of 0, we append M to the
masked image, so the final input to the conditioning

Probabilistic Semantic Inpainting with Pixel Constrained CNNs

Image Mask
Masked
Image

Cond Net
Input

Figure 3: Conditioning network input. The input is
a concatenation of the mask and the masked image in
order to differentiate between hidden pixels and visible
pixels which have a value of zero. This input represents
the set of constrained pixels c.

Figure 4: Examples of 32 by 32 masks generated by
our algorithm. These correspond to samples from the
distribution of masks p(M).

network is in Rn×n×(c+1). This is illustrated in Fig.
3. The approach is similar to the one used by Zhang
et al. (2016) for deep colorization.

4.2 Likelihood Maximization

We train the model by maximizing p(x|c) on a dataset
of images. Ideally, the trained model should work for
any set of constrained pixels c or, equivalently, for
any mask. To achieve this, we define a distribution
of masks p(M) and maximize the log likelihood of our
model over both the masks and the data

maxEx∼p(x),M∼p(M)[log p(x|c(x,M)] (3)

When optimizing this loss in practice, we found that
the conditional logits (which model the information in
c) were often partially ignored by the model. We hy-
pothesize that this is because there is a stronger corre-
lation between a pixel and its neighbors (which is what
the prior network models) than between a pixel and
the visible pixels in the image (which is what the con-
ditioning network models). To encourage the model
to use the conditional logits, we add a weighted term
to the loss. Denoting by pcond(x|c) the softmax of the
conditional logits, the total loss is

maxEx∼p(x),M∼p(M)[log p(x|c)+α log pcond(x|c)] (4)

where α is a positive constant and the dependence

of c on x and M has been omitted for clarity. This
loss encourages the model to encode more information
into the conditional logits and we observe that this
improves performance in practice.

4.3 Random Masks

In order to evaluate the loss and train the model, we
need to define the distribution of masks p(M). There
are several ways this can be done. For example, if it is
known a priori that we are only interested in complet-
ing images which have part of their right side occluded,
we can train on masks of varying width covering the
right side of the image. While this is application de-
pendent, we would like to build models that are as
general as possible and can work on a wide variety of
masks. Specifically, we would like our model to per-
form well even when missing areas are irregular and
disconnected. To this end, we build an algorithm that
generates irregular masks of random blobs. The algo-
rithm randomly samples blob centers and then itera-
tively and randomly expands each blob. The algorithm
is described in detail in the appendix and examples of
the generated masks are shown in Fig. 4. While the
generated masks are all irregular we find that they
generalize well to completing any occlusion in unseen
images, including regular occlusions.

4.4 Sampling

Given a trained model and an image with a subset
of visible pixels c, we would like to generate samples
from the distribution p(x|c). To generate these, we
first pass the occluded image and the mask through
the conditioning network to calculate the conditional
logits. When then pass a blank image through the
prior network to generate the prior logits for the first
pixel. If the first pixel is part of the visible pixels c,
we simply set x1 to the value given in c, otherwise we
sample x1 ∼ p(x1|c) and set the value of the first pixel
to x1. We then pass the updated image through the
prior network again to generate the conditional prob-
ability distribution for the second pixel and continue
sampling in this way until the image is complete. Since
we know the probability distribution at every pixel, we
can also calculate the likelihood of the generated sam-
ple by taking the product of the probabilities of each
sampled pixel.

5 Experiments

We test our model on the binarized MNIST1 and
CelebA datasets (Liu et al., 2015). As training the

1The images are binarized by setting any pixel intensity
greater than 0.5 to 1 and others to 0.

Emilien Dupont, Suhas Suresha

Figure 5: Inpainting results on CelebA. The occluded
images are shown on the left and various completions
sampled from the model are shown on the right. As
can be seen, the samples are diverse and mostly real-
istic.

Figure 6: Inpainting results on MNIST.

model is computationally intensive, we crop and resize
the CelebA images to 32 by 32 pixels and quantize
the colors to 5 bits (i.e. 32 colors). For both MNIST
and CelebA, we use a Gated PixelCNN (van den Oord
et al., 2016) for the prior network and a residual net-
work (He et al., 2016) for the conditioning network.
Full descriptions of the network architectures are given
in the supplementary material.

Since generating masks at every iteration is expensive,
we generate a dataset of 50k masks prior to training
and randomly sample these during training. The full
list of training details can be found in the supple-
mentary material. The code to reproduce all exper-
iments and results in this paper (including weights of
trained models) is available at https://github.com/
Schlumberger/pixel-constrained-cnn-pytorch.

5.1 Inpaintings

We test our models on images and masks that were
not seen during training. Examples of inpaintings are

Figure 7: Inpainting examples. These examples show-
case various interesting aspects of the model. For ex-
ample, the model can inpaint various types of glasses,
hats and shadows. It also produces diverse eye color,
hair color and gender for a given occluded image.

Original Edited

Eyes Nose Mouth

Figure 8: Probabilistic inpainting for image editing.
We start with the image on the left and sample new
eyes, a new nose and a new mouth to edit the image.

shown in Fig. 5 and 6. As can be seen, the generated
samples are realistic and, importantly, diverse. For
example, even when the source image for the masked
pixels is of a male face, the model plausibly generates
a variety of both male and female face completions,
each with varying hair, eye color, skin tone and so on.
Importantly, the inpaintings also preserve the struc-
ture in the image: facial symmetry is preserved when
either side of a face is occluded, eye color is preserved
when an eye is occluded and so on (interestingly, the
model occasionally samples a blue eye even when the
other eye is dark).

For MNIST, we observe similar results. The model
generates a variety of digits, all of which naturally
match the conditioning. Interestingly, even when the
digit used to generate the visible pixels is a seven, the
model is able to generate many other digit completions
which plausibly match the constrained pixels.

Further examples of inpaintings and an application of

https://github.com/Schlumberger/pixel-constrained-cnn-pytorch
https://github.com/Schlumberger/pixel-constrained-cnn-pytorch

Probabilistic Semantic Inpainting with Pixel Constrained CNNs

Conditional
PixelCNN

GAN Neural
Process

Ours

Figure 9: Comparisons of methods on various inpainting tasks. The occluded images are shown on the left and
various completions sampled from the models are shown on the right in each column.

probabilistic inpainting to image editing are shown in
Fig. 7 and 8.

5.2 Qualitative Evaluation

In order to evaluate the performance of our model,
we run qualitative comparisons with Conditional Pix-
elCNNs (van den Oord et al., 2016), GAN inpaint-
ing (Yeh et al., 2016) and Neural Processes (Garnelo
et al., 2018), each of which can be used to perform
inpainting with some randomness. We compare the
frameworks on different inpainting tasks by occluding
5 images with various masks (top, bottom, right, left
and blob) and generating 8 inpaintings for each image
and mask combination, allowing us to check for both
diversity and plausibility. Results are shown in Fig.
9. As can be seen, Conditional PixelCNNs tend to
produce images that do not match the visible pixels,
indicating that the model largely ignores the condi-
tional vector. This effect is particularly severe when
generating inpaintings based on the bottom pixels, as
the model can then only use the conditional vector to
model this information (since the pixel ordering for
PixelCNNs is from top to bottom). GAN inpainting is
better at matching visible pixels, but still struggles on

most tasks and has lower diversity. Neural Processes
generate samples with some diversity, but these tend
to be blurry and so fail to match the visible pixels.
In contrast, our model produces plausible and diverse
samples which match the pixels for all inpainting tasks.
While it can occasionally produce unrealistic samples,
our comparisons clearly show the value of our method
for probabilistic inpainting.

5.3 Quantitative Evaluation

As noted in Yu et al. (2018b), it is difficult to quantita-
tively measure the quality of image inpaintings. Cur-
rently, standard methods include simple metrics such
as `1, `2 and pSNR between the inpainted image and
the ground truth. As our model is probabilistic, it is
even more difficult to use these metrics, since a plau-
sible inpainting may be far from the ground truth im-
age. Nonetheless, we still perform quantitative com-
parisons as follows: we sample 100 images randomly
from CelebA and sample a mask randomly for each
image. We then generate 8 inpaintings for each image
and mask pair and measure the differences between
the ground truth image and the generated image. Re-
sults are included in the table below. As can be seen,

Emilien Dupont, Suhas Suresha

our model performs on par with other models on these
metrics (although it is likely to perform worse than
deterministic models since diversity is not measured).
While measuring performance on these metrics is a
good sanity check, we believe that designing a good
metric for measuring inpainting quality is still an open
problem.

GAN NP Ours2

`1 31.4% 19.9% 19.8% (15.5%)
`2 40.6% 28.2% 29.0% (22.4%)
pSNR 14.5dB 17.4dB 17.4dB (19.5dB)

5.4 Inpainting Likelihood

As noted in section 4.4, our method allows us to cal-
culate the likelihood of inpaintings. To the best of
our knowledge, this is the first method for semantic
inpainting of arbitrary occlusions which also estimates
the likelihood of the inpaintings. The ability to esti-
mate inpainting likelihoods could be useful for appli-
cations where the inpainted image is used for down-
stream tasks which require some uncertainty quantifi-
cation (Dupont et al., 2018). Ideally, inpaintings with
low likelihood should look less realistic, while inpaint-
ings with high likelihood should look more plausible.
In this section, we perform various tests, including a
human survey, to verify to which extent this claim is
true.

Firstly, we can verify that the model assigns high like-
lihood to the ground truth images. To test this, we
generate 8 inpaintings for a 100 images with arbitrary
occlusions. We then compare the likelihood assigned
to the ground truth (unoccluded) image with the like-
lihood assigned to the inpaintings and rank them from
highest to lowest, i.e. the best rank is 1 and the worst
rank is 9. For MNIST, the ground truth image is
ranked as number 1.62 on average. For CelebA, this
number is 1.11. These results confirm that the model
assigns high likelihood to the ground truth images, as
expected.

Secondly, we can visualize how inpaintings with dif-
ferent likelihoods compare. Fig. 10 shows a set of
sampled inpaintings ranked by their likelihood. Even
though the concept of how plausible an inpainting is
can be subjective, it appears, at least for MNIST, that
samples with high likelihood tend to look more plausi-
ble while low likelihood samples tend to look less real-
istic. For CelebA, this is not quite as clear. In order to
test this more thoroughly, we conducted a user study.

2The results in brackets are for the best sampled in-
painting for each image. Other results are averaged over
all inpaintings for each image.

Figure 10: Inpaintings sorted by their likelihood. The
occluded images are shown on the left and various com-
pletions sampled from the model are shown on the
right. The size and color of the bar under each image
is proportional to the likelihood of the sample.

5.4.1 Human survey

We performed a user study to check if our likelihood es-
timates correlate well with human perception of plau-
sible inpaintings. The test works as follows: we oc-
clude parts of randomly selected images and generate
8 inpaintings for each of them. For each image, we se-
lect the sample with highest and lowest likelihood and
show this pair of inpaintings to the user (in random
order). The user is then asked to decide which im-
age they feel is most plausible. As the inpaintings can
be quite similar, the user also has an option for choos-
ing neither. If the likelihood estimate is good, the user
should pick the image with the highest likelihood more
frequently. The exact details of the experimental setup
and examples of the user interface can be found in the
supplementary material.

We collected responses from 43 users for MNIST and
42 users for CelebA resulting in a total of 1065 im-
age pairs. For each dataset we then calculated the
frequency with which users agree or disagree with
the model and the frequency with which they replied
”Don’t know”. The results are shown in the table be-
low.

Agree Disagree Don’t know
MNIST 49.7% 25.5% 24.8%
CelebA 28.1% 56.6% 15.3%

For MNIST, the users agree with the model likelihood
the majority of the time, suggesting our likelihood es-
timate correlates well with human perception. How-
ever, for CelebA the opposite is true. The users in our

Probabilistic Semantic Inpainting with Pixel Constrained CNNs

Figure 11: Pixel probability progression as pixels are
sampled (figure best viewed in color). The color of
each hidden pixel is proportional to the probability
of that pixel being 1 (bright colors correspond to high
probabilities while dark colors correspond to low prob-
abilities).

survey found that the majority of images the model
assigned high likelihood to were less plausible. This
suggests that the likelihood estimate for the CelebA
model is flawed. We hypothesize that this is because
the CelebA model has not completely converged or
does not have enough capacity to accurately model
the conditional distributions of faces. It is likely that
training larger models could improve results but we
leave this to future work. While estimating the likeli-
hood or plausibility of inpaintings remains a challenge,
we hope that this is a first step towards solving this
problem.

5.5 Pixel Probabilities

As our model estimates the probability for each pixel
p(xi|xi−1, ..., x1, c), we can also visualize how the pixel
probabilities are affected by various occlusions. Since
the MNIST images are binary, we can plot the prob-
ability of a pixel intensity being 1 for all pixels in the
image, given the visible pixels. Similarly, we can ob-
serve how these probabilities change as more pixels are
sampled. This is shown in Fig. 11. As can be seen,
the conditional pixels bias the model towards generat-
ing digits which are plausible given the occlusion. As
more pixels are generated, the probabilities become
sharper as the model becomes more certain of which
digit it will generate. For example, in the first row, the
pixel probabilities suggest that both a 3, 5 or an 8 are
plausible completions. As more pixels are sampled it
becomes clear that a 5 is the only plausible completion
and the pixel probabilities get updated accordingly.

Figure 12: Failure examples. The samples are either
unrealistic or do not match the constrained pixels, cre-
ating undesirable edge effects.

6 Scope and Limitations

While our approach can generate a diverse set of plau-
sible image completions and estimate their likelihood,
it also comes with some drawbacks and limitations.

First, our approach is very computationally intensive
both during training and sampling. As is well known,
PixelCNN models tend to be very slow to train (Oord
et al., 2016) which can limit the applicability of our
method to large scale images. Further, most deter-
ministic inpainting algorithms require a single forward
pass of a neural net, while our model (since it is based
on PixelCNNs) requires as many forward passes as
there are pixels in the image.

Second, our model also has failure modes where it gen-
erates implausible inpaintings or inpaintings that do
not match the surrounding pixels. A few failure ex-
amples are shown in Fig. 12.

7 Conclusion

In order to address the uncertainty of image inpaint-
ing, we have introduced Pixel Constrained CNN, a
model that performs probabilistic semantic inpainting
by sampling images from a distribution conditioned on
the visible pixels. Experiments show that our model
generates plausible and diverse completions for a wide
variety of regular and irregular masks on the MNIST
and CelebA datasets. Further, our model also cal-
culates the likelihood of the inpaintings which, for
MNIST, correlates well with the realism of the image
completion.

In future work, it would be interesting to scale our
approach to larger images by combining it with meth-
ods that aim to accelerate the training and genera-
tion of PixelCNN models (Ramachandran et al., 2017;
Kolesnikov and Lampert, 2016; Reed et al., 2017;
Menick and Kalchbrenner, 2018). Further, it would
be interesting to explore more sophisticated ways of
incorporating the conditional information, such as us-
ing attention on the prior and conditional logits or
deeply embedding the conditional logits in the model.

Emilien Dupont, Suhas Suresha

References

Afonso, M. V., Bioucas-Dias, J. M., and Figueiredo,
M. A. (2011). An augmented lagrangian approach
to the constrained optimization formulation of imag-
ing inverse problems. IEEE Transactions on Image
Processing, 20(3):681–695.

Arjovsky, M., Chintala, S., and Bottou, L. (2017).
Wasserstein gan. arXiv preprint arXiv:1701.07875.

Ballester, C., Bertalmio, M., Caselles, V., Sapiro, G.,
and Verdera, J. (2001). Filling-in by joint interpo-
lation of vector fields and gray levels. IEEE trans-
actions on image processing, 10(8):1200–1211.

Barnes, C., Shechtman, E., Finkelstein, A., and Gold-
man, D. B. (2009). Patchmatch: A randomized cor-
respondence algorithm for structural image editing.
ACM Transactions on Graphics (ToG), 28(3):24.

Bellemare, M. G., Danihelka, I., Dabney, W., Mo-
hamed, S., Lakshminarayanan, B., Hoyer, S., and
Munos, R. (2017). The cramer distance as a solu-
tion to biased wasserstein gradients. arXiv preprint
arXiv:1705.10743.

Bertalmio, M., Sapiro, G., Caselles, V., and Ballester,
C. (2000). Image inpainting. In Proceedings of
the 27th annual conference on Computer graphics
and interactive techniques, pages 417–424. ACM
Press/Addison-Wesley Publishing Co.

Dahl, R., Norouzi, M., and Shlens, J. (2017). Pixel
recursive super resolution.

Dupont, E., Zhang, T., Tilke, P., Liang, L., and Bailey,
W. (2018). Generating realistic geology conditioned
on physical measurements with generative adversar-
ial networks. arXiv preprint arXiv:1802.03065.

Efros, A. A. and Freeman, W. T. (2001). Image quilt-
ing for texture synthesis and transfer. In Proceedings
of the 28th annual conference on Computer graphics
and interactive techniques, pages 341–346. ACM.

Garnelo, M., Schwarz, J., Rosenbaum, D., Viola, F.,
Rezende, D. J., Eslami, S., and Teh, Y. W. (2018).
Neural processes. arXiv preprint arXiv:1807.01622.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Ben-
gio, Y. (2014). Generative adversarial nets. In
Advances in neural information processing systems,
pages 2672–2680.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep
residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and
pattern recognition, pages 770–778.

Iizuka, S., Simo-Serra, E., and Ishikawa, H. (2017).
Globally and locally consistent image completion.
ACM Transactions on Graphics (TOG), 36(4):107.

Kim, H., Mnih, A., Schwarz, J., Garnelo, M., Eslami,
A., Rosenbaum, D., Vinyals, O., and Teh, Y. W.
(2019). Attentive neural processes. arXiv preprint
arXiv:1901.05761.

Kolesnikov, A. and Lampert, C. H. (2016). Pixelcnn
models with auxiliary variables for natural image
modeling. arXiv preprint arXiv:1612.08185.

Kwatra, V., Essa, I., Bobick, A., and Kwatra, N.
(2005). Texture optimization for example-based syn-
thesis. In ACM Transactions on Graphics (ToG),
volume 24, pages 795–802. ACM.

Li, H., Li, G., Lin, L., and Yu, Y. (2017).
Context-aware semantic inpainting. arXiv preprint
arXiv:1712.07778.

Liu, G., Reda, F. A., Shih, K. J., Wang, T.-C., Tao,
A., and Catanzaro, B. (2018). Image inpainting
for irregular holes using partial convolutions. arXiv
preprint arXiv:1804.07723.

Liu, Z., Luo, P., Wang, X., and Tang, X. (2015).
Deep learning face attributes in the wild. In Pro-
ceedings of International Conference on Computer
Vision (ICCV).

Menick, J. and Kalchbrenner, N. (2018). Generating
high fidelity images with subscale pixel networks
and multidimensional upscaling. arXiv preprint
arXiv:1812.01608.

Oord, A. v. d., Kalchbrenner, N., and Kavukcuoglu,
K. (2016). Pixel recurrent neural networks. arXiv
preprint arXiv:1601.06759.

Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T.,
and Efros, A. A. (2016). Context encoders: Fea-
ture learning by inpainting. In Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition, pages 2536–2544.

Ramachandran, P., Paine, T. L., Khorrami, P.,
Babaeizadeh, M., Chang, S., Zhang, Y., Hasegawa-
Johnson, M. A., Campbell, R. H., and Huang, T. S.
(2017). Fast generation for convolutional autoregres-
sive models. arXiv preprint arXiv:1704.06001.

Reed, S., Oord, A. v. d., Kalchbrenner, N., Col-
menarejo, S. G., Wang, Z., Belov, D., and de Freitas,
N. (2017). Parallel multiscale autoregressive density
estimation. arXiv preprint arXiv:1703.03664.

Shen, J. and Chan, T. F. (2002). Mathematical models
for local nontexture inpaintings. SIAM Journal on
Applied Mathematics, 62(3):1019–1043.

Song, Y., Yang, C., Lin, Z., Li, H., Huang, Q.,
and Kuo, C.-C. J. (2017). Image inpainting using
multi-scale feature image translation. arXiv preprint
arXiv:1711.08590.

Probabilistic Semantic Inpainting with Pixel Constrained CNNs

Telea, A. (2004). An image inpainting technique based
on the fast marching method. Journal of graphics
tools, 9(1):23–34.

van den Oord, A., Kalchbrenner, N., Espeholt, L.,
Vinyals, O., Graves, A., et al. (2016). Conditional
image generation with pixelcnn decoders. In Ad-
vances in Neural Information Processing Systems,
pages 4790–4798.

Xu, J. and Teh, Y. W. (2018). Controllable semantic
image inpainting. arXiv preprint arXiv:1806.05953.

Yang, C., Lu, X., Lin, Z., Shechtman, E., Wang, O.,
and Li, H. (2017). High-resolution image inpainting
using multi-scale neural patch synthesis.

Yeh, R., Chen, C., Lim, T. Y., Hasegawa-Johnson,
M., and Do, M. N. (2016). Semantic image inpaint-
ing with perceptual and contextual losses. arXiv
preprint arXiv:1607.07539.

Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X.,
and Huang, T. S. (2018a). Free-form image in-
painting with gated convolution. arXiv preprint
arXiv:1806.03589.

Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., and Huang,
T. S. (2018b). Generative image inpainting with
contextual attention.

Zhang, R., Isola, P., and Efros, A. A. (2016). Color-
ful image colorization. In European Conference on
Computer Vision, pages 649–666. Springer.

	Introduction
	Related Work
	Review of PixelCNNs
	Pixel Constrained CNN
	Model Inputs
	Likelihood Maximization
	Random Masks
	Sampling

	Experiments
	Inpaintings
	Qualitative Evaluation
	Quantitative Evaluation
	Inpainting Likelihood
	Human survey

	Pixel Probabilities

	Scope and Limitations
	Conclusion

