
Nicolas Durrande, Vincent Adam, Lucas Bordeaux, Stefanos Eleftheriadis and James Hensman

Supplementary materials

A Reverse mode sensitivities derivations

We are interested in reverse mode differentiation. That is, we propagate the gradient backward in the chain of
operations from the scalar objective to the upstream parameters.

For a chain of operations X → Y → · · · → c (with X,Y matrices), we have

dc =
∑
ij

∂c

∂Yij
dYij

Noting Ȳ =
[
∂c
∂Yij

]
, we can rewrite this as dc = Tr(Ȳ T dY ). When doing reverse mode differentiation, we

propagate the errors from the objective. From the mapping from X → Y , we figure out matrices LX and RX
such that dY = LX(dX)RX . It follows that dc = Tr(Ȳ T LX(dX)RX) and, after a rotation in the trace, we can
then identify X̄T = RX Ȳ

TLX .

A.1 Outer product m, v → mvT

o = mvT , so do = dmvT +mdvT

For fixed m: do = m dvT so

v̄ = ōTm.

For fixed v: do = dmvT so

m̄T = vT ōT ,

m̄ = ōv.

A.2 Product BX1 , BY2 → BX1 B
Y
2

X and Y are both either T (for transpose) or 1 (for identity). This allows to write all cases of argument
transposition at once.
P = BX1 B

Y
2 , so dP = d(BX1 )BY2 +BX1 d(BY2 ).

For fixed BX1 : dP = BX1 d(BY2 ) so

B̄Y T2 = P̄TBX1 = P(P̄T , BX1 ).

For fixed BY2 : dP = d(BX1 )BY2 so

B̄XT1 = BY2 P̄
T = P(BY2 , P̄

T ).

A.3 Solve LX , BY → L−XBY

X and Y are as defined in the product section.

S = L−XBY , so

dS = d(L−X)BY + L−Xd(BY )

= −L−Xd(LX)L−XBY + L−Xd(BY ).

For fixed BY : dS = −L−Xd(LX)L−XBY so L̄XT = −L−XBY S̄TL−X

L̄XT = −L−XBY S̄TL−X

= −(L−XBY )(L−XT S̄)T

= −P(S(LX , BY ),S(LXT , S̄)T ).
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For fixed LX : dS = L−Xd(BY ) so

B̄Y
T

= S̄TL−X

B̄Y = L−XT S̄

= S(LXT , S̄).

A.4 Product B, v → Bv

p = Bv, so dp = dBv +Bdv.

For fixed v, dp = dBv, so

B̄T = vp̄T

B̄ = O(p̄, vT ).

For fixed B, dp = Bdv, so

v̄T = p̄TB

v̄ = P(BT , p̄).

A.5 Solve L, v → L−1v

u = L−1v, so

du = d(L−1v)

= d(L−1)v + L−1dv

= −L−1(dL)L−1v + L−1dv.

For fixed L, du = L−1dv, so

v̄T = ūTL−1

= S(LT , u)T .

For fixed v, du = −L−1(dL)L−1v, so

L̄T = −L−1vūTL−1

= P(S(L, v),S(LT , u)T ).

B Algorithms

We report algorithms operating on a dense representation of the banded matrices (the usual i, j indexing). In
practice these only read and write into the band of the matrices involved as input or output. A derivation using
the (diag, column) indexing would reflect this fact more clearly but blurs the inner working of the algorithms. In
a similar spirit, our algorithms sometimes include avoidable instantiations of temporary variables that are kept for
clarity. For reverse mode differentiation we refer the reader to (Giles, 2008) from which we follow the notation.
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Algorithm 1 Cholesky algorithm for banded matrices.
Input : Q: an n× n symmetric positive definite matrix with l lower sub-diagonals.
Output : L: an n× n lower triangular matrix with l lower sub-diagonals.

Initialize L with zeros
for i in 0 to n− 1 do
for j in max(i− l, 0) to i+ 1 do

m = max(i− l, j − l, 0)
s = sum(L[i,m :j] ∗ L[j,m :j])
if i==j then
L[i, j] = sqrt(Q[i, j]− s)

else
L[i, j] = (Q[i, j]− s)/L[j, j]

end
end

end

Algorithm 2 Reverse mode differentiation for the Cholesky operator for banded matrices.
Input : L: the n× n Cholesky factor of Q, with l lower sub-diagonals.

L_b: the n× n reverse mode derivatives of L with respect to the objective function.
Output : Q_b: the n× n reverse mode derivatives of Q with respect to the objective function.

Initialize Q_b with zeros
for i in n-1 downto 0 do
j_stop = max(i− l, 0)
for j in i to j_stop do
if j == i then

Q_b[i, i] = 1/2 ∗ L_b[i, i]/L[i, i]
else

Q_b[i, j] = L_b[i, j]/L[j, j]
L_b[j, j]− = L_b[i, j] ∗ L[i, j]/L[j, j]

end
for l in j-1, in j_stop do

L_b[i, l]− = Q_b[i, j] ∗ L[j, l]
L_b[j, l]− = Q_b[i, j] ∗ L[i, l]

end
end

end
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Algorithm 3 Algorithm for the inverse of a matrix from its Cholesky decomposition.
Input : L: an n× n lower triangular matrix with l lower sub-diagonals.
Output : S: an n× n lower triangular matrix with l lower sub-diagonals of [LLT ]−1.

Initialize Sym as a (symmetric) n× n banded matrix of both lower and upper bandwidth l
vec = diag(L)
U = transpose(L/vec)
for j in n− 1, downto 0 do
for i in j downto max(j − l + 1, 0) do

Sym[i, j] = −sum(U [i, i+ 1 : i+ l]Sym[i+ 1 : i+ l, j])
Sym[j, i] = Sym[i, j]
if i==j then

Sym[i, i]+ = 1/(vec[i])2

end
end

end
S = lower_band(Sym)
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Algorithm 4 Reverse mode differentiation of the inverse from Cholesky.
Input : L: L: the n× n Cholesky factor of Q, with l lower sub-diagonals.

S: The n× n output of the subset inverse from Cholesky with l lower sub-diagonals.
bS: the n× n reverse mode derivatives of B with respect to the objective function.
Note that both S and bS should be treated as symmetric banded matrices,
with bS copied locally (modified in place).

Output : bL: n× n the reverse mode derivatives of L with respect to the objective function.

Initialize bU as a banded matrix similar to U , filled with zeros.
Initialize bvec_inv_2 as a vector of size n filled with zeros.

vec = diag(L)
U = transpose(L/vec)

for j in 0 to n− 1 do
for i in max(0, j − k + 1) to j do

if i == j then
bvec_inv_2[i]+ = bS[i, i]

end
% Grad of: S[j, i] = S[i, j]
tmp = bS[j, i]
bS[j, i] = 0
bS[i, j]+ = tmp

% Grad of: S[i, j] = −sum(U [i, i+ 1 : i+ k]S[i+ 1 : i+ k, j])
bU [i, i+ 1 : i+ k]− = S[i+ 1 : i+ k, j] ∗ bS[i, j]
bS[i+ 1 : i+ k, j]− = U [i, i+ 1 : i+ k] ∗ bS[i, j]
bS[i, j] = 0

end
end

% Grad of: U = transpose(L/vec)
bL = transpose(bU)/vec
% Grad of 1/vec2
bvec = −2 ∗ bvec_inv_2/vec3
% Grad of: 1/vec
bvec− = sum(transpose(bU)L, 0)/(vec2)
% Grad of: vec = diag(L)
bL+ = diag(bvec)

Algorithm 5 Solve of a lower triangular banded matrix by an arbitrary banded matrix.
Input : L: An n× n, lower-triangular banded matrix with l sub-diagonal

R: An n× n banded matrix with u upper-diagonals
Output : O: An n× n with l lower and u upper sub-diagonals of L−1R.
for k in -u to l do

for i in min(n+ k − 1, n− 1) downto max(0, k) do
r = if (i, i− k) ∈ band(R) then R[i, i− k] else 0
dot_product = dot(L[i, :], O[:, i− k])
O(i, i− k) = (r − dot_product)/L(i, i)

end
end
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C Pseudocode of algorithms

We here provide details on how we used our operators for banded matrices in the algorithms we proposed.
Implementation details are also given for the pre-existing algorithms we used as comparisons.

C.1 log likelihood evaluation (for HMC)

In section 3.2, we explained how to perform gradient based MCMC in GMRF models. Algorithm 6 gives some
details on how we evaluate the likelihood given sampled parameters θ and whitened latent v.

Algorithm 6 Log Likelihood evaluation
Input : white noise sample v: vector of length n

observations Y : vector of length n
precision Q: n× n symmetric matrix with l sub-diagonals
parameter θ and density p(θ)

Output : Log likelihood log p(v, θ, Y )

% Cholesky factor of Q
LQ ← C(Q) % n× n, l sub-diagonals
% Construct observation sample
F ← S(LTQ, v)
% Compute log-likelihood
log p(v, θ, Y )← log p(v) + log p(θ) +

∑n
i=1 log p(yi|θ, Fi).

return log p(v, θ, Y )

C.2 Variational Inference Objective

In section 3.3, we introduced a novel algorithm to perform variational inference in GMRF models using a precision
parameterised Gaussian variational distribution. Algorithm 7 provides some details of how we use our operators
for banded matrices to evaluate the variational lower bound to the marginal likelihood.

Algorithm 7 Variational Inference objective evaluation.
Input : prior parameters:

mp: vector of length n
Lp: n× n lower triangular matrix with lp sub-diagonals
variational parameters:
mq: vector of length n
Lq: n× n lower triangular matrix with lq sub-diagonals
observations Y : vector of length n

Output : variational objective L
% Compute marginal variance
σ2
F ← diag[I(LF )].

% Evaluate KL divergence
KL← 1

2

(
tr(I(Lq)P(Lp, L

T
p )) + 2

∑
i(log[Lq]ii − log[Lp]ii) + ||P(LTp ,mp −mq)||2 − n

)
% Evaluate variational expectations
V E ←

∑n
i=1 Eq(Fi)=N (µF,i,σ2

F,i)
log p(Yi|Fi)

% Return variational lower bound
L ← V E −KL
return L

C.3 Marginal Likelihood

In section 3.1, we explained how to efficiently compute marginal likelihood compuation in conjugate GMRFs with
partial observations. In Algorithm 8, we give further details about how we use our operators for banded matrices
to achieve these efficient compuations.
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The generative model is the following: latent vector f has a zero mean multivariate Gaussian prior with precision
Q, observation model is additive white noise with variance τ2.

Algorithm 8 Marginal Likelihood
Input : parameter θ

prior precision Q: n× n symmetric matrix with l sub-diagonals
observations Y : vector of length n
indicator matrix E: matrix of size n×N

Output : log p(Y |θ)
% Cholesky factorization of the posterior precision
L← C(Q+ τ−2ETE) % note that ETE is diagonal
% Cholesky factorization of the prior precision
L′ ← C(Q)
% Evaluation of the Marginal likelihood
R← S(L,ETY )
log p(Y |θ)← −n2 log(2π)− log |L|+ log |L′| − 1

2τ2Y
TY + 1

2τ4R
TR

return log p(Y |θ)

C.4 Classical Kalman filter recursions

In section 5.2, we compared our implementation of Gaussian process regression (for kernels have a state-space
representation) using our operators to traditional implementations using Kalman filtering. In this section and
summarized in Algorithm 9 are derivations of the classic Kalman filter recursions.

We implement the filtering recursions for a linear state-space model with state dimension d and observation
dimension e defined as

Ft ∼ N (Ft;AtFt−1 + bt;Qt), Yt ∼ N (Yt;HFt + c,R),

with F0 ∼ N (F0;µ0,Σ0). For a sequence of T observations stacked into Y T = [Y T1 , . . . , Y
T
T ] ∈ RTe, the aim

is to evaluate p(Y ) which can be expressed in terms of conditionals densities p(Y ) =
∏
t p(Yt|Y1...t−1). These

conditional densities can be obtained after one pass of the Kalman filtering recursions as follows:

Define p(Ft|Y1...t−1) = N (Ft;µt,Σt). We update the belief on Ft after observing Yt:

p(Ft|Y1...t) = p(Ft|Y1...t−1, Yt)
∝ p(Yt|Ft, Y1...t−1)p(Ft|Y1...t−1)

∝ p(Yt|Ft)p(Ft|Y1...t−1)

= N (Ft; µ̄t, Σ̄t)

with

Σ̄t = (Σ−1t +HTR−1H)−1

= Σt − ΣtH
T (R+HΣtH

T )−1HΣt

= (I −KtH)Σt, Kt = ΣtH
T (R+HΣtH

T )−1

µ̄t = Σ̄t(Σ
−1
t µt +HTR−1(Yt − c))

= (I −KtH)µt +Kt(Yt − c).

Kt corresponds to the Kalman gain. Then we predict one step ahead:

p(Ft+1|Y1...t) =

∫
dFtp(Ft+1|Ft)p(Ft|Y1...t)

= N (Ft;µt+1,Σt+1),
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so

Σt+1 = At+1Σ̄tA
T
t+1 +Qt+1

µt+1 = At+1µ̄t + bt+1.

In the end, for the marginal likelihood computation, we need:

p(Yt|Y1...t−1) =

∫
dFtp(Yt|Ft)p(Ft|Y1...t−1)

= N (Yt;Hµt, HΣtH
T +R).

Algorithm 9 Kalman Filtering
Input : parameters θ = [At, bt, Qt, H, c, R], Observations Y
Output : log p(Y |θ)
L← 0
for t = 1 . . . T do
% incorporation of observation Yt
Kt ← ΣtH

T (R+HΣtH
T )−1

Σ̄t ← (I −KtH)Σt
µ̄t ← (I −KtH)µt +Kt(Yt − c)
% prediction one step ahead
Σt+1 ← At+1Σ̄tA

T
t+1 +Qt+1

µt+1 ← At+1µ̄t + bt+1

% evaluation of the log conditional log p(Yt|Y1...t−1)
L← L+ logN (Yt;Hµt, HΣtH

T +R)
end for
return L

C.5 Gaussian process regressiong with banded precision

Our implementation of Gaussian process regression, for the experiment of section 5.2, treats the chain of latent
states FT = [FT0 , ..., F

T
T ] ∈ R(T+1)d and observations Y T = [Y T1 , ..., Y

T
T ] ∈ RTe as a big multivariate normal

distribution p(Y, F ) that factorises into a prior and a likelihood as p(Y, F ) = p(Y |F )p(F ). Both terms can be
seen as multivariate normal densities on F , albeit a possibly degenerate one for p(Y |F ). They can be expressed
in terms of their natural parameters:

p(F ) = N (F ; η0,Λ0)

p(Y |F ) = N (F ; η1,Λ1),

where only η1 depends on the data Y .

The density of a multivariate normal distribution with natural parameterisation η,Λ is:

N (F ; η,Λ) = exp

(
a(η,Λ) + ηTF +

1

2
FTΛF

)
a(η,Λ) = −1

2

(
− log |Λ|+ Td log 2π + ηTΛ−1η

)
Hence the joint over latent F and observations Y is

p(F, Y ) = N (F, η0,Λ0)N (F, η1,Λ1)

= exp (a(Λ0, η0) + a(Λ1, η1)− a(Λ2, η2))N (F ; η2,Λ2)

with (η2,Λ2) = (η0,Λ0) + (η1,Λ1) the parameters of the Gaussian posterior on F .
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Marginalizing over F provides the log marginal

log p(Y ) = a(Λ0, η0) + a(Λ1, η1)− a(Λ2, η2).

Due to the structure of the model, the prior and likelihood terms can be further simplified:
Since p(F ) = p(F0)

∏
t p(Ft|Ft−1), we have |Λ0| = |Σ0|−1Πt|Qt|−1.

Since p(Y |F ) =
∏
t p(Yt|Ft) and noting p(Yt|Ft) = N (Ft;ut, R), we have |Λ1| = |R|−T and ηT1 Λ−11 η1 =

∑
t u

T
t Rut.

All the other log determinants and quadratic terms are expressed from the Cholesky factor Cj of Λj as log |Λj | =
2 log |Cj | = 2

∑
i log[Cj ]ii and ηTj Λ−1j ηj = ||C−1j ηj ||2.

So we can rewrite the likelihood as

log p(Y ) =
1

2

(
Td log 2π − log |Σ0R

TΠtQt|+ 2 log |C2|
)

+
1

2
(||C−10 η0||2 +

∑
t

uTt Rut − ||C−12 η2||2)

Algorithm 10 Gaussian process regression (using banded matrices)
Input : parameters θ = [A1...T , b, Q1...T , H, c, R],

observation Y : vector of length n
Output : log p(Y |θ)
% building the prior and likelihood natural parameters [see Grigorievskiy et al 2017]
η0,Λ0 ← f(A1...T , b, Q1...T )
η1,Λ1 ← g(H, c,R, Y )
% Cholesky factorization of the prior and posterior precisions
C0 ← C(Λ0)
C2 ← C(Λ0 + Λ1)
% evaluation of the log-likelihood
log p(Y )← 1

2

(
Td log 2π − log |Σ0R

TΠtQt| − 2 log |C2|+ ||C−10 η0||2 +
∑
t u

T
t Rut − ||C−12 η2||2

)
return L

The bottleneck in computational terms is the Cholesky factorization which scales as O(T l3), because Λpost is a
banded precision of length T l and bandwidth 2l.

C.6 Gaussian process regression

In section 5.2, we compare different implementations of Gaussian process regression to the naive one that builds a
dense covariance matrix K for the latent. For this latter case, the marginal likelihood is evaluated as:

log p(Y |θ) = −1

2
Y T (K + σ2I)−1Y − 1

2
log |K + σ2I| − N

2
log 2π

Algorithm 11 provides details on how we implemented it in practice.

Algorithm 11 Gaussian process regression Likelihood
Input : parameter θ

observation Y : vector of length n
Output : log p(Y |θ)
% Cholesky factorization of the posterior covariance
L← Cholesky(K + σ2I)
% marginal likelihood evaluation
log p(Y |θ)← − 1

2 ||L
−1Y ||2 −

∑
i log |Lii| − N

2 log 2π
return log p(Y |θ)
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