On Structure Priors for Learning Bayesian Networks

Ralf Eggeling1,2 \hspace{1cm} Jussi Viinikka1
1Department of Computer Science
University of Helsinki, Finland
2Department of Computer Science
University of Tübingen, Germany

Aleksis Vuoksenmaa1 \hspace{1cm} Mikko Koivisto1

Abstract

To learn a Bayesian network structure from data, one popular approach is to maximize a decomposable likelihood-based score. While various scores have been proposed, they usually assume a uniform prior, or “penalty,” over the possible directed acyclic graphs (DAGs); relatively little attention has been paid to alternative priors. We investigate empirically several structure priors in combination with different scores, using benchmark data sets and data sets generated from benchmark networks. Our results suggest that, in practice, priors that strongly favor sparsity perform significantly better than the uniform prior or even the informed variant that is conditioned on the correct number of parents for each node. For an analytic comparison of different priors, we generalize a known recurrence equation for the number of DAGs to accommodate modular weightings of DAGs, a result that is also of independent interest.

1 INTRODUCTION

Learning a graphical model consists of learning the model structure and inferring the model parameters (Koller and Friedman 2009). It is popular to formulate structure learning as a model selection problem, which is solved by some model selection criterion. Common criteria take a form of a scoring function that associates every admissible structure a score; one selects a structure that maximizes the score.

To learn the structure of a Bayesian network (BN), namely a directed acyclic graph (DAG), various scoring functions have been derived under different statistical paradigms. For instance, taking a Bayesian approach, every DAG G is assigned a prior probability $P(G)$, the relationship to data set D is captured by the marginal likelihood $P(D|G)$, and the score is the posterior probability $P(G|D)$ (or its monotone transformation) obtained by the Bayes rule. The marginal likelihood is an average over a parameter prior, different choices of which result in different scoring functions, such as the Bayesian Dirichlet (BD) family for categorical data (Heckerman et al. 1995). The Bayesian Information Criterion (BIC) (Schwarz 1978), in turn, is a large-sample approximation of the marginal likelihood; the BIC score also has an interpretation in the (two-part) minimum description length (MDL) framework (Rissanen 1978). Likewise, the more recent fNML and qNML scores (Silander et al. 2010; 2018), which approximate the so-called normalized maximum likelihood (Barron et al. 1998), can be viewed as substitutes to the marginal likelihood.

In contrast to the large variety in instantiating, approximating, or replacing the marginal likelihood $P(D|G)$, the structure prior $P(G)$ has received less attention in the literature. While some alternative forms of structure priors have been proposed (Heckerman et al. 1995, Friedman and Koller 2003, Angelopoulos and Cussens 2008), there has been no systematic empirical comparison and none of the priors has reached universal acclaim. Indeed, the commonly employed scoring functions simply ignore the structure prior; in Bayes scores this is equivalent to assigning a uniform prior. A potential concern with a uniform prior is that it assigns a large probability mass on complex (i.e., dense) structures, for they vastly outnumber simpler structures. While the effect of the prior vanishes as the size of the data grows (Koller and Friedman 2009; p. 804), one might benefit from preferring simpler models when there are little data.

This paper investigates the role of structure priors in score-based structure learning of BNs. Unlike some previous work, we do not address the issues of eliciting and expressing a modeller’s, possibly sophisticated, background knowledge (Angelopoulos and Cussens
2 MODULAR PRIORS

This section gives a brief review of some structure priors presented in the literature. We exclusively focus on so-called modular priors, which are composed as a product of local terms. This sacrifice in generality is motivated by the fact that modular priors cover a large class of priors. Furthermore, modularity is needed for obtaining a decomposable scoring function, a requirement of most state-of-the-art learning algorithms. (See Supplement for the definition and examples of decomposable scoring functions.)

We will consider graphs on a node set \(\{1, 2, \ldots, n\} \), denoted by \([n]\) for short, for some natural number \(n \). If \(G \) is a DAG on \([n]\), we set \(G_i \) for the set of parents of \(i \) in \(G \), i.e.,

\[
G_i = \{ j : G \text{ contains an arc from } j \text{ to } i \}.
\]

For brevity, we usually call \(|G_i| \) the indegree rather than the number of parents of \(i \). We denote by \(\mathcal{G}_n \) the set of all DAGs on \([n]\) and by \(\mathcal{G}_n^d \) the set of DAGs \(G \in \mathcal{G}_n \), whose maximum indegree is at most \(d \), i.e., \(|G_i| \leq d \) for all \(i \in [n] \).

We say a probability distribution \(P \) on \(\mathcal{G}_n \) is modular if, for each \(i \in [n] \), there exists a set function \(\rho_i \), from the subsets of \([n] \) \(\{i\} \) to nonnegative reals such that

\[
P(G) = c \prod_{i=1}^{n} \rho_i(G_i) \quad \text{for all } G \in \mathcal{G}_n,
\]

with some normalizing constant \(c \). We call the set functions factors. The reader may note that introducing the constant \(c \) is redundant in the definition, for the constant could be absorbed into the factors. However, the formulation is convenient, as it allows us to specify the factors without the trouble of ensuring that the normalizing constant equals unity.

Even if modular priors can express node-specific preferences, such as inclusion or exclusion certain nodes as parents, there is an interest in general-purpose priors that treat all nodes uniformly. Then a prior is specified by giving the maximum indegree \(d \) and an expression of \(\rho_i \) that only depends on the indegree \(s := |G_i| \). Table 1 collects several forms of priors proposed in the literature; we assign each prior a name that captures some distinctive characteristic of the prior.

Some remarks on the structure priors listed in Table 1 are in order; see Angelopoulos and Cussens (2008) for historical notes, some variants, and discussion. Clearly, \textit{Unif} is a special case of \textit{Edge} with \(\beta = 1 \). Equivalent to \textit{Edge} is the random graph model that contains an arc from node \(i \) to node \(j \) with probability \(p \) independently for all \((i, j) \), however, disregarding graphs with a directed cycle (Madigan and Raftery 1994); the parameters are related by \(\beta = p/(1 - p) \). Buntine (1991) and Cooper and Herskowitz (1992) considered variants of the \textit{Edge} model, where the selection of arcs is conditional on a given node ordering. Friedman and Koller (2003) introduced the prior we...
Table 1: Forms of modular structure priors over DAGs on \(n \) nodes.

<table>
<thead>
<tr>
<th>Name</th>
<th>Factor, indegree (d)</th>
<th>Notes</th>
<th>Exemplary reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unif</td>
<td>1</td>
<td>Uniform over DAGs</td>
<td>—</td>
</tr>
<tr>
<td>Edge</td>
<td>(\beta^s)</td>
<td>Equivalent to the random graph model (p^s(1-p)^{n-1-s})</td>
<td>Heckerman et al. (1995)</td>
</tr>
<tr>
<td>Fair</td>
<td>(1/(s-1))</td>
<td>Balances the probabilities of different indegree</td>
<td>Friedman and Koller (2003)</td>
</tr>
<tr>
<td>Data</td>
<td>(\exp[-(1+\tau)^s \ln N])</td>
<td>Depends on the data size (N); by default (\tau = 0.5)</td>
<td>Pensar et al. (2016)</td>
</tr>
</tbody>
</table>

dub Fair similarly conditionally on a node ordering. When averaged over all orderings it results in a prior that is not modular but order-modular (Koivisto and Sood 2004). The prior stems from the idea of “fair” allocation of probability mass to different numbers of parents, whence the name. Apparently, Fair has rarely been included in empirical studies on score-and-search algorithms; an exception is a recent work on local structures (i.e., context-specific independence) by Talvitie et al. (2018). The Data prior is introduced in another work on local structures (Pensar et al. 2016). Unlike the other priors, Data is not a Bayesian prior as it depends on the sample size \(N \), whence the name.

3 SEARCH SPACE PENALTY

Not all state-of-the-art software packages (Scutari 2010) allow the user to specify a structure prior; they offer a limited number of pre-implemented scoring functions, which assume a uniform prior. They do allow the user to control the maximum indegree, however. We next show how that enables implementing a nontrivial prior we call search space penalty (SSP).

Recall that we denote by \(\mathcal{G}_n^d \) the set of DAGs on \([n] \) with maximum indegree at most \(d \). Clearly, these potential search spaces are nested:

\[
\mathcal{G}_n^0 \subset \mathcal{G}_n^1 \subset \cdots \subset \mathcal{G}_n^{n-1} = \mathcal{G}_n.
\]

For a DAG \(G \in \mathcal{G}_n \), let \(d(G) \) denote the maximum indegree of \(G \). Now, define a prior \(P_{SSP} \) by letting the probability of \(G \) be inversely proportional to the size of the smallest search space \(\mathcal{G}_n^d \) that contains \(G \):

\[
P_{SSP}(G) \propto 1/|\mathcal{G}_n^{d(G)}|.
\]

In contrast to the variants discussed in the previous section, this structure prior is not modular.\(^1\) However, the non-modularity of the prior does not cause a computational obstacle: finding a DAG \(G \) that maximizes a scoring function \(f(G) \) under \(P_{SSP}(G) \) reduces to maximizing the score under the uniform prior separately for each possible maximum indegree \(d \):

\(^1\)Alternatively, but with little difference in practice, one could consider a prior that is proportional to the inverse of \(|\mathcal{G}_n^{d(G)} \setminus \mathcal{G}_n^{d(G)-1}| \). Neither this prior is modular.

Algorithm Search Space Penalization

S1 For each \(d = 0, 1, \ldots, n-1 \), let

\[
\hat{G}(d) \in \arg \max \{ f(G) : G \in \mathcal{G}_n^d \}.
\]

“Find an optimal DAG for each subclass.”

S2 Let

\[
d \in \arg \max \{ f(\hat{G}(d))/|\mathcal{G}_n^d| : d = 0, 1, \ldots, n-1 \}.
\]

“Penalize large subclasses.”

S3 Output \(\hat{G}(d) \).

We get the following (the proof is left to the reader):

Proposition 1. Search Space Penalization outputs a DAG \(G \) that maximizes \(P_{SSP}(G)f(G) \).

From an MDL (Rissanen 1978) point of view, the SSP prior corresponds to encoding a DAG \(G \) by first encoding the maximum indegree \(d(G) \) with about \(\log_2 n \) bits, and then encoding \(G \) using about \(\log_2 |\mathcal{G}_n^{d(G)}| \) bits.

The algorithm can be slower than the standard procedure by a factor of \(n \) in the worst case, a seemingly significant additional computational burden. However, in many practical settings, the complexity of step S1 is dominated by the time needed to search through the largest search space; and, furthermore, for that largest search space one could set the maximum indegree \(d \) to a value much smaller than \(n-1 \), e.g., \(d = 5 \).

It remains to show how we obtain the numbers \(|\mathcal{G}_n^d| \). In the next section we give a recurrence (Corollary 4) that enables efficient computation of these numbers.

SSP readily applies for any baseline scoring function using exact or heuristic search algorithms. We also have the following result concerning equivalent DAGs, i.e., DAGs that encode exactly the same set of conditional independence relations:

Proposition 2. SSP assigns the same score to equivalent DAGs, if the baseline scoring function does so.

We omit the proof, which is straightforward and uses the fact that equivalent DAGs have the same maximum indegree (Chickering 1995; Thm. 9).
4 ANALYTICAL RESULTS

A modular prior can express, separately for each node i, which of the possible parents are a priori preferred as the actual parents of the node. The expression captured by the corresponding factor ρ_i in the modular function is, however, only approximate because the parents of different nodes are not independent: the actual parents must yield an acyclic graph. For this reason, e.g., a constant factor results in a non-uniform prior over parent sets for each node. We next investigate more closely the relationship of the factors and the resulting marginal prior probabilities.

We focus on a setting that is more special than the framework of modular priors, yet general enough to cover all the concrete priors listed in the previous section. Specifically, we assume that factors are symmetric in the sense that they are invariant under relabelling of the nodes. Equivalently, we assume that for each node i and potential parent set G_i we have that

$$\rho_i(G_i) = w(|G_i|),$$

for some function w. It is easy to see that the factors listed in the previous section indeed are of this form.

How does a given weight function w map to a prior $P(|G_i|)$ on the indegree of node i? Due to the symmetry in w, these distributions are identical for all i. We have that, for $r = 0, 1, \ldots, n - 1$, the probabilities $P(|G_i| = r)$ are proportional to the weighted sum of DAGs G where $|G_i| = r$. More precisely, by defining

$$Z_n(w) = \sum_{G \in \mathcal{G}_n} w(G) \text{ and } Z_{n,r}(w) = \sum_{G \in \mathcal{G}_n} w(G),$$

where $G \in \mathcal{G}_n$ are modular distributions, we have that $P(|G_i| = r) = \binom{n-1}{r} Z_{n,r}(w)/Z_n(w)$.

Write $S_r := \sum_{s=0}^{d} \binom{d}{s} w(s).$ We find the following:

Theorem 3 (Recurrence). Let $Z_0 = Z_{0,0} = 1$ and $Z_{0,r} = 0$ for $r \geq 1$. For all $n \geq 1$ we have that

$$Z_n = \sum_{k=1}^{n} (-1)^{k-1} \binom{n}{k} S_k Z_{n-k},$$

$$Z_{n,r} = \sum_{k=1}^{n-r} (-1)^{k-1} \binom{n-r-1}{k-1} w(r) S_{k-1} Z_{n-k}$$

$$+ \sum_{k=1}^{n-r-1} (-1)^{k-1} \binom{n-r-1}{k} S_k Z_{n-k,r}.$$

The proof (Supplement) uses the inclusion–exclusion method (Robinson 1973, Stanley 1973) and exploits the symmetry in w.

Corollary 4. Let $a_n(d) := |\mathcal{G}_n^d|$ be the number of labelled DAGs with $n \geq 1$ nodes and maximum indegree $d \geq 0$. Let $a_0(d) = 1$. We have that

$$a_n(d) = \sum_{k=1}^{n} (-1)^{k-1} \binom{n}{k} \left(\sum_{s=0}^{d} \binom{n-s-1}{k-1} \right)^k a_{n-k}(d).$$

Proof. Apply Theorem 1 for the function w defined by $w(s) = 1$ if $s \leq d$ and $w(s) = 0$ otherwise.

The recurrence formulas provide us with a means for efficient computation of the marginal prior distributions even for large numbers of nodes n. If the number of parents is bounded above by d (i.e., $w(s)$ vanishes for $s > d$), then the values $P(|G_i| = r)$, for $0 \leq r \leq d$, can be computed with $O(n^2d)$ arithmetic operations.

Figure 1 shows the marginal distribution of the number of parents under different modular priors, for $n = 32$ and $n = 128$ nodes with maximum indegree $d = 5$ and with unbounded indegree. We see that Unif yields a non-uniform marginal. If we set the maximum indegree to 5, then having five parents is more probable than having zero parents; for $n = 32$ the ratio is about 10 and for $n = 128$ about 100. In contrast, if the indegree is unbounded, then the distribution is nearly uniform up to around $n/2$ parents, after which the probabilities rapidly decrease close to zero. Indeed, if we wished to support large parent sets, we should assign larger weights to larger numbers of parents; this is demonstrated in Fig. 1 by the Fact prior.

However, it is not possible to choose the factors so that the distribution would be exactly uniform:

Proposition 5. For every modular distribution $P(G)$ on \mathcal{G}_n with symmetric factors, the distribution $P(|G_i|)$ is non-uniform on $\{0, 1, \ldots, n-1\}$ for each node i.

The proof, by the probabilistic method (Supplement), is based on the observation that a uniform distribution would imply existence of a DAG with so a large average number of parents that it contradicts acyclicity.

The rest of the priors, Edge, Fair, and Data, favor smaller numbers of parents. Under Data, five (or more) parents is several orders of magnitude less probable than zero or one parent. Edge is sensitive to the product of β and n: if the product is large (say, at least 10), the prior favors larger indegrees, up to around five, whereas if it is small, the prior renders larger indegrees very unlikely. Fair differs from the others in that it exhibits a mild preference for smaller indegrees in all scenarios. In summary, the priors Edge, Fair, and Data are similar in that they assign a relatively large probability to the smallest indegrees, from 0 to 3, unlike Unif; however, at larger indegrees the priors differ from each other significantly.
Ralf Eggeling, Jussi Viinikka, Aleksis Vuoksenmaa, Mikko Koivisto

Figure 1: Probability distribution of the number of parents of a fixed node under different modular structure priors. In the Data prior the data size \(N \) is set to 200. The Fact prior is defined by letting \(w(s) = s! \).

5 EMPIRICAL STUDIES

We investigate the practical effect of structure priors on structure learning by using both benchmark networks and real data. For searching through the space of DAGs, we generally prefer a globally optimal approach due to superior performance (Malone et al. 2015), but also employ a heuristic search algorithm when the network size demands it (Section 5.5).

Unless stated explicitly otherwise, we use throughout this section as baseline scoring function the BDeu score with an equivalent sample size of 1, which is despite recent criticism (Suzuki 2017) one of the most commonly used scoring functions. For structure prior Edge, we choose \(\beta = 0.1 \), since it performed best in preliminary studies, whereas for Data, we follow Pensar et al. (2016) and set \(\tau = 0.5 \).

In Sections 5.1–5.4, we evaluate structure priors based on four popular benchmark networks of a size that allows finding a globally optimal DAG (Table 2), under a maximum indegree of 5. For each network and sample size we generate ten data sets. For all data sets, we then learn a DAG for each method, i.e., for each combination of baseline score and structure prior. We compute all local scores using bene (Silander and Myllymäki 2006), add the penalties arising from the structure priors, and compute the globally optimal DAG using GOBNILP (Cussens 2011, Bartlett and Cussens 2013). For each resulting DAG, we compute the structural Hamming distance (SHD) of Tsamardinos et al. (2006) to the ground truth and average the SHDs for each method over the ten independent samples.

5.1 Structure Priors for BDeu

First, we compare the effect of the different structure priors using BDeu as scoring function (Fig. 2). All non-uniform variants improve on Unif when the sample size is small in relation to the number of variables, which confirms that the BDeu score is indeed unsuitable for relatively small data sets. We also observe that Fair, Data, and Edge perform better than SSP and similar in direct comparison, which is in agree-

Table 2: Benchmark networks used in this study. MaxIn is the maximum indegree, Param is the number of free parameters of the network, and Opt indicates whether the search guarantees global optimality.

<table>
<thead>
<tr>
<th>Network</th>
<th>Nodes</th>
<th>Arcs</th>
<th>MaxIn</th>
<th>Param</th>
<th>Opt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Child</td>
<td>20</td>
<td>25</td>
<td>2</td>
<td>230</td>
<td>Yes</td>
</tr>
<tr>
<td>Insurance</td>
<td>27</td>
<td>52</td>
<td>3</td>
<td>984</td>
<td>Yes</td>
</tr>
<tr>
<td>Water</td>
<td>32</td>
<td>66</td>
<td>5</td>
<td>10083</td>
<td>Yes</td>
</tr>
<tr>
<td>Alarm</td>
<td>37</td>
<td>46</td>
<td>4</td>
<td>509</td>
<td>Yes</td>
</tr>
<tr>
<td>Hailfinder</td>
<td>56</td>
<td>66</td>
<td>4</td>
<td>2656</td>
<td>No</td>
</tr>
<tr>
<td>Hepar2</td>
<td>70</td>
<td>123</td>
<td>6</td>
<td>1453</td>
<td>No</td>
</tr>
<tr>
<td>Win95pts</td>
<td>76</td>
<td>112</td>
<td>7</td>
<td>574</td>
<td>No</td>
</tr>
<tr>
<td>Andes</td>
<td>223</td>
<td>338</td>
<td>6</td>
<td>1157</td>
<td>No</td>
</tr>
</tbody>
</table>

Figure 2: Effect of structure priors on benchmark network recovery for BDeu baseline score.
ment with the results of Section 4: unlike Unif, these priors assign relatively large probabilities to small indegrees—even if the priors diverge at larger indegrees (i.e., four or more), the differences have little effect at small data sets, because small data sets are insufficient for learning larger parent sets regardless of the prior. Justified by these observations, we now focus on structure prior Fair in what follows.

Next, we decompose the SHD into the individual contributions of spurious edges, missing edges, and incorrect edge orientations. We find that Fair dramatically reduces spurious edges; see Fig. 3 for one example. This error reduction comes at a cost, as missing edges are slightly increased. While these two effects are predictable, we also observe that structure priors reduce incorrect edge orientations. This can be explained as a side-effect of the generally reduced number of edges, which entails less acyclicity constraints.

A less harsh constraint is obtained by just bounding the indegree from above, i.e., replacing the equalities in the definition of Utop by the inequalities $|G_i| \leq d_i$. This improved utopian prior, dubbed Utop+, is more conservative as it allows for learning smaller indegrees in the case of doubt, i.e., when only little data is available. However, even this variant never performs substantially better than Fair, suggesting relatively little room for improvement over Fair and the similarly performing Edge and Data priors.

Figure 3: Error types for Alarm.

5.2 Utopian Priors

As complexity penalization can be viewed as a trade-off between spurious and missing edges, it is natural to ask whether the studied structure priors penalize complexity optimally already or whether there is substantial room for improvement. To study this question, we consider, in contrast to the general scope of this article, informative priors that we obtain directly from the ground-truth. Suppose we know the correct indegree d_i for each node i. We can set it as hard constraint to obtain a “utopian” prior ($Utop$) defined as

$$P_{Utop}(G) \propto \begin{cases} 1 & \text{if } |G_i| = d_i \text{ for all nodes } i, \\ 0 & \text{otherwise.} \end{cases}$$

The practical effect of this prior may surprise at first glance: guiding the learning algorithm towards the correct solution may yield a substantial increase in SHD (Fig. 4). It can be explained by the fact that $Utop$ forces each node to a (possibly large) indegree, whereas selecting the correct parent nodes remains challenging when the sample size is small. From the perspective of SHD, choosing a wrong parent counts twice: once as a spurious edge and once as a missing edge.

Figure 4: Effect of utopian priors.

5.3 Different Baseline Scores

We now study, in addition to BDeu, also BIC (Schwarz 1978), fNML (Silander et al. 2010), and qNML (Silander et al. 2018), as baseline scores, show summarizing results for comparing Unif and Fair in Fig. 5, and provide the full results with all structure prior variants in the Supplement. We observe that adding a structure prior decreases SHD dramatically for fNML, moderately for qNML, and has no visible effect for BIC. Moreover, we find that BIC with or without structure prior is not optimal, especially for Alarm. Interestingly, the errors of BIC in spurious edges and missing edges are comparable to the other well-performing methods such as BDeu+. The difference is that BIC produces a much larger number of incorrectly oriented edges. This is due to the heavy penalty for the number of free parameters, which strongly prefers a chain or a common cause over a v-structure. Hence, there are comparably many undirected edges in the equivalence class representation of the learned DAG.

5.4 Other Aspects

The results of two further studies are shown only in the Supplement due to space constraints; we here briefly summarize the main findings. First, we also investigated the effects of structure priors on the recently proposed structural intervention distance (Peters and Bühlmann 2015). For this evaluation metric, penalizing complexity with structure priors or SSP gives no benefits. Second, we also studied different hyperparameter choices for priors Edge and Data. We observe
that our default values perform well, only in the case of Water we could have obtained a better performance with favoring sparsity more (lower β and higher τ).

5.5 SSP for Heuristic Search

All previous studies used a globally optimal algorithm for searching through the space of DAGs that can take pre-computed local scores as input and thus easily permits to add modular structure priors to arbitrary baseline scoring functions. Now, we the setting, where the user does not have the flexibility of specifying own scoring functions, but can choose only from a set of pre-implemented variants. For this purpose, we use the tabu search algorithm from the bnlearn software package (Scutari 2010) and apply it to four common benchmark networks that are too large for finding the globally optimal DAG (Table 2) and thus require heuristic search for structure recovery.

We compare Unif with SSP for the BDeu baseline score, and also include plain BIC in the comparison (Fig. 6). We observe that SSP is effective for BDeu, yielding an equal or lower SHD than Unif with the exception of two sample sizes for Hepar2. We also find that BIC is often more effective than BDeu+SSP at small sample sizes, unless the lowest SHD is achieved by the empty network. However, BIC has the downside of a much slower convergence, whereas SSP behaves at large sample sizes identical to BDeu.

5.6 Evaluation on Real Data

All previous studies did rely on existing benchmark networks that can be treated as ground-truth. We now evaluate the effect of structure priors on the structure learning performance based on real data.

Here, SHD cannot be used for evaluation as no ground truth network is available. Hence, we employ the Intersection-Validation (InterVal) method (Viinikka et al. 2018). It allows to approximate the SHD by the so-called Partial Hamming Distance (PHD), which can be computed even if no ground-truth DAG is available. The central idea of InterVal is to consider only structural features (presence/absence and orientation of edges) that all methods agree upon when learning from the full data set. Treating these features as surrogate ground truth then allows to compare the methods at smaller subsamples of the original data set.

For the following study, we use data sets from Malone et al. (2018), which originate from the UCI machine learning repository ² and are already processed for learning discrete BNs. We choose eight data sets that are large enough for applying the InterVal method (at least 1000 data points), but still permit learning a globally optimal DAG with GOBNILP when assuming an maximum indegree of three (Splice, Mushroom, Kr-vs-Kp, Optdigits) or four (remaining data sets).

Fig. 7 shows average PHDs for all data sets at $\frac{1}{8}$, $\frac{1}{4}$, $\frac{1}{2}$, etc., of the full sample size. The observations from the benchmark network study (Fig. 2) are confirmed: Adding a structure prior reduces errors at small sample sizes. Moreover, we find evidence that Fair is on real data slightly superior to the other modular priors. The PHDs for the other baseline scoring functions are shown in the Supplement, and confirm the previously observed trend: structure priors improve on Unif dramatically for fNML, moderately for qNML, and imperceptibly for BIC. Since they also never perform substantially worse, using a structure prior is a robust choice that can be generally recommended.

²http://archive.ics.uci.edu/ml
6 CONCLUSIONS

We have studied the popular score-and-search approach to structure learning in BNs. Previous research has shown that the chosen scoring function matters when one seeks a DAG that is structurally similar to the ground truth DAG, as measured by SHD. Our observations concur with that (Fig. 5). However, most previous studies have effectively assumed a structure prior that is uniform over all DAGs, restricted by some maximum indegree.

In this work we challenged the uniform prior. Our empirical findings suggest that the uniform prior is inferior to various sparsity favoring priors; such priors have so far been employed mainly in the full Bayesian averaging framework, which deviates from the score-and-search approach. Adding a sparsity-favoring prior boosts the performance of all tested scores, except BIC, and render their differences relatively small (Fig. 5). In this light, it is more important to choose an appropriate structure prior than tuning the likelihood part of the score.

A tempting explanation for the inferiority of the uniform prior is that sparsity-favoring priors better match the actual sparsity of the ground truth DAG. This explanation is flawed. Indeed, our study (with the utopian prior) showed that conditioning on the correct indegree for each node rather harms. Another explanation could be that SHD simply favors the sparsest DAG: it is best to output the DAG with no arcs. Also this conclusion is flawed. The empty DAG, for which SHD equals the number of arcs in the ground truth (cf. Table 2), would perform well only at very small data samples, but no longer on moderate size samples where sparsity-favoring priors still show a significant advantage over the uniform prior.

The correct explanation appears to stem from balancing the two extremes. Sparsity-favoring priors are superior because they assign a relatively large prior probability on small indegrees, and yet allow learning larger indegrees as the size of the data grows. It is crucial to avoid assigning too large prior on large indegrees, which would force a highest-scoring DAG include arcs that are likely to be spurious at smaller data sizes.

Among the alternative sparsity-favoring structure priors, our empirical results on data generated from benchmark BNs show little difference. However, the analytical results suggest that the Fair prior is perhaps the most robust; the empirical results on benchmark data sets also provide some support for this conclusion.

Motivated by the fact that many existing software packages do not allow the user to choose a non-uniform structure prior, we also introduced the search space penalization (SSP) method. SSP appears to perform better than the uniform prior, even if not being competitive to the sparsity-favoring priors. It is worth noting that SSP is not only applicable to BNs, but to any model family that is nested in relation to some natural complexity parameter.

Acknowledgements

The authors thank the anonymous reviewers for valuable suggestions that helped to improve the presentation. This work was supported in part by the Academy of Finland, Grant 276864.
References

