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A Approximating the Inference Marginal
We will here derive a Monte Carlo estimator for the entropy of the marginal qφ(z) of the inference model

Hφ[z] = −Eqφ(z) [log qφ(z)] . (7)

As with other terms in the objective, we can approximate this expectation by sampling zb ∼ qφ(z) using,

xb ∼ q(x), b = 1, . . . , B, (8)

zb ∼ qφ(z | xb). (9)

We now additionally need to approximate the values,

log qφ(z
b) = log

[
1

N

N∑
n=1

qφ(z
b | xn)

]
. (10)

We will do so by pulling the term for which xn = xb out of the sum

qφ(z
b) =

1

N
qφ(z

b | xb) + 1

N

∑
xn 6=xb

qφ(z
b | xn).

As also noted by Chen et al. [2018], the intuition behind this decomposition is that qφ(zb | xb) will in general be much
larger than qφ(zb | xn).
We can approximate the second term using a Monte Carlo estimate from samples x(b,c) ∼ q(x | x 6= xb),

1

N − 1

∑
xn 6=xb

qφ(z
b | xn) ' 1

C

C∑
c=1

qφ(z
b | x(b,c)).

Note here that we have written 1/(N − 1) instead of 1/N in order to ensure that the sum defines an expected value over the
distribution q(x | x 6= xb).
In practice, we can replace the samples x(b,c) with the samples b′ 6= b from the original batch, which yields an estimator
over C = B − 1 samples

q̂(zb) =
1

N
qφ(z

b | xb) + N − 1

N(B − 1)

∑
b′ 6=b

qφ(z
b | xb

′
).

Note that this estimator is unbiased, which is to say that

E[q̂(zb)] = q(zb). (11)

In order to compute the entropy, we now define an estimator Ĥφ(z), which defines a upper bound on Hφ(z)

Ĥφ[z] ' −
1

B

B∑
b=1

log q̂φ(z
b) ≥ Hφ[z]. (12)

The upper bound relationship follows from Jensen’s inequality which states that

E[log q̂φ(z)] ≤ logE[q̂φ(z)] = log qφ(z). (13)

A.1 Mutual Information between label y and representation z

We quantize each individual dimension zd into 10 bins based on the CDF of the empirical distribution. In other words,
dimension zd is divided in a way that each bin contains 10% of the training data. We then compute the mutual information
I(x; zd) as:

I(z ∈ bini,y = k) = q(z ∈ bini,y = k)

[
log

q(z ∈ bini,y = k)

q(z ∈ bini)q(y = k)

]
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For the case where z is a concrete variable, we use the following formulation:

I(z = l,y = k) = q(z = l,y = k)

[
log

q(z = l,y = k)

q(z = l)q(y = k)

]
q(z = l,y = k) = q(y = k)q(z = l|y = k)

=
Nk
N
q(z = l|y = k)

q(z = l|y = k) =
∑
x

q(z = l,x|y = k)

=
∑
x

q(z = l|x,y = k)q(x|y = k)

=
1

Nk

∑
x

q(z = l|x,y = k)

q(z = l) =
∑
x

q(z = l,x)

=
∑
x

q(z = l|x)q(x)

=
1

N

∑
x

q(z = l|x)

Finally, for the overall mutual information we have:

I(z,y) =
∑
l

∑
k

I(z = l,y = k)
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Figure 8: Interpretable factors in CelebA for a HFVAE (β = 5.0, γ = 3.0) and a β-VAE (β = 8.0)
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Figure 9: Qualitative results for disentanglement in MNIST dataset. In each case, one particular zd is varying from -3 to 3
while the others are fixed at 0. For this particular set of traversals, we used 10% supervision in order to extract the digit
more reliably, therefore visualizing all ‘style’ features present in MNIST.
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Figure 10: Qualitative results for disentanglement in F-MNIST dataset. In each case, one particular zd is varying from -3 to
3 while the others are fixed at 0
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C Model Architectures
We considered 4 datasets:
dSprites [Higgins et al., 2016]: 737,280 binary 64× 64 images of 2D shapes with ground truth factors,
MNIST [LeCun et al., 2010]: 60000 gray-scale 28× 28 images of handwritten digits,
F-MNIST [Xiao et al., 2017]: 60000 gray-scale 28× 28 images of clothing items divided in 10 classes,
CelebA [Liu et al., 2015]: 202,599 RGB 64× 64× 3 images of celebrity faces.

As mentioned in the main text, we used two hidden variables for each of the datasets. One variable is modeled as a normal
distribution which representing continuous (denoted as zc), and one modeled as a Concrete distribution to detect categories
(denoted as zd). We used Adam optimizer with learning rate 1e-3 and the default settings.

Table 4: Encoder and Decoder architecture for MNIST and F-MNIST datasets.

Encoder Decoder

Input 28× 28 grayscale image Input z = Concat
[
zc ∈ R10, zd ∈ (0, 1)10

]
FC. 400 ReLU FC. 200 ReLU
FC. 2× 200 ReLU, FC. 10 (zd) FC. 400 ReLU
FC. 2× 10 (zc) FC. 28× 28 Sigmoid

Table 5: Encoder and Decoder architecture for dSprites data.

Encoder Decoder

Input 64× 64 binary image Input z = Concat
[
zc ∈ R10, zd ∈ (0, 1)3

]
FC. 1200 ReLU FC. 400 Tanh
FC. 1200 ReLU FC. 1200 Tanh
FC. 2× 400 ReLU, FC. 3 (zd) FC. 1200 Tanh
FC. 2× 10 (zc) FC. 64× 64 Sigmoid

Table 6: Encoder and Decoder architecture for CelebA data.

Encoder Decoder

Input 64× 64 RGB image Input z = Concat
[
zc ∈ R20, zd ∈ {0, 1}10

]
4× 4 conv, 32 BatchNorm ReLU, stride 2 FC. 256 ReLU
4× 4 conv, 32 BatchNorm ReLU, stride 2 FC. (4× 4× 64) Tanh
4× 4 conv, 64 BatchNorm ReLU, stride 2 4× 4 upconv, 64 BatchNorm ReLU, stride 2
4× 4 conv, 64 BatchNorm ReLU, stride 2 4× 4 upconv, 32 BatchNorm ReLU, stride 2
FC. 2× 256 ReLU, 2 FC. (zd) 4× 4 upconv, 32 BatchNorm ReLU, stride 2
FC. 2× 20 ReLU 4× 4 upconv, 3, stride 2
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Figure 11: Learned topics in the 20NewsGroups dataset using the HFVAE and the VAE objective. The middle column
shows frequent words for the 3 most informative topics of the VAE, and the 3 most correlated topics in the HFVAE. The left
column lists their corresponding mutual information with x and the topic coherence score. The right column shows the
correlations between topics. The HFVAE learns 2 groups of topics that are internally uncorrelated (top-left and bottom-right
quadrants), whilst uncovering sparse correlations between groups (top-right and bottom-left quadrants).

D Disentangled Representation for Text
D.1 Model Architectures
We consider the following dataset:
20NewsGroups : 11314 newsgroup documents which are partitioned in 20 categories. We used bag-of-words representation
where vocabulary size is 2000, after removing stopwords using Mallet stopwords list.

With HFVAE objective, we used two hidden variables (denoted as zc1 and zc2) with 25 dimensions each. In ProdLDA,
we used Adam optimizer with β1 = 0.99, β2 = 0.999, and learning rate 1e-3; In NVDM, we used Adam optimizer with
learning rate 5e-5 and default settings.

Encoder Decoder

Input 1× 2000 document Input zc1 ∈ R25, zc2 ∈ R25

FC. 100 Softplus Softmax Dropout
FC. 100 Softplus Dropout FC. 2000 BatchNorm Softmax
FC. 2× 25 BatchNorm (zc1)
FC. 2× 25 BatchNorm (zc2)

Table 7: Encoder and Decoder architecture in ProdLDA.

Encoder Decoder

Input 1× 2000 document Input zc1 ∈ R25, zc2 ∈ R25

FC. 500 ReLU FC. 2000 Softmax
FC. 2× 25 (zc1)
FC. 2× 25 (zc2)

Table 8: Encoder and Decoder architecture in NVDM.

D.2 Neural variational document model
We train a standard NVDM with a 50-dimensional latent variable using the normal VAE objective. We compare this baseline
to a HFVAE with two 25-dimensional latent variables, trained with β = 7, and γ = 4—allowing correlations within a group
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Figure 12: Learned topics in 20NewsGroups dataset using HFVAE objective and VAE objective. The middle column shows
frequent words for the 3 most informative dimensions of the latent space. The left column lists their corresponding mutual
information with x. The right column shows the mutual information between the latent code and binary indicator variable
for the document category.

but preventing correlations across groups.
Figure 12 (right) shows the mutual information between the latent code and binary indicator variables for the document
category. We see that the latent dimensions of the HFVAE (columns) achieve a higher degree of disentanglement as is evident
from the fact that indicator labels (shown as rows) correlate generally with only one latent feature (shown in columns). Note
that a single feature can capture two distinct topics in this model (of which only one is shown), which correspond to negative
and positive weights in the likelihood model.

D.3 Binary Indicator Variables for Document Category
In 20NewsGroups dataset, we derived 10 binary variables where each indicates whether a document belongs to this specific
topic. Since some of the newsgroups are closely related (e.g. religion vs politics) while others are not related at all
(e.g. science vs sports), we regarded highly related categories as one single topic. Then we computed the mutual information
between each binary indicator variable bl and individual dimension zd (see Appendix A.1), which is shown in Figure 12.

Table 9: Topics after grouping highly related categories.

Grouped Topics Original Categories

Atheism alt.atheism
Computer comp.graphics

comp.os.ms-windows.misc
comp.sys.ibm.pc.hardware
comp.sys.mac.hardware
comp.windows.x

Forsale misc.forsale
Autos rec.autos

rec.motorcycles
Sports rec.sport.baseball

rec.sport.hockey
Encryption sci.crypt
Electronics sci.electronics
Medical sci.med
Space sci.space
Politics and Religion talk.politics.misc

talk.politics.guns
talk.politics.mideast
talk.religion.misc
soc.religion.christian
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Figure 13: On the left, we plot the histogram of Kim and Eastwood scores for β-VAE with β hyperparameters. On the right,
we plot the heatmap of the score means for HFVAE with different hyperparameter values.

E Hyperparameter Analysis Based on Disentanglement Metrics
In order to have better understanding of how well HFVAE performs compared to other approaches with respect to encoder’s
disentanglement capability, we ran all models: β-VAE, β-TCVAE and HFVAE wth 10 random restarts with a variety of
hyperparameter values. For β-VAE, we tried betas in the range [1, 2, 4, 6, 8, 10], and for HFVAE with tried γ, β values in
the range of [2, 3, 4, 6, 8, 10]. The prior we choose for all models consist of a 10-dimensional Gaussian with a diagonal
covariance, and a Concrete variable of length 3 (number of shapes in dSprite). The results can be observed in Figures 13 and
14. In general, we found that the most influential factor in archiving a good disentanglement score is the starting random
seed rather than the hyperparameter choice or the model. We note that the instability in our experiments is higher compared
to previous work, as the prior we used also consist of a Concrete variable, thus the encoder has more options in terms of
encoding different information in different variables/dimensions.
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Figure 14: On the top, we show the histograms of Kim metric values for a range of different γ and β. On the bottom, we
show the same but for the Eastwood metric.


