Abstract

Deep latent-variable models learn representations of high-dimensional data in an unsupervised manner. A number of recent efforts have focused on learning representations that disentangle statistically independent axes of variation by introducing modifications to the standard objective function. These approaches generally assume a simple diagonal Gaussian prior and as a result are not able to reliably disentangle discrete factors of variation. We propose a two-level hierarchical objective to control relative degree of statistical independence between blocks of variables and individual variables within blocks. We derive this objective as a generalization of the evidence lower bound, which allows us to explicitly represent the trade-offs between mutual information between data and representation, KL divergence between representation and prior, and coverage of the support of the empirical data distribution. Experiments on a variety of datasets demonstrate that our objective can not only disentangle discrete variables, but that doing so also improves disentanglement of other variables and, importantly, generalization even to unseen combinations of factors.
Structured Disentangled Representations

\[ L(\theta, \phi) = E_{q_{\phi}(z|x)} \left[ \log \frac{p_{\theta}(x,z)}{p_{\theta}(x)p(z)} + \log \frac{q_{\phi}(z|x)}{q_{\phi}(z,x)} + \log \frac{p_{\theta}(x)}{q(x)} + \log \frac{p(z)}{q_{\phi}(z)} \right], \]

\[ = E_{q_{\phi}(z,x)} \left[ \log \frac{p_{\theta}(x|z)}{p_{\theta}(x)} - \log \frac{q_{\phi}(z|x)}{q_{\phi}(z)} - KL(q(z) || p_{\theta}(z)) - KL(q_{\phi}(z) || p(z)) \right]. \]

Figure 1: ELBO decomposition. The VAE objective can be defined in terms of KL divergence between a generative model \( p_{\theta}(x,z) = p_{\theta}(x|z)p(z) \) and an inference model \( q_{\phi}(z,x) = q_{\phi}(z|x)q(x) \). We can decompose this objective into 4 terms. Term (1), which can be intuitively thought of as the uniqueness of the reconstruction, is regularized by the mutual information (2), which represents the uniqueness of the encoding. Minimizing the KL in term (3) is equivalent to maximizing the marginal likelihood \( E_{q(x)}[\log p_{\theta}(x)] \). Combined maximization of (1) + (3) is equivalent to maximizing \( E_{q_{\phi}(z,x)}[\log p_{\theta}(x|z)] \). Term (4) matches the inference marginal \( q_{\phi}(z) \) to the prior \( p(z) \), which in turn ensures realistic samples \( x \sim p_{\theta}(x) \) from the generative model.

variables [Kingma et al., 2014, Siddharth et al., 2017], triplet supervision [Karaletsos et al., 2015, Veit et al., 2016], or batch-level factor invariances [Kulkarni et al., 2015, Bouchacourt et al., 2017]. There has also been a concerted effort to develop fully unsupervised approaches that modify the VAE objective to induce disentangled representations. A well-known example is β-VAE [Higgins et al., 2016]. This has prompted a number of approaches that modify the VAE objective by adding, removing, or altering the weight of individual terms [Kumar et al., 2017, Zhao et al., 2017, Gao et al., 2018, Achille and Soatto, 2018].

In this paper, we introduce hierarchically factorized VAEs (HFVAEs). The HFVAE objective is based on a two-level hierarchical decomposition of the VAE objective, which allows us to control the relative levels of statistical independence between groups of variables and for individual variables in the same group. At each level, we induce statistical independence by minimizing the total correlation (TC), a generalization of the mutual information to more than two variables. A number of related approaches have also considered the TC [Kim and Mnih, 2018, Chen et al., 2018, Gao et al., 2018], but do not employ the two-level decomposition that we consider here. In our derivation, we reinterpret the standard VAE objective as a KL divergence between a generative model and its corresponding inference model. This has the side benefit that it provides a unified perspective on trade-offs in modifications of the VAE objective.

We illustrate the power of this decomposition by disentangling discrete factors of variation from continuous variables, which remains problematic for many existing approaches. We evaluate our methodology on a variety of datasets including dSprites, MNIST, Fashion MNIST (F-MNIST), CelebA and 20NewsGroups. Inspection of the learned representations confirms that our objective uncovers interpretable features in an unsupervised setting, and quantitative metrics demonstrate improvement over related methods. Crucially, we show that the learned representations can recover combinations of latent features that were not present in any examples in the training set, which has long been an implicit goal in learning disentangled representations that is now considered explicitly.

2 A Unified View of VAE Objectives

Variational autoencoders jointly optimize two models. The generative model \( p_{\theta}(x,z) \) defines a distribution on a set of latent variables \( z \) and observed data \( x \) in terms of a prior \( p(z) \) and a likelihood \( p_{\theta}(x|z) \), which is often referred to as the decoder model. This distribution is estimated in tandem with an encoder, a conditional distribution \( q_{\phi}(z|x) \) that performs approximate inference in this model. The encoder and decoder together define a probabilistic autoencoder.

The VAE objective is traditionally defined as sum over datapoints \( x^n \) of the expected value of the per-datapoint ELBO, or alternatively as an expectation over an empirical distribution \( q(x) \) that approximates an unknown data distribution with a finite set of data points,

\[ L^{VAE}(\theta, \phi) := E_{q(x)} \left[ E_{q_{\phi}(z|x)} \left[ \log \frac{p_{\theta}(x,z)}{q_{\phi}(z|x)} \right] \right], \]

\[ q(x) := \frac{1}{N} \sum_{n=1}^{N} \delta_{x^n}(x) \]

To better understand the various modifications of the VAE objective, which have often been introduced in an ad hoc manner, we here consider an alternate but equivalent definition of the VAE objective as a KL divergence between the generative model \( p_{\theta}(x,z) \) and inference model \( q_{\phi}(z,x) = q(z|x)q(x) \),

\[ L(\theta, \phi) := -KL(q_{\phi}(z,x) \mid \mid p_{\theta}(x,z)) \]

\[ = E_{q_{\phi}(z,x)} \left[ \log \frac{p_{\theta}(x,z)}{q_{\phi}(z|x)} \right] - E_{q(x)}[\log q(x)]. \]

This definition differs from the expression in Equation (1) only by a constant term \( \log N \), which is the entropy of the empirical data distribution \( q(x) \). The advantage of this interpretation as a KL divergence is that it becomes
more apparent what it means to optimize the objective with respect to the generative model parameters $\theta$ and the inference model parameters $\phi$. In particular, it is clear that the KL is minimized when $p_\theta(x, z) = q_\phi(z, x)$, which in turn implies that marginal distributions on data $p_\theta(x) = q(x)$ and latent code $q_\phi(z) = p(z)$ must also match. We will refer to $q_\phi(z)$ as the *inference marginal*, which is the average over the data of the encoder distribution $q_\phi(z) = \int q_\phi(z, x) \, dx = \frac{1}{N} \sum_{n=1}^{N} q_\phi(z | x^n)$.

To more explicitly represent the trade-offs that are implicit in optimizing the VAE objective, we perform a decomposition (Figure 1) similar to the one obtained by Hoffman and Johnson [2016]. This decomposition yields 4 terms. Terms (1,3) and (2,4) enforce consistency between the marginal distributions over $x$ and $z$. Minimizing the KL in term (3) maximizes the marginal likelihood $E_{q(x)}[\log p_\theta(x)]$, whereas minimizing (4) ensures that the inference marginal $q_\phi(z)$ approximates the prior $p(z)$. Terms (i) and (ii) enforce consistency between the conditional distributions. Intuitively speaking, term (i) maximizes the identifiability of the values $z$ that generate each $x^n$; when we sample $z \sim q_\phi(z | x^n)$, then the likelihood $p_\theta(x^n | z)$ under the generative model should be *higher* than the marginal likelihood $p_\theta(x^n)$. Term (ii) regularizes term (i) by minimizing the mutual information $I(z; x)$ in the inference model, which means that $q_\phi(z | x^n)$ maps each $x^n$ to less identifiable values.

Note that term (i) is intractable in practice, since we are not able to pointwise evaluate $p_\theta(x)$. We can circumvent this intractability by combining (i)+(ii) into a single term, which recovers the likelihood

$$\arg\max_{\theta, \phi} \mathbb{E}_{q_\phi(z, x)} \left[ \log \frac{p_\theta(x | z)}{p_\theta(x)} + \log \frac{q_\theta(x)}{q(x)} \right]$$

$$= \arg\max_{\theta, \phi} \mathbb{E}_{q_\phi(z, x)} \left[ \log p_\theta(x | z) \right].$$

To build intuition for the impact of each of these terms, Figure 2 shows the effect of removing each term from the objective. When we remove (1) or (4) we can learn models in which $p_\theta(x)$ deviates from $q(x)$, or $q_\phi(z)$ deviates from $p(z)$. When we remove (i), we eliminate the requirement that $p_\theta(x^n | z)$ should be higher when $z \sim q_\phi(z | x^n)$ than when $z \sim p(z)$. Provided the decoder model is sufficiently expressive, we would then learn a generative model that ignores the latent code $z$. This undesirable type of solution does in fact arise in certain cases, even when (i) is included in the objective, particularly when using auto-regressive decoder architectures [Chen et al., 2016b].

When we remove (ii), we learn a model that minimizes the overlap between $q_\phi(z | x^n)$ for different data points $x^n$, in order to maximize (i). This maximizes the mutual information $I(\cdot ; z)$, which is upper-bounded by $\log N$. In practice (ii) often saturates to $\log N$, even when included in the objective, which suggests that maximizing (i) outweighs this cost, at least for the encoder/decoder architectures that are commonly considered in present-day models.

### 3 Hierarchically Factorized VAEs

In this paper, we are interested in defining an objective that will encourage statistical independence between features. The $\beta$-VAE objective [Higgins et al., 2016] aims to achieve this goal by defining the objective

$$\mathcal{L}^\beta_{VAE}(\theta, \phi) = \mathbb{E}_{q(x)} \left[ \mathbb{E}_{q_\phi(z|x)} \left[ \log p_\theta(x | z) \right] \right] - \beta \mathbb{KL}(q_\phi(z|x) \parallel p(z)).$$

We can express this objective in the terms of Figure 1 as $(1) + (3) + \beta (2) + (4)$. In order to induce disentangled representations, the authors set $\beta > 1$. This works well in certain cases, but it has the drawback that it also increases the strength of (2), which means that the encoder model may discard more information about $x$ in order to minimize the mutual information $I(\cdot ; z)$.

Looking at the $\beta$-VAE objective, it seems intuitive that
structured disentangled representations

\[
- \text{KL}(q_\phi(z) \mid\mid p(z)) = - \mathbb{E}_{q_\phi(z)} \left[ \log \frac{q_\phi(z)}{\prod_d q_\phi(z_d)} + \log \prod_d \frac{q_\phi(z_d)}{p(z)} + \log \prod_d \frac{p(z_d)}{p(z)} \right] \\
= \mathbb{E}_{q_\phi(z)} \left[ \log \frac{p(z)}{\prod_d p(z_d)} - \log \frac{q_\phi(z_d)}{\prod_d q_\phi(z_d)} \right] - \sum_d \text{KL}(q_\phi(z_d) \mid\mid p(z_d)).
\]

Figure 3: Hierarchical KL decomposition. We can decompose term (1) into subcomponents (2) and (3). Term (2) matches the total correlation between variables in the inference model relative to the total correlation under the generative model. Term (3) minimizes the KL divergence between the inference marginal and prior marginal for each variable z_d. When the variable z_d contains sub-variables z_{d,c}, we can recursively decompose the KL on the marginals z_d into term (4), which matches the total correlation, and term (5), which minimizes the per-dimension KL divergence.

Increasing the weight of term (5) is likely to aid disentanglement. One notion of disentanglement is that there should be a low degree of correlation between different latent variables z_d. If we choose a mean-field prior p(z) = \prod_d p(z_d), then minimizing the KL term should induce an inference marginal q_\phi(z) = \prod_d q_\phi(z_d) in which z_d are also independent. However, in addition to being sensitive to correlations, the KL will also be sensitive to discrepancies in the shape of the distribution. When our primary interest is to disentangle representations, then we may wish to relax the constraint that the shape of the distribution matches the prior in favor of enforcing statistical independence.

To make this intuition explicit, we decompose (1) into two terms (2) and (3) (Figure 3). As with term (1) + (2), term (3) consists of two components. The second of these takes the form of a total correlation, which is the generalization of the mutual information to more than two variables,

\[
TC(z) = \mathbb{E}_{q_\phi(z)} \left[ \log \frac{q_\phi(z)}{\prod_d q_\phi(z_d)} \right] = \text{KL}(q_\phi(z) \mid\mid \prod_d q_\phi(z_d))
\]

Minimizing the total correlation yields a q_\phi(z) in which different z_d are statistically independent, hereby providing a possible mechanism for inducing disentanglement. In cases where z_d itself represents a group of variables, rather than a single variable, we can continue to decompose to another set of terms (4) and (5) which match the total correlation for z_d and the KL divergences for constituent variables z_{d,c}. This provides an opportunity to induce hierarchies of disentangled features. We can in principle continue this decomposition for any number of levels to define an hierarchically factorized VAE (HFVAE) objective. We here restrict ourselves to the two-level case, which corresponds to an objective of the form

\[
\mathcal{L}^{HFVAE}(\theta, \phi) = (1) + (2) + (3) + \alpha (4) + \beta (5) + \gamma (6). \tag{4}
\]

In this objective, \( \alpha \) controls the I(x; z) regularization, \( \beta \) controls the TC regularization between groups of variables, and \( \gamma \) controls the TC regularization within groups. This objective is similar to, but more general than, the one recently proposed by Kim and Mnih [2018] and Chen et al. [2018]. Our objective admits these objectives as a special case corresponding to a non-hierarchical decomposition in which \( \beta = \gamma \). The first component of (3) is not present in these objectives, which implicitly assume that \( p(z) = \prod_d p(z_d) \). In the more general case where \( p(z) \neq \prod_d p(z_d) \), maximizing (3) with respect to \( \phi \) will match the total correlation in q(z) to that in p(z).

3.1 Approximation of the Objective

In order to optimize this objective, we need to approximate the inference marginals q_\phi(z), q_\phi(z_d), and q_\phi(z_{d,c}). Computing these quantities exactly requires a full pass over the dataset, since q_\phi(z) is a mixture over all data points in the training set. We approximate q_\phi(z) with a Monte Carlo estimate ˆq_\phi(z) over the same batch of samples that we use to approximate all other terms in the objective \( \mathcal{L}^{HFVAE}(\theta, \phi) \). For simplicity we will consider the term

\[
\mathbb{E}_{q_\phi(z,x)}[\log q_\phi(z)] \simeq \frac{1}{B} \sum_{b=1}^{B} \log q_\phi(z^b), \tag{5}
\]

\[ z^b \sim q_\phi(z \mid x^b), \quad b \sim \text{Uniform}(1, \ldots, N) \]

We define the estimate of ˆq_\phi(z^b) as (see Appendix A)

\[ \hat{q}_\phi(z^b) := \frac{1}{N} q_\phi(z^b \mid x^b) + \frac{N - 1}{N(B - 1)} \sum_{b' \neq b} q_\phi(z^b \mid x^{b'}). \]

This estimator differs from the one in Kim and Mnih [2018], which is based on adversarial-style estimation of the density ratio, and is also distinct from the estimators in Chen et al. [2018] who employ different approximations. We can think of this approximation as a partially stratified sample, in
which we deterministically include the term $x^a = x^b$ and compute a Monte Carlo estimate over the remaining terms, treating indices $b' \neq b$ as samples from the distribution $q(x \mid x \neq x^b)$. We now substitute $\log \hat{q}_b(z)$ for $\log q_b(z)$ in Equation (5). By Jensen’s inequality this yields a lower bound on the original expectation. While this induces a bias, the estimator is consistent. In practice, the bias is likely to be small given the batch sizes (512-1024) needed to approximate the inference marginal.

4 Related Work

In addition to the work of Kim and Mnih [2018] and Chen et al. [2018], our objective is also related to, and generalizes, a number of recently-proposed modifications to the VAE objective (see Table 1 for an overview). Zhao et al. [2017] consider an objective that eliminates the mutual information in $\mathbb{1}$ entirely and assigns an additional weight to the KL divergence in $\mathbb{2}$. Kumar et al. [2017] approximate the KL divergence in $\mathbb{2}$ by matching the covariance of $q_b(z)$ and $p(z)$. Recent work by Gao et al. [2018] connects VAEs to the principle of correlation explanation, and defines an objective that reduces the mutual information regularization in $\mathbb{2}$ for a subset of “Anchor” variables $z_a$. Achille and Soatto [2018] interpret VAEs from an information-bottleneck perspective and introduce an additional TC term into the objective. In addition to VAEs, generative adversarial networks (GANs) have also been used to learn disentangled representations. The InfoGAN [Chen et al., 2016a] achieves disentanglement by maximizing the mutual information between individual features and the data under the generative model.

In settings where we are not primarily interested in inducing disentangled representations, the $\beta$-VAE objective has also been used with $\beta < 1$ in order to improve the quality of reconstructions [Aleomi et al., 2016, Engel et al., 2017, Liang et al., 2018]. While this also decreases the relative weight of $\mathbb{2}$, in practice it does not influence the learned representation in cases where $I(x; z)$ saturates anyway. The tradeoff between likelihood and the KL term and the influence of penalizing the KL term on mutual information has been studied more in depth in Aleomi et al. [2018], Burgess et al. [2018].

In other recent work, Dupont [2018] considered models containing both Concrete and Gaussian variables. However, the objective was not decomposed to get $\mathbb{3}$, but was based on the objective proposed by Burgess et al. [2018].

5 Experiments

To assess the quality of disentangled representations that the HFVAE induces, we evaluate a number of tasks and datasets. We consider CelebA [Liu et al., 2015] and dSprites [Higgins et al., 2016] as exemplars of datasets that are typically used to demonstrate general-purpose disentangling. As specific examples of datasets that require a discrete variable, we consider MNIST [LeCun et al., 2010] and F-MNIST [Xiao et al., 2017]. Finally, we consider an example that extends beyond image-based domains by using the HFVAE objective to train neural topic models on the 20NewsGroups [Lang, 2007] dataset. We compare a number of objectives and priors on these datasets, including the standard VAE objective [Kingma and Welling, 2013, Rezende et al., 2014], the $\beta$-VAE objective [Higgins et al., 2016], the $\beta$-TCVAE objective [Chen et al., 2018], and our HFVAE objective.

A crucial feature of our experiments is the realization that HFVAE objective serves to induce representations in which correlations in the inference marginal $q(z)$ match correlations in the prior $p(z)$. The two-level decomposition allows us to control the level at which we induce independence. For example, when considering appropriate priors for the MNIST and F-MNIST data, we can take into account the fact that each contain 10 explicit classes. Likewise for dSprites, containing 3 explicit shape classes. We model these distinct classes using a Concrete distribution [Maddison et al., 2017, Jang et al., 2017] of appropriate dimension. We can also assume that these datasets have a multidimensional continuous style variable. HFVAE allows us to induce a stronger independence between the style and the class, while allowing some correlation between the individual style dimensions. We can also use the two-level decomposition to induce correlations between variables by decreasing the strength of $\mathbb{3}$. As an example, we consider the task of uncovering correlations between topics.

A full list of priors employed is given in Table 2, and the associated model architectures are described in Appendix C. Note that in connection to Figure 3, subscript “d” refers to the variables class or style represented by Concrete and normal distributions respectively, while subscript “e” refers to individual dimension within the normal variable. In all models, we use a single implementation of the objective based on the Probabilistic Torch [Siddharth et al., 2017].
library for deep generative models\(^1\).

### 5.1 Qualitative and Quantitative Evaluation

We begin with a qualitative evaluation of the features that are identified when training with the HFVAE objective. Figure 4 shows results for MNIST and F-MNIST datasets. For the MNIST dataset the representation recovers 7 distinct interpretable features—slant, width, height, openness, stroking, thickness, and roundness, while choosing to ignore the remaining dimensions available. Observing the mutual information \(I(x; z_d)\) between the data \(x\) and individual dimensions of the latent space \(z_d\) confirms the separation of latent space into useful and ignored subspaces.

As can be seen from Figure 4(right), the mutual information drops to zero for the unused dimensions. We observe a similar trend for the F-MNIST and CelebA datasets, recovering distinct interpretable factors. For F-MNIST (Figure 4(mid)), this can be width, length, brightness, etc. For CelebA (Appendix Figure 8), we uncover interpretable features such as the orientation of the face, variation from smiling to non-smiling, and the presence of sunglasses.

As a quantitative assessment of the quality of learned representations, we evaluate the metrics proposed by Kim and Mnih [2018] and Eastwood and Williams [2018] on the dSprites dataset with 10 random restarts for each model. For the Eastwood and Williams metric, we used a random forest to regress from features to the (known) ground-truth factors for the data. In Table 3, we list these metrics on the dSprites dataset for each of the model types and objectives defined above, noting that the HFVAE performs similar to other approaches.

We found in our experiments that HFVAE, similar to other disentanglement objectives, is also fairly sensitive to the choice of hyperparameters and the starting random seed. While it is possible to achieve some level of disentanglement with a variety of \(\beta\) and \(\gamma\) values, achieving a clean disentanglement between the discrete and continuous variables remains a fairly difficult task and is mostly influenced by the starting random seed rather than the choice of hyperparameters. For more details on the issue of hyperparameter sensitivity, see Appendix Section E.

### 5.2 Disentangled Representations for Text

Research on disentangled representations has thus far almost exclusively considered visual (image) data. Exploration of disentangled representations for text is still in its infancy, and generally relies on weak supervision [Jain et al., 2018]. To assess whether the HFVAE objective can aid interpretability in textual domains, we consider documents in the 20NewsGroups dataset, containing e-mail messages from a number of internet newsgroups; some groups are more closely related (e.g. religion vs politics) whereas others are not related at all (e.g. science vs sports). We analyze this data using ProdLDA [Srivastava and Sutton, 2017] and neural variational document model (NVDM) [Miao et al., 2016], both of which are autoencoding neural topic models. ProdLDA approximates a Dirichlet prior using samples from a Gaussian that are normalized with a softmax function, and then combines this prior with log-linear likelihood model for the words. NVDM includes a MLP encoder and a log-linear decoder with the assumption of a Gaussian prior.

To evaluate whether HFVAEs are able to uncover these correlations between topics, we compare a normal ProdLDA model with 50 topics, which we train with a standard VAE

---

\(^1\)https://github.com/probtorch/probtorch

<table>
<thead>
<tr>
<th></th>
<th>VAE (Normal)</th>
<th>HFVAE (Normal)</th>
<th>HFVAE (Concrete)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNIST</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>F-MNIST</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>dSprites</td>
<td>10</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>CelebA</td>
<td>20</td>
<td>20</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 2: Dimensionality of latent variables.

<table>
<thead>
<tr>
<th>Model</th>
<th>Kim</th>
<th>Eastwood</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAE</td>
<td>0.63 ± 0.06</td>
<td>0.30 ± 0.10</td>
</tr>
<tr>
<td>(\beta)-VAE ((\beta = 4.0))</td>
<td>0.63 ± 0.10</td>
<td>0.41 ± 0.11</td>
</tr>
<tr>
<td>(\beta)-TCVAE ((\beta = 4.0))</td>
<td>0.62 ± 0.07</td>
<td>0.29 ± 0.10</td>
</tr>
<tr>
<td>HFVAE ((\beta = 4.0, \gamma = 3.0))</td>
<td>0.63 ± 0.08</td>
<td>0.39 ± 0.16</td>
</tr>
</tbody>
</table>

Table 3: Disentanglement scores (± one standard deviation) for the dSprites dataset using the metrics proposed by Kim and Mnih [2018] and Eastwood and Williams [2018].
An interesting question relating to the use of discrete latent variables is how effective these variables are at improving disentanglement. In general, a discrete variable over \( K \) dimensions expresses a sparsity constraint over those dimensions, as any choice made from that variable is constrained to lie on the vertices of the \( K \)-dimensional simplex it represents. This interpretation broadly carries over even in the case of continuous relaxations such as the Concrete distribution that we employ to enable reparameterization for gradient-based methods.

The ability of our framework to disentangle discrete factors of variation using the discrete variables depends then, on how separable the underlying classes or identities actually are. For example, in the case of F-MNIST, a number of classes (i.e., shoes, trousers, dresses, etc.) are visually distinctive enough that they can be captured faithfully by the discrete latent variable. However, in the case of dSprites, while the shapes (squares, ellipses, and hearts) are conceptually distinct, visually, they can often be difficult to distinguish, with actual differences in the scale of a few pixels. Here, our approach is less effective at disentangling the relevant factors with the discrete latent. The MNIST dataset lies in the middle of these two extremes, allowing for clear separation in terms of the digits themselves, but also blurring the lines partially with how similar some of them may appear—a 9 can appear quite similar to a 4, for example, under some small perturbation.

Figure 5 showcases the ability of the HFV AE to disentangle distinct yet not unrelated, e.g. religion and politics in the middle east, whereas the V AE does not uncover any significant correlations between topics. As in the MNIST and F-MNIST examples, there is also a significant degree of pruning. The HFV AE learns 11 topics with a significant mutual information \( I(x; z_d) \), whereas the V AE has a nonzero mutual information for all 50 topics. See Appendix Section D for the full results.

5.3 Unsupervised Learning of Discrete Labels

An interesting question relating to the use of discrete latent variables in our framework is how effective these variables are at improving disentanglement. In general, a discrete variable over \( K \) dimensions expresses a sparsity constraint over those dimensions, as any choice made from that variable is constrained to lie on the vertices of the \( K \)-dimensional simplex it represents. This interpretation broadly carries over even in the case of continuous relaxations such as the Concrete distribution that we employ to enable reparameterization for gradient-based methods.

The ability of our framework to disentangle discrete factors of variation using the discrete variables depends then, on how separable the underlying classes or identities actually are. For example, in the case of F-MNIST, a number of classes (i.e., shoes, trousers, dresses, etc.) are visually distinctive enough that they can be captured faithfully by the discrete latent variable. However, in the case of dSprites, while the shapes (squares, ellipses, and hearts) are conceptually distinct, visually, they can often be difficult to distinguish, with actual differences in the scale of a few pixels. Here, our approach is less effective at disentangling the relevant factors with the discrete latent. The MNIST dataset lies in the middle of these two extremes, allowing for clear separation in terms of the digits themselves, but also blurring the lines partially with how similar some of them may appear—a 9 can appear quite similar to a 4, for example, under some small perturbation.

Figure 5 showcases the ability of the HFV AE to disentangle discrete latent variables from continuous factors of variation in an unsupervised manner. Here, we have sampled a single data point for each digit and vary the “thickness”-encoding dimension for each of the \( \beta \)-VAE and HFV AE models. Clearly, HFV AE does a better job at disentangling digit vs. thickness. To quantify this ability, as before, we measure the mutual information \( I(x; z_d) \) between the label...
and each latent dimension, and confirm that the HFVAE learns to encode the information on digits in the discrete variable. In the case of the $\beta$-VAE, this information is less clearly captured, spread out across the available dimensions.

5.4 Hyperparameter Analysis
Here, we analyze the influence of $\gamma$ and $\beta$ on the trade-off between total correlation and mutual information. We also show why setting $\gamma \neq \beta$ is necessary for better disentanglement, in comparison to previous objectives [Chen et al., 2018, Kim and Mnih, 2018] where $\gamma = \beta$. We investigate both these facets on the MNIST dataset. Figure 6 (left) shows the results of running our model for 50 restarts, for each of seven different values of $\gamma = \beta$, indicating positive correlation between mutual information $I(x; z, c)$ and total correlation $TC(z, c)$. In this figure, the ideal is the lower-right corner, corresponding to high mutual information and low total correlation. Figure 6 (right) shows how the mutual information gap (MIG), defined by Chen et al. [2018] to be $I(y; c) - \max_i I(y; z_i)$, varies as a function of $\beta$, for a fixed $\gamma = 3$. We observe that higher values of $\beta$ result in the concrete variable better capturing the label information.

5.5 Zero-shot Generalization
A particular feature of disentangled representations is their utility, with evidence from human cognition Lake et al. [2017], suggesting that learning independent factors can aid in generalization to previously unseen combinations of factors. For example, one can imagine a pink elephant even if one has (sadly) not encountered such an entity previously.

To evaluate if the representations learned using HFVAEs exhibit such properties, we introduce a novel measure of disentanglement quality. Having first trained a model with the chosen data and objective, here MNIST and the HFVAE, we prune the dataset, removing data containing some particular combinations of factors, say images depicting a thick number 7, or a narrow 0. We then re-train with the modified dataset, using the pruned data as unseen test data.

Figure 7 shows the results of this experiment. As can be seen, the model trained on pruned data is able to successfully reconstruct digits with values for the stroke and character width that were never encountered during training. The histograms for the feature values show the ability of HFVAE to correctly encode features from previously unseen examples.

6 Discussion
Much of the work on learning disentangled representations thus far has focused on cases where the factors of variation are uncorrelated scalar variables. As we begin to apply these techniques to real world datasets, we are likely to encounter correlations between latent variables, particularly when there are causal dependencies between them. This work is a first step towards learning of more structured disentangled representations. By enforcing statistical independence between groups of variables, or relaxing this constraint, we now have the capability to disentangle variables that have higher-dimensional representations. An avenue of future work is to develop datasets that allow us to more rigorously test our ability to characterize correlations between higher-dimensional variables.

Acknowledgements
We would like to thank our reviewers and the area chair for their thoughtful comments. This work was supported by NSF award 1835309, NIH grant R01CA199673 from NCI, and MSKCC’s Cancer Center core support NIH grant P30CA008748 from NCI. NS was supported by ERC grant ERC-2012-AdG 321662-HELIOS, EPSRC grant Seebibyte EP/M013774/1 and EPSRC/MURI grant EP/N019474/1. BP was supported by The Alan Turing Institute under the EPSRC grant EP/N510129/1. JWM would additionally like to acknowledge generous support from the Intel Corporation.
the 3M Corporation, and startup funds from Northeastern University.

References


