1 Proofs of Main Results

1.1 Proof of Proposition 1

Proof. This proof is based upon the technical results in Fan et al. [2017].

When both variable j and k are ordinal, by definition and Theorem 1 in Fan et al. [2017] we have

$$
\mathbb{P}(\sup_{1 \leq j, k \leq d_1} |\hat{R}_{jk} - \Sigma^*_j| > t) = \mathbb{P}(\sup_{1 \leq j, k \leq d_1} |\sum_{1 \leq p \leq N_j} (\hat{R}_{jk}^{(p,q)} - \Sigma^*_j)| > N_j N_k t) \\
\leq \sum_{1 \leq j, k \leq d_1} \mathbb{P}(\sup_{1 \leq j, k \leq d_1} |\hat{R}_{jk} - \Sigma^*_j| > t) \\
\leq \max_{j,k} N_j N_k d_1^2 \left\{ 2 \exp(-\frac{nt^2}{8L_2^2}) + 4 \exp(-\frac{nt^2 \pi}{16L_1^2 L_2^2}) + 4 \exp(-\frac{M^2 n}{2L_1^2}) \right\},
$$

where L_1, L_2 are constants and M is defined in Assumption 2. Therefore for some constant C independent of (n, d), we have

$$
\mathbb{P}(\sup_{1 \leq j, k \leq d_1} |\hat{R}_{jk} - \Sigma^*_j| \leq C \sqrt{\frac{\log(d)}{n}}) \geq 1 - d^{-1}.
$$

Similarly, when variable j is ordinal and variable k is continuous, Theorem 2 in Fan et al. [2017] implies

$$
\mathbb{P}(\sup_{1 \leq j \leq d_1, 1 \leq k \leq d} |\hat{R}_{jk} - \Sigma^*_j| > t) \leq 2 \max_j N_j d_1 d_2 \left\{ \exp(-\frac{nt^2}{8L_2^2}) + \exp(-\frac{nt^2 \pi}{12L_1^2 L_3^2}) + \exp(-\frac{M^2 n}{2L_1^2}) \right\},
$$

where L_3 is a constant. Therefore for some constant C independent of (n, d), we have

$$
\mathbb{P}(\sup_{1 \leq j \leq d_1, 1 \leq k \leq d} |\hat{R}_{jk} - \Sigma^*_j| \leq C \sqrt{\frac{\log(d)}{n}}) \geq 1 - d^{-1}.
$$
When both variable j and k are continuous, Liu et al. [2012] proves that
\[
\mathbb{P}(\sup_{d_{1}+1 \leq j, k \leq d} |\hat{R}_{jk} - \Sigma_{jk}^{*}|) \leq 2.45\pi \sqrt{\frac{\log(d)}{n}} \geq 1 - d_{2}^{-1}.
\]
Combining all three cases implies the desired result.

1.2 Proof of Theorem 1

We first introduce a Corollary proved by Fan et al. [2017]:

Corollary 1. Under the same condition in Proposition 1, it holds that
\[
\mathbb{P}(||\hat{R} - \hat{R}||_{max} \leq C\sqrt{\frac{\log(d)}{n}}) \geq 1 - d^{-1},
\]
\[
\mathbb{P}(||\hat{R} - \Sigma^{*}||_{max} \leq 2C\sqrt{\frac{\log(d)}{n}}) \geq 1 - d^{-1}.
\]

Proof of Theorem 1. By definition, we have
\[
\frac{1}{2}\hat{\beta}^{T}\hat{R}\hat{\beta} - e_{k}^{T}\hat{\beta} + \lambda||\hat{\beta}||_{1} \leq \frac{1}{2}\beta^{*T}\hat{R}\beta^{*} - e_{k}^{T}\beta^{*} + \lambda||\beta^{*}||_{1}.
\]
Rearranging terms and applying duality bound $x^{T}y \leq ||x||_{\infty}||y||_{1}$ we have
\[
\frac{1}{2}(\beta^{*})^{T}\hat{R}(\beta^{*} - \beta^{*}) \leq (e_{k} - \hat{R}\beta^{*})^{T}(\beta^{*} - \beta^{*}) + \lambda(||\beta^{*}||_{1} - ||\beta^{*}||_{1})
\]
\[
\leq ||\hat{R}\beta^{*} - e_{k}||_{\infty}||\beta^{*} - \beta^{*}||_{1} + \lambda(||\beta^{*}||_{1} - ||\beta^{*}||_{1}).
\]
Since
\[
||\hat{R}\beta^{*} - e_{k}||_{\infty} = ||(\hat{R} - \Sigma^{*})\beta^{*}||_{\infty} \leq ||\beta^{*}||_{1}||(\hat{R} - \Sigma^{*})||_{max}.
\]
Corollary 1 together with Assumption 3 implies that $||\hat{R}\beta^{*} - e_{k}||_{\infty} \leq CM_{n}\sqrt{\frac{\log(d)}{n}}$ with probability grater than $1 - d^{-1}$. Now choose $\lambda = 2CM_{n}\sqrt{\frac{\log(d)}{n}}$, we get
\[
(\hat{\beta} - \beta^{*})^{T}\hat{R}(\beta^{*} - \beta^{*}) \leq \lambda(||\hat{\beta} - \beta^{*}||_{1} + 2||\beta^{*}||_{1} - 2||\beta^{*}||_{1})
\]
\[
\leq \lambda(3)||\hat{\beta} - \beta^{*}||_{S}||\beta^{*}||_{1} - ||\beta^{*}||_{S}||_{1}.
\]
This implies that
\[
||\hat{\beta} - \beta^{*}||_{S}||_{1} \leq 3||\hat{\beta} - \beta^{*}||_{S},
\]
which further implies
\[
||\hat{\beta} - \beta^{*}||_{1} \leq 4||\hat{\beta} - \beta^{*}||_{S}||_{1} \leq 4s^{1/2}||\hat{\beta} - \beta^{*}||_{2}.
\]
(1.1)

On the other hand, we have
\[
(\hat{\beta} - \beta^{*})^{T}\hat{R}(\beta^{*} - \beta^{*}) \leq 3\lambda||(\hat{\beta} - \beta^{*})||_{S}||_{1} \leq 3\lambda s^{1/2}||\hat{\beta} - \beta^{*}||_{2}.
\]
(1.2)
By Assumption 4, we get
\[\|\hat{\beta} - \beta^*\|_2 \leq 6C\tau M_n \sqrt{\frac{s^* \log(d)}{n}}. \]
Together with (1.1), it holds that
\[\|\hat{\beta} - \beta^*\|_1 \leq 24C\tau M_n s^* \sqrt{\frac{\log(d)}{n}}, \]
and
\[(\hat{\beta} - \beta^*)^T \hat{R}(\hat{\beta} - \beta^*) \leq 36C\tau M_n s^* \log(d) \frac{\log(d)}{n}. \]

1.3 Proof of Theorem 2
Before we prove the main theorem, we firstly introduce and prove the following lemmas:

Lemma 1. Under Assumption 1 and 2, when both \(X_{ij}\) and \(X_{ik}\) are ordinal, it holds that
\[\frac{N_j N_k \sqrt{n} (\hat{R}_{jk} - \Sigma^*_j)}{(\nabla M_{jk}^T(v_{jk}) \Psi_{jk} \nabla M_{jk}(v_{jk}))^{1/2}} \rightarrow_d N(0, 1), \]
where \(\nabla M_{jk}(v_{jk})\) and \(\Psi_{jk}\) are defined in the proof.

When \(X_{ij}\) is ordinal and \(X_{ik}\) is continuous, it holds that
\[\frac{N_j \sqrt{n} (\hat{R}_{jk} - \Sigma^*_j)}{(\nabla M_{jk}^T(v_j) \Psi_j \nabla M_{jk}(v_j))^{1/2}} \rightarrow_d N(0, 1), \]
where \(\nabla M_j(v_j)\) and \(\Psi_j\) are defined in the proof.

Proof. Case 1: When both \(X_{ij}\) and \(X_{ik}\) are ordinal, let \(v_{jk} = (\tau_{jk}, \Phi_j, \Phi_k)^T \in \mathbb{R}^{N_j N_k + N_j + N_k}\), where \(\tau_{jk} = (\tau_{jk}^{(1,1)}, \tau_{jk}^{(1,2)}, \ldots, \tau_{jk}^{(N_j, N_k)})\) and \(\Phi_j = (\Phi(\Delta_j^{(1)}), \ldots, \Phi(\Delta_j^{(N_j)})) \forall j = 1, \ldots, d_1\). Define the function
\[M_{jk}(t_{11}, t_{12}, \ldots, t_{N_j N_k}, x_1, \ldots, x_{N_j}, y_1, \ldots, y_{N_k}) = \sum_{1 \leq p \leq N_j, 1 \leq q \leq N_k} F^{-1}(t_{pq}, \Phi_j^{-1}(x_p), \Phi_k^{-1}(y_q)). \]
Consider the estimator of \(v_{jk}\)
\[\hat{v}_{jk} = (\hat{\tau}_{jk}, \hat{X}_{j}, \hat{X}_k)^T, \]
where
\[\hat{\tau}_{jk} = (\hat{\tau}_{jk}^{(1,1)}, \hat{\tau}_{jk}^{(1,2)}, \ldots, \hat{\tau}_{jk}^{(N_j, N_k)}) \text{ and } \hat{X}_j = (1 - \hat{X}_j^{(1)}, \ldots, 1 - \hat{X}_j^{(N_j)}) \forall j = 1, \ldots, d_1. \]
For notation simplicity, we write
\[\phi_{jk}^{(p,q)}(X_i) = \mathbb{E}\left[\text{sign}\left((X_{ij}^{(p)} - X_{ij}^{(q)})(X_{ik}^{(p)} - X_{ik}^{(q)})\right)\mid X_{ij}, X_{ik}\right], \]
where X_i denotes the i^{th} sample and X_i' is an independent copy X_i.

By the property of Hájek projection of U-statistics, we have

$$\sqrt{n} (\hat{v}_{jk} - v_{jk}) = \sqrt{n} \tilde{U}_n + O_p(1),$$

where

$$\tilde{U}_n = \frac{1}{n} \sum_{i=1}^{n} \begin{pmatrix} 2\phi_{(1,1)}(X_i) \\ 2\phi_{(1,2)}(X_i) \\ \vdots \\ 2\phi_{(N_j,N_k)}(X_i) \\ 1 - X_{ij}^{(1)} \\ \vdots \\ 1 - X_{ij}^{(N_j)} \\ 1 - X_{ik}^{(1)} \\ \vdots \\ 1 - X_{ik}^{(N_k)} \end{pmatrix} \frac{\hat{\theta}^{(jk)}}{\theta^{(jk)}} - \begin{pmatrix} 2\tau_{(1,1)}^{(jk)} \\ 2\tau_{(1,2)}^{(jk)} \\ \vdots \\ 2\tau_{(N_j,N_k)}^{(jk)} \\ \Phi(\Delta_{j}^{(1)}) \\ \vdots \\ \Phi(\Delta_{j}^{(N_j)}) \\ \Phi(\Delta_{k}^{(1)}) \\ \vdots \\ \Phi(\Delta_{k}^{(N_k)}) \end{pmatrix}.$$

Since the sign function and $X_{ij}^{(p)}$ are bounded, by the central limit theorem we get

$$\sqrt{n} \tilde{U}_n \rightarrow_d N(0, \Psi_{jk}),$$

where

$$\Psi_{jk} = \mathbb{E}(\hat{\theta}^{(jk)} - \theta^{(jk)}) \left(\hat{\theta}^{(jk)} - \theta^{(jk)} \right)^T.$$

On the other hand, we have by definition

$$\sqrt{n} (\hat{R}_{jk} - \Sigma_{jk}^*) = \frac{\sqrt{n}}{N_j N_k} (M_{jk}(\hat{v}_{jk}) - M_{jk}(v_{jk})).$$

By Lemma 2 of Fan et al. [2017], $\frac{\partial M_{jk}}{\partial t_{pq}}$ is bounded and well defined at v_{jk}. In addition, we can show that

$$\frac{\partial M_{jk}}{\partial x_{p}}(v_{jk}) = \sum_{q=1}^{N_k} \Phi(\Delta_{k}^{(q)}) - \Phi\left(\frac{\Delta_{k}^{(q)} - \Sigma_{jk} \Delta_{j}^{(p)}}{\sqrt{1 - \Sigma_{jk}^2}}\right) \cdot \frac{\partial M_{jk}}{\partial t_{pq}}(v_{jk}),$$

which is also bounded and well defined, and similarly for $\frac{\partial M_{jk}}{\partial y_{q}}(v_{jk})$. This implies that the gradient of M_{jk} at v_{jk}, denoted by $\nabla M_{jk}(v_{jk})$, is bounded and well defined. This completes the proof by applying the delta method.

Case 2: When X_{ij} is ordinal and X_{ik} is continuous. Let $v_j = (\tau_j, \Phi_j)^T \in \mathbb{R}^{2N_j}$, where $\tau_j = (\tau_{jk}^{(1)}, \ldots, \tau_{jk}^{(N_k)})$. Define

$$M_j(t_1, \ldots, t_{N_j}, x_1, \ldots, x_{N_j}) = \sum_{1 \leq p \leq N_j} F^{-1}(t_p, \Phi^{-1}(x_p)).$$

Let

$$\hat{v}_j = (\hat{\tau}_j, \hat{X}_j)^T,$$
where
\[\hat{\tau}_j = (\hat{\tau}_j^{(1)}, \ldots, \hat{\tau}_j^{(N_j)}) \quad \text{and} \quad \tilde{X}_j = (1 - \hat{X}_j^{(1)}, \ldots, 1 - \hat{X}_j^{(N_j)}) \quad \forall j = 1, \ldots, d_1. \]

Similarly, we write
\[\phi_{jk}^{(p)}(X_i) = \mathbb{E}\left[\text{sign}\{(X_{ij}^{(p)} - X_{ij}^{(p)'}) (X_{ik} - X_{ik}')\} | X_{ij}, X_{ik}\right]. \]

The Hájek projection of U-statistics gives
\[\sqrt{n}(\tilde{v}_j - v_j) = \sqrt{n}\tilde{U}_n + o_P(1), \]

where
\[\tilde{U}_n = \frac{1}{n} \sum_{i=1}^{n} \begin{bmatrix} 2\phi_{jk}^{(1)}(X_i) \\ \vdots \\ 2\phi_{jk}^{(N_j)}(X_i) \\ 1 - X_{ij}^{(1)} \\ \vdots \\ 1 - X_{ij}^{(N_j)} \end{bmatrix} - \begin{bmatrix} 2\hat{\tau}_{jk}^{(1)} \\ \vdots \\ 2\hat{\tau}_{jk}^{(N_j)} \\ \Phi(\triangle_{j}^{(1)}) \\ \vdots \\ \Phi(\triangle_{j}^{(N_j)}) \end{bmatrix}. \]

Since the sign function and \(X_j^{(p)} \) are bounded, by the central limit theorem we get
\[\sqrt{n}\tilde{U}_n \rightarrow_d N(0, \Psi_j), \]

where \(\Psi_j = \mathbb{E}(\tilde{\theta}_j^{(j)} - \theta_j^{(j)})(\tilde{\theta}_j^{(j)} - \theta_j^{(j)})^T. \) Therefore, it holds that
\[\sqrt{n}(R_{jk} - \Sigma_{jk}^*) = \frac{\sqrt{n}}{N_j}(M_j(\tilde{v}_j) - M_j(v_j)). \]

Similar to the previous case, it can be shown that \(\nabla M_j(v_j) \) is bounded and well defined. This completes the proof by applying the delta method.

\[\square \]

Lemma 2. Under Assumption 1 - 4, it holds that
\[(\hat{\gamma} - \gamma^*)^T \mathbf{R}_{22}(\hat{\gamma} - \gamma^*) = O_P(M_n^2 s^* \log(d) \frac{1}{n}). \]

Proof of Lemma 2. The Proof of Theorem 1 implies that
\[(\hat{\gamma} - \gamma^*)^T \mathbf{R}_{22}(\hat{\gamma} - \gamma^*) \leq 2(\hat{\beta} - \beta^*)^T \mathbf{R}(\hat{\beta} - \beta^*) + 2(\hat{\theta} - \theta^*)^2 \]
\[\leq 2(\hat{\beta} - \beta^*)^T \mathbf{R}(\hat{\beta} - \beta^*) + 2\|\hat{\beta} - \beta^*\|_2^2 \]
\[\leq 36C_\tau M_n(1 + C_\tau M_n) s^* \log(d) \frac{1}{n}. \]

\[\square \]
Lemma 3. Under Assumption 1 - 4, with probability greater than $1 - d^{-1}$, we have $\|\hat{w} - w^*\|_1 \lesssim (C' + M_n)s^* \sqrt{\frac{\log(d)}{n}}$, and $(\hat{w} - w^*)^T \hat{R}_{22}(\hat{w} - w^*) \lesssim (C' + M_n)^2 s^* \frac{\log(d)}{n}$, where $C' > 0$ is a constant.

Proof of Lemma 3. By definition, we know $\|\hat{w}\|_1 \leq \|w^*\|_1 = \|w^*_s\|_1$. This together with $\|((\hat{w} - w^*)_s)\|_1 \geq \|w^*_s\|_1 - \|\hat{w}_s\|_1$ implies that $\|((\hat{w} - w^*)_s)\|_1 \geq \|((\hat{w} - w^*)_s)\|_1$. In addition, we have $\|((\hat{w} - w^*)_s)\|_1 \leq 2\|((\hat{w} - w^*)_s)\|_1$.

On the other hand, by Corollary 1 and Assumption 3 we have

$$
\|\hat{R}_{21} - \tilde{R}_{22}w^*\|_\infty = \|\hat{R}_{21} - \tilde{R}_{22}\Sigma_{22}^{-1}\Sigma_{21}\|_\infty \\
= \|\hat{R}_{21} - \Sigma_{21} + (I - \hat{R}_{22}\Sigma_{22}^{-1})\Sigma_{21}\|_\infty \\
\leq \|\hat{R}_{21} - \Sigma_{21}\|_\infty + \|((\Sigma_{22} - \hat{R}_{22})(\Sigma_{22}^{-1}\Sigma_{21})\|_\infty \\
\leq \|\hat{R} - \Sigma\|_{\max} + \|w^*\|_1\|\hat{R}_{22} - \tilde{R}_{22}\|_{\max} \\
\leq (2C + \tau M_n)\sqrt{\frac{\log(d)}{n}}.
$$

(1.3)

By choosing $\lambda = \tau M_n\sqrt{\frac{\log(d)}{n}}$, (1.3) implies that $\|\tilde{R}_{22}(\tilde{w} - w^*)\|_\infty \leq \|\hat{R}_{21} - \tilde{R}_{22}w^*\|_\infty + \|\hat{R}_{21} - \tilde{R}_{22}\tilde{w}\|_\infty \leq 2(C + \tau M_n)\sqrt{\frac{\log(d)}{n}}$. Therefore we get

$$
(\hat{w} - w^*)^T \tilde{R}_{22}(\hat{w} - w^*) \leq \|\hat{w} - w^*\|_1\|\tilde{R}_{22}(\hat{w} - w^*)\|_\infty \\
\leq \|\tilde{R}_{22}(\hat{w} - w^*)\|_\infty \|\hat{w} - w^*\|_1 \\
\leq 2s^{1/2}\|\hat{w} - w^*\|_2\|\tilde{R}_{22}(\hat{w} - w^*)\|_\infty \\
\leq 4(C + \tau M_n)\sqrt{\frac{s^*\log(d)}{n}}\|\hat{w} - w^*\|_2.
$$

(1.4)

This together with the Assumption 4 implies that

$$
\|\hat{w} - w^*\|_1 \leq 2\|((\hat{w} - w^*)_s)\|_1 \leq 2s'\|\hat{w} - w^*\|_2 \leq 8\tau(C + \tau M_n)s^* \sqrt{\frac{\log(d)}{n}}.
$$

In addition,

$$
(\hat{w} - w^*)^T \tilde{R}_{22}(\hat{w} - w^*) \leq 16\tau(C + \tau M_n)^2 s^* \frac{\log(d)}{n}.
$$

This completes the proof. \hfill \Box

Lemma 4. With probability greater than $1 - d^{-1}$, we have $(\hat{v} - v^*)^T \tilde{R}(\hat{\beta} - \beta^*) \lesssim (C' + M_n)M_n s^* \frac{\log(d)}{n}$, where $C' > 0$ is a constant.

Proof. By Cauchy-Schwarz inequality and Cholesky decomposition, write $\tilde{R} = LL^T$, we have

$$
[(\hat{v} - v^*)^T \tilde{R}(\hat{\beta} - \beta^*)]^2 = [(\hat{v} - v^*)^T LL^T (\hat{\beta} - \beta^*)]^2 \\
\leq (\hat{v} - v^*)^T LL^T (\hat{v} - v^*)(\hat{\beta} - \beta^*)^T LL^T (\hat{\beta} - \beta^*) \\
= (\hat{v} - v^*)^T \tilde{R}(\hat{v} - v^*)(\hat{\beta} - \beta^*)^T \tilde{R}(\hat{\beta} - \beta^*)
$$

Thus Theorem 1 and Lemma 3 imply the desired result. \hfill \Box
Proof of Theorem 2. By definition, we have
\[\sqrt{n} |\tilde{S}(\beta_0) - S(\beta^*)| = \sqrt{n} |\tilde{v}^T (\tilde{R}\beta_0 - e_k) - v^* T (\tilde{R}\beta^* - e_k)| \]
\[\leq \sqrt{n} |(\tilde{v} - v^*)^T (\tilde{R}\beta_0 - e_k)| + \sqrt{n} |v^* T \tilde{R}(\beta_0 - \beta^*)| \]
\[:= I_1 + I_2. \]

Here
\[|I_1| \leq \sqrt{n} |(\tilde{v} - v^*)^T (\tilde{R}\beta^* - e_k)| + \sqrt{n} |(\tilde{v} - v^*)^T (\tilde{R}\beta_0 - \tilde{R}\beta^*)| \]
\[\leq \sqrt{n} |\tilde{v} - v^*|_1 ||\tilde{R}\beta^* - e_k||_\infty + \sqrt{n} |(\tilde{v} - v^*)^T \tilde{R}(\beta_0 - \beta^*)| + \sqrt{n} |\tilde{v} - v^*|_1 ||\tilde{R} - \tilde{R}\tilde{\beta}_0||_\infty \]
\[\text{(1)} \quad \text{(2)} \quad \text{(3)} \]

By the proof of Theorem 1 and Lemma 3, we can show that
\[(1) \lesssim o_P(1). \]

In addition, Lemma 4 implies that (2) = o_P(1). On the other hand,
\[||(\tilde{R} - \tilde{R})\tilde{\beta}_0||_\infty \leq ||(\tilde{R} - \tilde{R})(\tilde{\beta}_0 - \beta^*)||_\infty + ||(\tilde{R} - \tilde{R})\beta^*||_\infty. \]

By Corollary 1 and Theorem 1, we know \(\sqrt{n} ||(\tilde{R} - \tilde{R})\tilde{\beta}_0||_\infty \lesssim M_n \sqrt{\log(d)} (s^* \sqrt{\frac{\log(d)}{n}} + 1) \) with probability greater than \(1 - d^{-1} \). Together with Lemma 4 we can show that
\[(3) \lesssim o_P(1). \]

For \(I_2 \), we have
\[I_2 = \sqrt{n} |v^* T (\tilde{R} - \tilde{R})(\tilde{\beta}_0 - \beta^*)| + \sqrt{n} |v^* T \tilde{R}(\beta_0 - \beta^*)| \]
\[\text{(4)} \quad \text{(5)} \]

By Theorem 1 and Corollary 1, we can show that (4) \(\lesssim \sqrt{n} ||\tilde{R} - \tilde{R}||_{\max} ||\tilde{\beta} - \beta^*||_1 = o_P(1) \), and (5) \(\leq ||\tilde{\beta} - \beta^*||_1 ||\tilde{R}_{21} - \tilde{R}_{22} w^*||_\infty = o_P(1) \).

The bounds above imply that \(\sqrt{n} |\tilde{S}(\beta_0) - S(\beta^*)| = o_P(1) \). This together with the normality of \(\tilde{\sigma} \) implied by Lemma 1, consistency of \(\tilde{\sigma} \) and the assumption that \(\sigma^* \geq K \) implies the desired result by applying Slutsky’s theorem.

Note that in our case, we can estimate \(\sigma^* \) by the plug-in estimator \(\tilde{\sigma} = \tilde{v}^T \tilde{\Phi} \tilde{v} \), where \(\tilde{\Phi} = \frac{1}{n} \sum_{i=1}^n (\tilde{R}_i \tilde{\beta} - e_k)(\tilde{R}_i \tilde{\beta} - e_k)^T \), and \((\tilde{R}_i)_{jk} \) can be written as a function of \(\tilde{\sigma}^{(j)} \) (or \(\tilde{\sigma}^{(i)} \)) that depends on the function \(M_{jk}(. \) (or \(M_j(. \)), the type of \(X_{ij}, X_{ik} \) and possibly the number of levels if at least one of the two is ordinal. This estimator is consistent by Theorem 1 and Lemma 3. \(\Box \)

2 Building confidence interval using the pseudo-score function

Without loss of generality, suppose we want to build a confidence interval for \(\theta = \tilde{\Omega}_{1k} \). Consider a one-step type estimator:
\[\tilde{\theta} := \tilde{\theta} - \tilde{S}(\tilde{\beta})\tilde{\Omega}_{11}. \]

The following Corollary shows that \(\tilde{\theta} \) is consistent and asymptotic normal:
Corollary 2. Suppose Assumption 1 - 5 hold. If \(M^2_n s^* \log(d)/\sqrt{n} = o(1) \) and \(\sigma^* \geq K \) for some constant \(K \), then we have
\[
\sqrt{n}(\bar{\theta} - \theta^*)/(\Omega^*_1 \sigma^{1/2}) \to_d N(0, 1).
\]
Therefore, a \((1 - \alpha) \times 100\%\) confidence interval of \(\theta^* \) is given by
\[
[\bar{\theta} - \Phi^{-1}(1 - \alpha/2)\hat{\sigma}_{11}^{1/2}/\sqrt{n}, \bar{\theta} + \Phi^{-1}(1 - \alpha/2)\hat{\sigma}_{11}^{1/2}/\sqrt{n}].
\]

2.1 Proof of Corollary 2

Proof. It suffices to show that \(\sqrt{n}|(\bar{\theta} - \theta^*)/(\sigma^{1/2} \Omega^*_1) + v^* (\bar{R}\beta^* - e_k)/\sigma^{1/2}| = o_P(1) \). By definition, we have
\[
\sqrt{n}|(\bar{\theta} - \theta^*)/\Omega^*_1 + v^T (\bar{R}\beta^* - e_k)| = \sqrt{n}|(\bar{\theta} - \tilde{S}(\tilde{\beta}\hat{\Omega}_{11} - \theta^*)/\Omega^*_1 + v^T (\bar{R}\beta^* - e_k)|
\]
\[
= \sqrt{n}|(\bar{\theta} - \theta^*)/\Omega^*_1 - \tilde{S}(\tilde{\beta}\hat{\Omega}_{11}/\Omega^*_1 + v^T (\bar{R}\beta^* - e_k)|
\]
\[
\leq \sqrt{n}|(\bar{\theta} - \theta^*)/\Omega^*_1 - v^T \bar{R}(\bar{\beta} - \beta^*)| + \sqrt{n}|v^* - \tilde{v}|^T (\bar{R}\beta - e_k)|
\]
\[
+ \sqrt{n}|(1 - \hat{\Omega}_{11}/\Omega^*_1)\tilde{v}^T (\bar{R}\beta - e_k)|
\]
\[
:= I_1 + I_2 + I_3.
\]

By Corollary 1 and Lemma 3, we can show that
\[
|I_2| \leq \|v^* - \tilde{v}\|_1 \|\bar{R}\beta - e_k\|_{\infty} \leq o_P(1).
\]

For \(I_1 \), we have
\[
|I_1| \leq \sqrt{n}|\bar{\theta} - \theta^*/\Omega^*_1 - v^T (\bar{R}(\beta - \beta^*))| + \sqrt{n}|v^T (\bar{R} - \tilde{R})(\beta - \beta^*)|.
\]

Here (2) \(\leq \sqrt{n}|\bar{R} - \tilde{R}|_{\max} \|\tilde{\beta} - \beta^\|_1 = o_P(1) \) by Corollary 1 and Theorem 1. In addition, we can show that
\[
|1/\Omega^*_1 - (\tilde{R}_{11} - w^T \bar{R}_{21})| = o_P(1),
\]
where \(T = [1/\Omega^*_1 - (\tilde{R}_{11} - w^T \bar{R}_{21}), \tilde{R}_{12} - w^T \bar{R}_{22}] \). Theorem 1, the proof of Lemma 3 and the fact that
\[
|1/\Omega^*_1 - (\tilde{R}_{11} - w^T \bar{R}_{21})| \leq |\tilde{R}_{11} - \Sigma_{11}| + |w^T (\bar{R}_{21} - \Sigma_{21})|
\]
imply that (1) = o_P(1).

In addition, the proof of Theorem 2 implies that \(\sqrt{n}\|\tilde{v}^T (\bar{R}\beta - e_k)/\sigma^{1/2}\| = O_P(1) \). Therefore the consistency of \(\hat{\Omega}_{11} \) and the fact that \(\Omega^*_1 \geq 1/\tau \) imply that \(|I_3|/\sigma^{1/2} = o_P(1) \).

This completes the proof.
3 Additional Simulation Details

3.1 RBE and EMLE method

For the rank-based estimator in Fan et al. [2017], due to the existence of multiple levels, the single level p_j for X_{ij} is chosen such that the data above or below this level are balanced as much as possible, i.e.,

$$\hat{p}_j = \arg\min_{1 \leq k \leq N_j} \sum_{i=1}^{n} (\mathbb{1}(X_{ij} \geq k) - \mathbb{1}(X_{ij} < k)).$$

The RBE estimator in method (1) in the main text is defined as $\hat{R}_{jk}(\hat{p}_j, \hat{q}_j)$ for ordinal-by-ordinal entry and similarly for ordinal-by-continuous entry, which is often the best estimator among the class of base estimators in practice. The EMLE method is an extension to the direct estimation method Suggala et al. [2017] for ordinal graphical model, where the direct estimation for an ordinal-ny-continuous entry is given by

$$\hat{\Sigma}_{jk} = \arg\max_{-1 < s < 1} \prod_{i=1}^{n} \int_{u \in [\hat{\Delta}_{ij}, \hat{\Delta}_{ij} + 1]} \phi_2(x_1, X_{ik}; s) dx_1.$$

For estimating the latent precision matrix, we compare the proposed estimator with the corresponding modified SCIO estimator by plugging in the RBE and EMLE estimates. For instance, the modified SCIO estimator with RBE is given by $\hat{\Omega}_k = \arg\min_\beta \{ \frac{1}{2} \beta^T \hat{R}_{\text{RBE}} \beta - e_k^T \beta + \lambda_k ||\beta||_1 \}$, where $\hat{\Omega}_k$ is the kth column of the estimated precision matrix. For all considered methods, the tuning parameter λ_k is taken as $\lambda_k = \arg\min_{\lambda_k \in \Lambda} ||\hat{\Omega}_k - \Omega_k||_1$, where Λ is a reasonable grid.

References

