A Proof of Proposition 4.2

By the identification in Proposition 4.1, we have $\gamma=\sum_{j=1}^{k} \frac{1}{\lambda_{j}} C_{j}^{0} \otimes C_{j}^{1}$. We perform a bias-variance decomposition:

$$
\begin{aligned}
\int\|x-y\|^{2} \mathrm{~d} \gamma(x, y) & =\sum_{j=1}^{k} \frac{1}{\lambda_{j}} \int\|x-y\|^{2} \mathrm{~d} C_{j}^{0}(x) \mathrm{d} C_{j}^{1}(y) \\
& =\sum_{j=1}^{k} \frac{1}{\lambda_{j}} \int\left\|x-\mu\left(C_{j}^{0}\right)-\left(y-\mu\left(C_{j}^{1}\right)\right)+\left(\mu\left(C_{j}^{0}\right)-\mu\left(C_{j}^{1}\right)\right)\right\|^{2} \mathrm{~d} C_{j}^{0}(x) \mathrm{d} C_{j}^{1}(y) \\
& =\sum_{j=1}^{k} \int\left\|x-\mu\left(C_{j}^{0}\right)\right\|^{2} \mathrm{~d} C_{j}^{0}(x)+\int\left\|y-\mu\left(C_{j}^{1}\right)\right\|^{2} \mathrm{~d} C_{j}^{1}(y)+\lambda_{j}\left\|\mu\left(C_{j}^{0}\right)-\mu\left(C_{j}^{1}\right)\right\|^{2}
\end{aligned}
$$

where the cross terms vanish by the definition of $\mu\left(C_{j}^{0}\right)$ and $\mu\left(C_{j}^{1}\right)$.

B Proof of Proposition 4.3

We first show that if H is an optimal solution to (5), then the hubs z_{1}, \ldots, z_{k} satisfy $z_{j}=\frac{1}{2}\left(\mu\left(C_{j}^{0}\right)+\mu\left(C_{j}^{1}\right)\right)$ for $j=1, \ldots k$. Let P be any distribution in \mathcal{D}_{k}. Denote the support of P by z_{1}, \ldots, z_{k}, and let $\left\{C_{j}^{0}\right\},\left\{C_{j}^{1}\right\}$ be the partition of \hat{P}_{0} and \hat{P}_{1} induced by the objective $W_{2}^{2}\left(P, \hat{P}_{0}\right)+W_{2}^{2}\left(P, \hat{P}_{1}\right)$. By the same bias-variance decomposition as in the proof of Proposition 4.2,

$$
W_{2}^{2}\left(\hat{P}_{0}, P\right)=\sum_{j=1}^{k} \int_{C_{j}^{0}}\left\|x-z_{j}\right\|^{2} \mathrm{~d} \hat{P}_{0}(x)=\sum_{j=1}^{k} \int_{C_{j}^{0}}\left\|x-\mu\left(C_{j}^{0}\right)\right\|^{2} \mathrm{~d} \hat{P}_{0}(x)+\lambda_{j}\left\|z_{j}-\mu\left(C_{j}^{0}\right)\right\|^{2}
$$

and since the analogous claim holds for \hat{P}_{1}, we obtain that
$W_{2}^{2}\left(P, \hat{P}_{0}\right)+W_{2}^{2}\left(P, \hat{P}_{1}\right)=\sum_{j=1}^{k} \int_{C_{j}^{0}}\left\|x-\mu\left(C_{j}^{0}\right)\right\|^{2} \mathrm{~d} \hat{P}_{0}(x)+\int_{C_{j}^{1}}\left\|y-\mu\left(C_{j}^{1}\right)\right\|^{2} \mathrm{~d} \hat{P}_{1}(y)+\lambda_{j}\left(\left\|z_{j}-\mu\left(C_{j}^{0}\right)\right\|^{2}+\left\|z_{j}-\mu\left(C_{j}^{1}\right)\right\|^{2}\right)$.
The first two terms depend only on the partitions of \hat{P}_{0} and \hat{P}_{1}, and examining the final term shows that any minimizer of $W_{2}^{2}\left(P, \hat{P}_{0}\right)+W_{2}^{2}\left(P, \hat{P}_{1}\right)$ must have $z_{j}=\frac{1}{2}\left(\mu\left(C_{j}^{0}\right)+\mu\left(C_{j}^{1}\right)\right)$ for $j=1, \ldots k$, where C_{j}^{0} and C_{j}^{1} are induced by P, in which case $\left\|z_{j}-\mu\left(C_{j}^{0}\right)\right\|^{2}+\left\|z_{j}-\mu\left(C_{j}^{1}\right)\right\|^{2}=\frac{1}{2}\left\|\mu\left(C_{j}^{0}\right)-\mu\left(C_{j}^{1}\right)\right\|^{2}$. Minimizing over $P \in \mathcal{D}_{k}$ yields the claim.

C Proof of Theorem 4

The proof of Theorem 4 relies on the following propositions, which shows that controlling the gap between $W_{2}^{2}(\rho, P)$ and $W_{2}^{2}(\rho, Q)$ is equivalent to controlling the distance between P and Q with respect to a simple integral probability metric [Müller, 1997].

We make the following definition.
Definition 5. A set $S \in \mathbb{R}^{d}$ is a n-polyhedron if S can be written as the intersection of n closed half-spaces.
We denote the set of n-polyhedra by \mathcal{P}_{n}. Given $c \in \mathbb{R}^{d}$ and $S \in \mathcal{P}_{k-1}$, define

$$
f_{c, S}(x):=\|x-c\|^{2} \mathbb{1}_{x \in S} \quad \forall x \in \mathbb{R}^{d}
$$

Proposition C.1. Let P and Q be probability measures supported on the unit ball in \mathbb{R}^{d}. The

$$
\begin{equation*}
\sup _{\rho \in \mathcal{D}_{k}}\left|W_{2}^{2}(\rho, P)-W_{2}^{2}(\rho, Q)\right| \leq 5 k \sup _{c:\|c\| \leq 1, S \in \mathcal{P}_{k-1}}\left|\mathbb{E}_{P} f_{c, S}-\mathbb{E}_{Q} f_{c, S}\right| \tag{7}
\end{equation*}
$$

To obtain Theorem 4, we use techniques from empirical process theory to control the right side of (7) when $Q=\hat{P}$.

Proposition C.2. There exists a universal constant C such that, if P is supported on the unit ball and $X_{1}, \ldots, X_{n} \sim \mu$ are i.i.d., then

$$
\mathbb{E} \sup _{c:\|c\| \leq 1, S \in \mathcal{P}_{k-1}}\left|\mathbb{E}_{P} f_{c, S}-\mathbb{E}_{\hat{P}} f_{c, S}\right| \leq C \sqrt{\frac{k d \log k}{n}}
$$

With these tools in hand, the proof of Theorem 4 is elementary.
Proof of Theorem 4. Proposition C. 1 implies that

$$
\mathbb{E} \sup _{\rho \in \mathcal{D}_{k}}\left|W_{2}^{2}(\rho, \hat{\mu})-W_{2}^{2}(\rho, \mu)\right| \lesssim \sqrt{\frac{k^{3} d \log k}{n}}
$$

To show the high probability bound, it suffices to apply the bounded difference inequality (see [McDiarmid, 1989]) and note that, if \hat{P} and \tilde{P} differ in the location of a single sample, then for any ρ, we have the bound $\left|W_{2}^{2}(\rho, \hat{P})-W_{2}^{2}(\rho, \tilde{P})\right| \leq 4 / n$. The concentration inequality immediately follows.

We now turn to the proofs of Propositions C. 1 and Propositions C.2.
We first review some facts from the literature. It is by now well known that there is an intimate connection between the k-means objective and the squared Wasserstein 2-distance [Canas and Rosasco, 2012, Ng, 2000, Pollard, 1982]. This correspondence is based on the following observation, more details about which can be found in [Graf and Luschgy, 2000]: given fixed points c_{1}, \ldots, c_{k} and a measure P, consider the quantity

$$
\begin{equation*}
\min _{w \in \Delta_{k}} W_{2}^{2}\left(\sum_{i=1}^{k} w_{i} \delta_{c_{i}}, P\right) \tag{8}
\end{equation*}
$$

where the minimization is taken over all probability vectors $w:=\left(w_{1}, \ldots, w_{k}\right)$. Note that, for any measure ρ supported on $\left\{c_{1}, \ldots, c_{k}\right\}$, we have the bound

$$
W_{2}^{2}(\rho, P) \geq \mathbb{E}\left[\min _{i \in[k]}\left\|X-c_{k}\right\|^{2}\right] \quad X \sim P
$$

On the other hand, this minimum can be achieved by the following construction. Denote by $\left\{S_{1}, \ldots, S_{k}\right\}$ the Voronoi partition [Okabe et al., 2000] of \mathbb{R}^{d} with respect to the centers $\left\{c_{1}, \ldots, c_{k}\right\}$ and let $\rho=\sum_{i=1}^{k} P\left(S_{i}\right) \delta_{c_{i}}$. If we let $T: \mathbb{R}^{d} \rightarrow\left\{c_{1}, \ldots, c_{k}\right\}$ be the function defined by $S_{i}=T^{-1}\left(c_{i}\right)$ for $i \in[k]$, then $(\mathrm{id}, T)_{\sharp} P$ defines a coupling between P and ρ which achieves the above minimum, and

$$
\mathbb{E}\left[\|X-T(X)\|^{2}\right]=\mathbb{E}\left[\min _{i \in[k]}\left\|X-c_{i}\right\|^{2}\right] \quad X \sim P
$$

The above argument establishes that the measure closest to P with prescribed support of at most k points is induced by a Voronoi partition of \mathbb{R}^{d}, and this observation carries over into the context of the k-means problem [Canas and Rosasco, 2012], where one seeks to solve

$$
\begin{equation*}
\min _{\rho \in \mathcal{D}_{k}} W_{2}^{2}(\rho, P) \tag{9}
\end{equation*}
$$

The above considerations imply that the minimizing measure will correspond to a Voronoi partition, and that the centers c_{1}, \ldots, c_{k} will lie at the centroids of each set in the partition with respect to P. As above, there will exist a map T realizing the optimal coupling between P and ρ, where the sets $T^{-1}\left(c_{i}\right)$ for $i \in[k]$ form a Voronoi partition of \mathbb{R}^{d}. In particular, standard facts about Voronoi cells for the ℓ_{2} distance [Okabe et al., 2000, Definition V4] imply that, for $i \in[k]$, the set $\operatorname{cl}\left(T^{-1}\left(c_{i}\right)\right)$ is a $(k-1)$-polyhedron. (See Definition 5 above.)
In the case when ρ is an arbitrary measure with support of size k-and not the solution to an optimization problem such as (8) or (9) - it is no longer the case that the optimal coupling between P and ρ corresponds to a Voronoi partition of \mathbb{R}^{d}. The remainder of this section establishes, however, that, if P is absolutely continuous with respect to the Lebgesgue measure, then there does exist a map T such that the fibers of points in the image of T have a particularly simple form: like Voronoi cells, the sets $\left\{\operatorname{cl}\left(T^{-1}\left(c_{i}\right)\right\}_{i=1}^{k}\right.$ can be taken to be simple polyehdra.

Definition 6. A function $T: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ is a polyhedral quantizer of order k if T takes at most k values and if, for each $x \in \operatorname{Im}(T)$, the set $\operatorname{cl}\left(T^{-1}(x)\right)$ is a $(k-1)$-polyhedron and $\partial T^{-1}(x)$ has zero Lebesgue measure.

We denote by \mathcal{Q}_{k} the set of k-polyhedral quantizers whose image lies inside the unit ball of \mathbb{R}^{d}.
Proposition C.3. Let P be any absolutely continuous measure in \mathbb{R}^{d}, and let ρ be any measure supported on k points. Then there exists a map T such that $(i d, T)_{\sharp} P$ is an optimal coupling between P and ρ and T is a polyhedral quantizer of order k.

Proof. Denote by $\rho_{1}, \ldots, \rho_{k}$ the support of ρ. Standard results in optimal transport theory [Santambrogio, 2015, Theorem 1.22] imply that there exists a convex function u such that the optimal coupling between P and ρ is of the form $(\mathrm{id}, \nabla u)_{\sharp} P$. Let $S_{i}=(\nabla u)^{-1}\left(\rho_{i}\right)$.

Since $\nabla u(x)=\rho_{j}$ for any $x \in S_{j}$, the restriction of u to S_{j} must be an affine function. We obtain that there exists a constant β_{j} such that

$$
u(x)=\left\langle\rho_{j}, x\right\rangle+\beta_{j} \quad \forall x \in S_{j} .
$$

Since ρ_{j} has nonzero mass, the fact that $\nabla u_{\sharp} P=\rho$ implies that $P\left(S_{j}\right)>0$, and, since P is absolutely continuous with respect to the Lebesgue measure, this implies that S_{j} has nonempty interior. If $x \in \operatorname{int}\left(S_{j}\right)$, then $\partial u(x)=$ $\left\{\rho_{j}\right\}$. Equivalently, for all $y \in \mathbb{R}^{d}$,

$$
u(y) \geq\left\langle\rho_{j}, y\right\rangle+\beta_{j}
$$

Employing the same argument for all $j \in[k]$ yields

$$
u(x) \geq \max _{j \in[k]}\left\langle\rho_{j}, x\right\rangle+\beta_{j}
$$

On the other hand, if $x \in S_{i}$, then

$$
u(x)=\left\langle\rho_{i}, x\right\rangle+\beta_{i} \leq \max _{j \in[k]}\left\langle\rho_{j}, x\right\rangle+\beta_{j}
$$

We can therefore take u to be the convex function

$$
u(x)=\max _{j \in[k]}\left\langle\rho_{j}, x\right\rangle+\beta_{j}
$$

which implies that, for $i \in[k]$,

$$
\begin{aligned}
\operatorname{cl}\left(S_{i}\right) & =\left\{y \in \mathbb{R}^{d}:\left\langle\rho_{i}, x\right\rangle+\beta_{i} \geq\left\langle\rho_{j}, x\right\rangle+\beta_{j} \quad \forall j \in[k] \backslash\{i\}\right\} \\
& =\bigcap_{j \neq i}\left\{y \in \mathbb{R}^{d}:\left\langle\rho_{i}, x\right\rangle+\beta_{i} \geq\left\langle\rho_{j}, x\right\rangle+\beta_{j}\right\}
\end{aligned}
$$

Therefore $\operatorname{cl}\left(S_{i}\right)$ can be written as the intersection of $k-1$ halfspaces. Moreover, $\partial S_{i} \subseteq \bigcup_{j \neq i}\left\{y \in \mathbb{R}^{d}\right.$: $\left.\left\langle\rho_{i}, x\right\rangle+\beta_{i}=\left\langle\rho_{j}, x\right\rangle+\beta_{j}\right\}$, which has zero Lebesgue measure, as claimed.

C. 1 Proof of Proposition C. 1

By symmetry, it suffices to show the one-sided bound

$$
\sup _{\rho \in \mathcal{D}_{k}} W_{2}^{2}(\rho, Q)-W_{2}^{2}(\rho, P) \leq 5 k \sup _{c:\|c\| \leq 1, S \in \mathcal{P}_{k-1}}\left|\mathbb{E}_{P} f_{c, S}-\mathbb{E}_{Q} f_{c, S}\right|
$$

We first show the claim for P and Q which are absolutely continuous. Fix a $\rho \in \mathcal{D}_{k}$. Since P and Q are absolutely continuous, we can apply Proposition C. 3 to obtain that there exists a $T \in \mathcal{Q}_{k}$ such that

$$
W_{2}^{2}(\rho, P)=\mathbb{E}_{P}\|X-T(X)\|^{2}
$$

Let $\left\{c_{1}, \ldots, c_{k}\right\}$ be the image of T, and for $i \in[k]$ let $S_{i}:=\operatorname{cl}\left(T^{-1}\left(c_{i}\right)\right)$. Denote by $d_{T V}(\mu, \nu):=$ $\sup _{A \text { measurable }}|\mu(A)-\nu(A)|$ the total variation distance between μ and ν. Applying Lemma E. 1 to ρ and Q yields that

$$
W_{2}^{2}(Q, \rho) \leq \mathbb{E}_{Q}\|X-T(X)\|^{2}+4 \mathrm{~d}_{\mathrm{TV}}\left(T_{\sharp} Q, \rho\right)
$$

Since $\rho=T_{\sharp} P$ and Q and P are absolutely continuous with respect to the Lebesgue measure, we have

$$
\begin{aligned}
\mathrm{d}_{\mathrm{TV}}\left(T_{\sharp} Q, \rho\right) & =\mathrm{d}_{\mathrm{TV}}\left(T_{\sharp} Q, T_{\sharp} P\right) \\
& =\frac{1}{2} \sum_{i=1}^{k}\left|P\left(T^{-1}\left(c_{i}\right)\right)-Q\left(T^{-1}\left(c_{i}\right)\right)\right| \\
& =\frac{1}{2} \sum_{i=1}^{k}\left|P\left(S_{i}\right)-Q\left(S_{i}\right)\right| .
\end{aligned}
$$

Combining the above bounds yields

$$
\begin{aligned}
W_{2}^{2}(\rho, Q)-W_{2}^{2}(\rho, P) & \leq \mathbb{E}_{Q}\|X-T(X)\|^{2}-\mathbb{E}_{P}\|X-T(X)\|^{2}+2 \sum_{i=1}^{k}\left|P\left(S_{i}\right)-Q\left(S_{i}\right)\right| \\
& \leq \sum_{i=1}^{k}\left|\mathbb{E}_{Q}\left\|X-c_{i}\right\|^{2} \mathbb{1}_{X \in S_{i}}-\mathbb{E}_{P}\left\|X-c_{i}\right\|^{2} \mathbb{1}_{X \in S_{i}}\right|+2\left|P\left(S_{i}\right)-Q\left(S_{i}\right)\right| \\
& \leq k \sup _{c, S}\left(\left|\mathbb{E}_{Q}\|X-c\|^{2} \mathbb{1}_{X \in S}-\mathbb{E}_{P}\|X-c\|^{2} \mathbb{1}_{X \in S}\right|+2|P(S)-Q(S)|\right) \\
& =k \sup _{c, S}\left(\left|\mathbb{E}_{Q} f_{c, S}-\mathbb{E}_{P} f_{c, S}\right|+2|P(S)-Q(S)|\right)
\end{aligned}
$$

where the supremum is taken over $c \in \mathbb{R}^{d}$ satisfying $\|c\| \leq 1$ and $S \in \mathcal{P}_{k-1}$.
If $\|v\|=1$, then

$$
\mathbb{1}_{X \in S}=\frac{1}{2}\left(\|X+v\|^{2}+\|X-v\|^{2}-2\|X\|^{2}\right) \mathbb{1}_{X \in S}
$$

which implies

$$
\begin{aligned}
|P(S)-Q(S)| & =\left|\mathbb{E}_{P} \mathbb{1}_{X \in S}-\mathbb{E}_{Q} \mathbb{1}_{X \in S}\right| \\
& \leq \frac{1}{2}\left(\left|\mathbb{E}_{P} f_{v, S}-\mathbb{E}_{Q} f_{v, S}\right|+\left|\mathbb{E}_{P} f_{-v, S}-\mathbb{E}_{Q} f_{-v, S}\right|+2\left|\mathbb{E}_{P} f_{0, S}-\mathbb{E}_{Q} f_{0, S}\right|\right) \\
& \leq 2 \sup _{c, S}\left|\mathbb{E}_{P} f_{c, S}-\mathbb{E}_{Q} f_{c, S}\right|
\end{aligned}
$$

Combining the above bounds yields

$$
W_{2}^{2}(\rho, Q)-W_{2}^{2}(\rho, P) \leq 5 k \sup _{c, S}\left|\mathbb{E}_{P} f_{c, S}-\mathbb{E}_{Q} f_{c, S}\right|
$$

Finally, since this bound holds for all $\rho \in \mathcal{D}_{k}$, taking the supremum of the left side yields the claim for absolutely continuous P and Q.
To prove the claim for arbitrary measures, we reduce to the absolutely continuous case. Let $\delta \in(0,1)$ be arbitrary, and let \mathcal{K}_{δ} be any absolutely continuous probability measure such that, if $Z \sim \mathcal{K}_{\delta}$ then $\|Z\| \leq \delta$ almost surely. Let $\rho \in \mathcal{D}_{k}$. The triangle inequality for W_{2} implies

$$
\left|W_{2}(\rho, Q)-W_{2}\left(\rho, Q * \mathcal{K}_{\delta}\right)\right| \leq W_{2}\left(Q, Q * \mathcal{K}_{\delta}\right) \leq \delta
$$

where the final inequality follows from the fact that, if $X \sim Q$ and $Z \sim \mathcal{K}_{\delta}$, then $W_{2}^{2}\left(Q, Q * \mathcal{K}_{\delta}\right) \leq \mathbb{E} \| X-(X+$ $Z) \|^{2} \leq \delta^{2}$. Since ρ and Q are both supported on the unit ball, the trivial bound $W_{2}(\rho, Q) \leq 2$ holds. If $\delta \leq 1$, then $W_{2}\left(\rho, Q * \mathcal{K}_{\delta}\right) \leq 3$, and we obtain

$$
\left|W_{2}^{2}(\rho, Q)-W_{2}^{2}\left(\rho, Q * \mathcal{K}_{\delta}\right)\right| \leq 5 \delta .
$$

The same argument implies

$$
\left|W_{2}^{2}(\rho, P)-W_{2}^{2}\left(\rho, P * \mathcal{K}_{\delta}\right)\right| \leq 5 \delta
$$

Therefore

$$
\sup _{\rho \in \mathcal{D}_{K}} W_{2}^{2}(\rho, Q)-W_{2}^{2}(\rho, P) \leq \sup _{\rho \in \mathcal{D}_{K}} W_{2}^{2}\left(\rho, Q * \mathcal{K}_{\delta}\right)-W_{2}^{2}\left(\rho, P * \mathcal{K}_{\delta}\right)+10 \delta
$$

Likewise, for any x and c in the unit ball, if $\|z\| \leq \delta$, then by the exact same argument as was used above to bound $\left|W_{2}^{2}(\rho, Q)-W_{2}^{2}\left(\rho, Q * \mathcal{K}_{\delta}\right)\right|$, we have

$$
\left|f_{c, S}(x+z)-f_{c, S-z}(x)\right| \leq 5 \delta
$$

Let $Z \sim \mathcal{K}_{\delta}$ be independent of all other random variables, and denote by \mathbb{E}_{Z} expectation with respect to this quantity. Now, applying the proposition to the absolutely continuous measures $P * \mathcal{K}_{\delta}$ and $Q * \mathcal{K}_{\delta}$, we obtain

$$
\begin{aligned}
\sup _{\rho \in \mathcal{D}_{k}} W_{2}^{2}(\rho, Q)-W_{2}^{2}(\rho, P) & \leq 5 k \sup _{c, S}\left|\mathbb{E}_{Z}\left[\mathbb{E}_{P} f_{c, S}(X+Z)-\mathbb{E}_{Q} f_{c, S}(X+Z)\right]\right|+10 \delta \\
& \leq \mathbb{E}_{Z}\left[5 k \sup _{c, S}\left|\mathbb{E}_{P} f_{c, S}(X+Z)-\mathbb{E}_{Q} f_{c, S}(X+Z)\right|\right]+10 \delta \\
& \leq \mathbb{E}_{Z}\left[5 k \sup _{c, S}\left|\mathbb{E}_{P} f_{c, S-Z}-\mathbb{E}_{Q} f_{c, S-Z}\right|\right]+20 \delta .
\end{aligned}
$$

It now suffices to note that, for any $S \in \mathcal{P}_{k-1}$ and any $z \in \mathbb{R}^{d}$, the set $S-z \in \mathcal{P}_{k-1}$. In particular, this implies that

$$
z \mapsto \sup _{c, S}\left|\mathbb{E}_{P} f_{c, S-z}-\mathbb{E}_{Q} f_{c, S-z}\right|
$$

is constant, so that the expectation with respect to Z can be dropped.
We have shown that, for any $\delta \in(0,1)$, the bound

$$
\sup _{\rho \in \mathcal{D}_{K}} W_{2}^{2}(\rho, P)-W_{2}^{2}(\rho, Q) \leq 5 k \sup _{c, S}\left|\mathbb{E}_{P} f_{c, S}-\mathbb{E}_{Q} f_{c, S}\right|+20 \delta
$$

holds. Taking the infimum over $\delta>0$ yields the claim.

D Proof of Proposition C. 2

In this proof, the symbol C will stand for a universal constant whose value may change from line to line. For convenience, we will use the notation $\sup _{c, S}$ to denote the supremum over the feasible set $c:\|c\| \leq 1, S \in \mathcal{P}_{k-1}$.
We employ the method of [Maurer and Pontil, 2010]. By a standard symmetrization argument [Giné and Nickl, 2016], if g_{1}, \ldots, g_{n} are i.i.d. standard Gaussian random variables, then the quantity in question is bounded from above by

$$
\frac{\sqrt{2 \pi}}{n} \mathbb{E} \sup _{c, S}\left|\sum_{i=1}^{n} g_{i} f_{c, S}\left(X_{i}\right)\right| \leq \frac{\sqrt{8 \pi}}{n} \mathbb{E} \sup _{c, S} \sum_{i=1}^{n} g_{i} f_{c, S}\left(X_{i}\right)+\frac{C}{\sqrt{n}}
$$

Given c and $c^{\prime \prime}$ in the unit ball and $S, S^{\prime} \in \mathcal{P}_{k-1}$, consider the increment $\left(f_{c, S}(x)-f_{c^{\prime}, S^{\prime}}(x)\right)^{2}$. If $x \in S \triangle S^{\prime}$ and $\|x\| \leq 1$, then

$$
\left(f_{c, S}(x)-f_{c^{\prime}, S^{\prime}}(x)\right)^{2} \leq \max \left\{\|x-c\|^{4},\left\|x-c^{\prime}\right\|^{4}\right\} \leq 16
$$

On the other hand, if $x \notin S \triangle S^{\prime}$, then

$$
\left(f_{c, S}(x)-f_{c^{\prime}, S^{\prime}}(x)\right)^{2} \leq\left(\|x-c\|^{2}-\left\|x-c^{\prime}\right\|^{2}\right)^{2} .
$$

Therefore, for any x in the unit ball,

$$
\left(f_{c, S}(x)-f_{c^{\prime}, S^{\prime}}(x)\right)^{2} \leq 16\left(\mathbb{1}_{x \in S}-\mathbb{1}_{x \in S^{\prime}}\right)^{2}+\left(\|x-c\|^{2}-\left\|x-c^{\prime}\right\|^{2}\right)^{2}
$$

This fact implies that the Gaussian processes

$$
\begin{aligned}
G_{c, S} & :=\sum_{i=1}^{n} g_{i} f_{c, S}\left(X_{i}\right) & g_{i} & \sim \mathcal{N}(0,1) \text { i.i.d } \\
H_{c, S} & :=\sum_{i=1}^{n} 4 g_{i} \mathbb{1}_{X_{i} \in S}+g_{i}^{\prime}\left\|X_{i}-c\right\|^{2} & g_{i}, g_{i}^{\prime} & \sim \mathcal{N}(0,1) \text { i.i.d }
\end{aligned}
$$

satisfy

$$
\mathbb{E}\left(G_{c, S}-G_{c^{\prime}, S^{\prime}}\right)^{2} \leq \mathbb{E}\left(H_{c, S}-H_{c^{\prime}, S^{\prime}}\right)^{2} \quad \forall c, c^{\prime}, S, S^{\prime}
$$

Therefore, by the Slepian-Sudakov-Fernique inequality [Fernique, 1975, Slepian, 1962, Sudakov, 1971],

$$
\begin{aligned}
\mathbb{E} \sup _{c, S} \sum_{i=1}^{n} g_{i} f_{c, S}\left(X_{i}\right) & \leq \mathbb{E} \sup _{c, S} \sum_{i=1}^{n} 4 g_{i} \mathbb{1}_{X_{i} \in S}+g_{i}^{\prime}\left\|X_{i}-c\right\|^{2} \\
& \leq \mathbb{E} \sup _{S \in \mathcal{P}_{k-1}} 4 \sum_{i=1}^{n} g_{i} \mathbb{1}_{X_{i} \in S}+\mathbb{E} \sup _{c:\|c\| \leq 1} \sum_{i=1}^{n} g_{i}\left\|X_{i}-c\right\|^{2} .
\end{aligned}
$$

We control the two terms separately. The first term can be controlled using the VC dimension of the class \mathcal{P}_{k-1} [Vapnik and Červonenkis, 1971] by a standard argument in empirical process theory (see, e.g., [Giné and Nickl, 2016]). Indeed, using the bound [Dudley, 1978, Lemma 7.13] combined with the chaining technique [Vershynin, 2016] yields

$$
\mathbb{E} \sup _{S \in \mathcal{P}_{k-1}} 4 \sum_{i=1}^{n} g_{i} \mathbb{1}_{X_{i} \in S} \leq C \sqrt{n \mathrm{VC}\left(\mathcal{P}_{k-1}\right)}
$$

By Lemma E.2, $V C\left(\mathcal{P}_{k-1}\right) \leq C d k \log k$; hence

$$
\mathbb{E} \sup _{S \in \mathcal{P}_{k-1}} 4 \sum_{i=1}^{n} g_{i} \mathbb{1}_{X_{i} \in S} \leq C \sqrt{n d k \log k}
$$

The second term can be controlled as in [Maurer and Pontil, 2010, Lemma 3]:

$$
\begin{aligned}
\mathbb{E} \sup _{c:\|c\| \leq 1} \sum_{i=1}^{n} g_{i}\left\|X_{i}-c\right\|^{2} & =\mathbb{E} \sup _{c:\|c\| \leq 1} \sum_{i=1}^{n} g_{i}\left(\left\|X_{i}\right\|^{2}-2\left\langle X_{i}, c\right\rangle+\|c\|^{2}\right) \\
& \leq 2 \mathbb{E} \sup _{c:\|c\| \leq 1} \sum_{i=1}^{n} g_{i}\left\langle X_{i}, c\right\rangle+\sup _{c:\|c\| \leq 1} \sum_{i=1}^{n} g_{i}\|c\|^{2} \\
& \leq 2 \mathbb{E}\left\|\sum_{i=1}^{n} g_{i} X_{i}\right\|+\left|\sum_{i=1}^{n} g_{i}\right| \\
& \leq C \sqrt{n}
\end{aligned}
$$

for some absolute constant C.
Combining the above bounds yields

$$
\frac{\sqrt{8 \pi}}{n} \mathbb{E} \sup _{c:\|c\| \leq 1, S \in \mathcal{P}_{k-1}} \sum_{i=1}^{n} g_{i} f_{c, S}\left(X_{i}\right) \leq C \sqrt{\frac{d k \log k}{n}}
$$

and the claim follows.

E Additional lemmas

Lemma E.1. Let μ and ν be probability measures on \mathbb{R}^{d} supported on the unit ball. If $T: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$, then

$$
W_{2}^{2}(\mu, \nu) \leq \mathbb{E}\|X-T(X)\|^{2}+4 \mathrm{~d}_{\mathrm{TV}}\left(T_{\sharp} \mu, \nu\right) \quad X \sim \mu
$$

Proof. If $X \sim \mu$, then $(X, T(X))$ is a coupling between μ and $T_{\sharp} \mu$. Combining this coupling with the optimal coupling between $T \sharp \mu$ and ν and applying the gluing lemma [Villani, 2009] yields that there exists a triple $(X, T(X), Y)$ such that $X \sim \mu, Y \sim \nu$, and $\mathbb{P}[T(X) \neq Y]=\mathrm{d}_{\mathrm{TV}}\left(T_{\sharp} \mu, \nu\right)$.

$$
\begin{aligned}
W_{2}^{2}(\mu, \nu) & \leq \mathbb{E}\left[\|X-Y\|^{2}\right] \\
& =\mathbb{E}\left[\|X-Y\|^{2} \mathbb{1}_{T(X)=Y}\right]+\mathbb{E}\left[\|X-Y\|^{2} \mathbb{1}_{T(X) \neq Y}\right] \\
& \leq \mathbb{E}\left[\|X-T(X)\|^{2}\right]+4 \mathrm{~d}_{\mathrm{TV}}\left(T_{\sharp} \mu, \nu\right),
\end{aligned}
$$

where the last inequality uses the fact that $\mathbb{P}[T(X) \neq Y]=\mathrm{d}_{\mathrm{TV}}\left(T_{\sharp} \mu, \nu\right)$ and that $\|X-Y\| \leq 2$ almost surely.

Lemma E.2. The class \mathcal{P}_{k-1} satisfies $\operatorname{VC}\left(\mathcal{P}_{k-1}\right) \leq C d k \log k$.

Proof. The claim follows from two standard results in VC theory:

- The class all half-spaces in dimension d has VC dimension $d+1$ [Devroye et al., 1996, Corollary 13.1].
- If \mathcal{C} has VC dimension at most n, then the class $\mathcal{C}_{s}:=\left\{c_{1} \cap \ldots c_{s}: c_{i} \in \mathcal{C} \forall i \in[s]\right\}$ has VC dimension at most $2 n s \log (3 s)$ [Blumer et al., 1989, Lemma 3.2.3].

Since \mathcal{P}_{k-1} consists of intersections of at most $k-1$ half-spaces, we have

$$
\mathrm{VC}\left(\mathcal{P}_{k-1}\right) \leq 3(d+1)(k-1) \log (3(k-1)) \leq C d k \log k
$$

for a universal constant C.

F Details on numerical experiments

In this section we present implementation details for our numerical experiments.
In all experiments, the relative tolerance of the objective value is used as a stopping criterion for FactoredOT. We terminate calculation when this value reached 10^{-6}.

F. 1 Synthetic experiments from Section 6.1

In the synthetic experiments, the entropy parameter was set to 0.1 .

F. 2 Single cell RNA-seq batch correction experiments from Section 6.2

We obtained a pair of single cell RNA-seq data sets from Haghverdi et al. [2018]. The first dataset [Nestorowa et al., 2016] was generated using SMART-seq2 protocol [Picelli et al., 2014], while the second dataset [Paul et al., 2015] was generated using the MARS-seq protocol [Jaitin et al., 2014].

We preprocessed the data using the procedure described by Haghverdi et al. [2018] to reduce to 3,491 dimensions.
Nex, we run our domain adaptation procedure. To determine the choice of parameters, we perform crossvalidation over 20 random sub-samples of the data, each containing 100 random cells of each of the three cell types in both source and target distribution. Performance is then determined by the mis-classification over 20 independent versions of the same kind of random sub-samples.

For all methods involving entropic regularization (FOT, OT-ER, OT-L1L2), the candidates for the entropy parameter are $\left\{10^{-3}, 10^{-2.5}, 10^{-2}, 10^{-1.5}, 10^{-1}\right\}$.
For FOT and k-means OT, the number of clusters is in $\{3,6,9,12,20,30\}$.
For OT-L1L2, the regularization parameter is in $\left\{10^{-3}, 10^{-2}, 10^{-1}, 1\right\}$.
For all subspace methods (SA, TCA), the dimensionality is in $\{10,20, \ldots, 70\}$.
The labels are determined by first adjusting the sample and then performing a majority vote among 20 nearest neighbors. While similar experiments [Courty et al., 2014, 2017, Pan et al., 2011] employed 1NN classification because it does not require a tuning parameter, we observed highly decreased performance among all considered domain adaptation methods and therefore chose to use a slightly stronger predictor. The results are not sensitive to the choice of k for the k NN predictor for $k \approx 20$.

