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Abstract

Given a data set of (x, y) pairs, a common
learning task is to fit a model predicting y (a
label or dependent variable) conditioned on
x. This paper considers the similar but much
less-understood problem of modeling “higher-
order” statistics of y’s distribution conditioned
on x. Such statistics are often challenging to
estimate using traditional empirical risk mini-
mization (ERM) approaches. We develop and
theoretically analyze an ERM-like approach
with multi-observation loss functions. We pro-
pose four algorithms formalizing the concept
of ERM for this problem, two of which have
statistical guarantees in settings allowing both
slow and fast convergence rates, but which are
out-performed empirically by the other two.
Empirical results illustrate potential practi-
cality of these algorithms in low dimensions
and significant improvement over standard
approaches in some settings.

1 Introduction

In the common learning task of regression, one fits a
model to a data set of (x, y) pairs in order to form a
prediction about y from x. For each x, we assume y
is drawn from an unknown distribution Dx, and the
model’s prediction is generally some statistic of Dx.
The canonical examples, of course, are least-squares re-
gression, where the prediction is the mean of y given x,
and logistic regression, where one predicts the probabil-
ity of y given x. More generally, one also has quantile
regression (for example by minimizing absolute error
rather than squared error), superquantile (or condi-
tional value at risk) regression [1], mode regression [2],
and so on.
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In many settings in engineering, social and natural
sciences, and finance, one would like to fit a model
to some higher-order statistic of Dx. Such properties
include measures of risk (such as conditional value
at risk), uncertainty, inequality, and other statistics
depending on the spread of y given the features x.
As a stylized example, consider the relationship be-
tween regional biodiversity (y) and climatic features,
say average temperature and precipitation (x). Here,
observations collected from citizen scientists will be
of the form (x, y) where x ∈ R2 denotes the above
features and y ∼ Dx is a categorical variable for the
species observed. One common measure of biodiversity
is ‖Dx‖2 =

√∑
y Dx(y)2, the 2-norm of the distribu-

tion of species [3, 4]. So, given a data set of (x, y) pairs,
we wish to regress the 2-norm of the species distribution
against x.

A natural approach to solve this problem is to adapt the
empirical risk minimization (ERM) paradigm, which
selects a model or hypothesis f(x) by minimizing some
loss function over the data set S:

argmin
f∈F

∑
(x,y)∈S

`(f(x), y).

Standard regression problems follow this approach, typ-
ically using squared loss `(f(x), y) = (y − f(x))2. For
most higher-order properties such as the 2-norm or
conditional variance, however, the theory of elicitation
tells us that no such loss function can be statistically
consistent [5]. This raises the main question of this
paper: how, algorithmically, to fit such models to data
if the ERM paradigm is apparently unavailable.

One common work-around is to use surrogate losses
to model e.g. the entire distribution of y given x, and
then use these to derive a model for the statistic of
interest. In this paper, both lower bounds and simula-
tion results demonstrate that this traditional approach
can often do quite poorly. For intuition, we revisit
our biodiversity example. Here Dx (the distribution of
species given environmental features) is likely extremely
complicated, requiring a high sample complexity or ac-
cess to additional features. Yet intuitively, this should
not be required to uncover simple relationships, e.g.
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that biodiversity increases with rainfall from deserts to
rainforests.

This paper proposes to fit such models directly
using multi-observation losses: losses of the form
`(f(x), y1, . . . , ym), introduced in [6]. Unlike standard
“single-observation” loss functions, these losses can be
statistically consistent for higher-order properties like
variance and 2-norm, when one has multiple indepen-
dent samples of y for each x. For example, the two-
observation loss `(f(x), y1, y2) = (f(x)2 − 1{y1 =y2})2

is statistically consistent for the 2-norm of the distri-
bution of y given x. We will show how to use such
multi-observation losses to perform ERM directly on
higher-order statistics.

Contributions. First, we propose a general paradigm
for performing ERM using multi-observation loss func-
tions and present four algorithms. The key challenge is
that ERM for such losses `(f(x), y1, . . . , ym) requires
m independent observations yi for each input exam-
ple x, but we only have access to pairs (x, y). In
our algorithms, many samples {(x1, y1), . . . , (xm, ym)}
are clumped together into metasamples of the form
(x, y1, . . . , ym), and then ERM is performed directly on
a multi-observation loss via

argmin
f∈F

∑
(x,y1...ym)∈S

`(f(x), y1, . . . , ym).

Our first two algorithms are, in a sense, unbiased and
for these we prove, under a natural Lipschitz “slowly-
changing” assumption on Dx, statistical convergence
guarantees with either slow or fast rates depending on
the setting. Thus, we give the first excess risk bounds
for ERM with multi-observation losses, aside from the
very preliminary (and much weaker) bounds of [6]. Our
key technique is an analysis of ERM with corrupted
samples, i.e. samples from distributions near but not
equal to the same underlying distribution. We consider
both labeled and unlabeled sample complexity, an im-
portant distinction in our paradigm. Our algorithms
are most practical in the low-dimensional regime; we
show information-theoretic hardness in high dimensions
without further assumptions.

Finally, we demonstrate the advantage of our approach
in some settings over traditional single-observation ap-
proaches, for problems such as predicting conditional
variance. We give both theoretical lower bounds and
empirical examples; empirically, our other two (biased)
algorithms perform best, though we do not have theo-
retical results for them. While we often use the 2-norm
or variance as expository examples, our results are
fully general, encompassing myriad other higher-order
properties elicitable via multi-observation losses.

Applications. Aside from augmenting the literature
on fundamental properties of ERM, our results may

have applications to engineering, social sciences, fi-
nance, ecology, and beyond; we briefly describe some
of these settings. In engineering, the design of an air-
foil, building, truss, etc., is often done by choosing
design parameters minimizing some objective (drag,
cost, weight, displacement), but which are robust to
changes in the environment or to manufacturing de-
fects [7, 8], as quantified by some risk measure, such
as the 95% quantile of the drag for an airfoil under
random initial conditions [9]. A common technique to
perform this minimization is surrogate optimization,
wherein one first fits a model and then optimizes [10, 9].
We show that two popular risk measures for robust en-
gineering design, the upper confidence bound [11] and
MINVAR [12], are easily fit with multi-observation
losses. In finance, risk measures are also used, both to
make decisions and to regulate financial institutions,
where the risk is a higher-order statistic of the distribu-
tion of financial losses on any given day [13, 14]. As we
cannot observe multiple “i.i.d.” monetary losses for the
same day, the techniques in this paper would be useful
in inference for decision making and statistical tests for
regulation. Finally, in social sciences, many statistics
of interest capture higher-order properties like diversity.
Examples in economics include the Gini coefficient, a
measure of inequality, and the Herfindahl–Hirschman
Index (HHI), a measure of market concentration equal
to squared 2-norm.

2 Empirical risk minimization: from
classical samples to metasamples

In the classical supervised learning setup an algorithm
is presented with an i.i.d. sample of n labeled points
(X1, Y1), . . . , (Xn, Yn) with the objective of selecting
an action f ∈ F that obtains low expected loss, or
risk, E(X,Y )∼D×DX [`f (X,Y )] with respect to a loss
function ` : R × Y → R. Here, we use the notation
`f (X,Y ) = `(f(X), Y ), so that each f is a function
mapping from X to R, and we denote by f∗ ∈ F
the risk minimizer over F . We always assume that
the loss ` is L-Lipschitz in its first argument. ERM,
which returns any f̂ ∈ F that minimizes the empirical
risk 1

n

∑n
i=1 `f (Xi, Yi), is a natural choice for solving

this problem. The performance of ERM is known to
be tightly characterized by the notion of Rademacher
complexity.

Definition 1. Let G be a class of functions mapping
from a space Z to R, and let Z1, . . . , Zn be an i.i.d.
sample from distribution P over Z. Let ε1, . . . , εn be
independent Rademacher random variables (distributed
uniformly on {−1, 1}). The Rademacher complexity
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of G (with respect to P ) is

Rn(G) = E
[
Eε1,...,εn

[
sup
g∈G

1

n

n∑
i=1

εig(Zi)

]]
.

In the above, we may for instance take the space Z =
X × Y and class G = {`f : f ∈ F}.

The following uniform convergence result is well-known;
a proof appears in § A for completeness.

Lemma 1. Let (X1, Y1), . . . , (Xn, Yn) be independent
samples from distribution P and assume, for all f ∈ F ,
that `(f(X), Y ) ∈ [0, B] almost surely. Further assume
that the loss ` is L-Lipschitz in its first argument. With
probability at least 1− δ,

sup
f∈F

{
E[`(f(X), Y )]− 1

n

n∑
i=1

`(f(Xi), Yi)

}

≤ 2LRn(F) +B

√
log(1/δ)

2n
.

In particular, the upper bound holds for the empirical
risk minimizer f̂ . A straightforward argument then
leads to a high probability bound on the excess risk of
f̂ (the risk of f̂ minus the risk of f∗).

ERM for multi-observation losses. A direct ap-
plication of the above analysis to multi-observation
loss functions would require samples of the form
(X,Y1, . . . , Ym), with each Yi drawn i.i.d. from the con-
ditional distribution DX ; we refer to such tuples as
metasamples. Unfortunately, in classical supervised
learning we are only provided with samples of the form
(X,Y ). Nevertheless, if features x and x′ are similar
(e.g. ‖x− x′‖ ≤ ε), then we often expect that Dx and
Dx′ are also similar (e.g. total variation distance Kε).
We will formalize this in § 4 as Assumption (A1). It
will allow us to recover the kinds of guarantees satisfied
by traditional ERM; at a high-level, the approach is to
group samples having features close to X to construct
metasamples (X,Y1, . . . , Ym), where each Yj is sampled
from a distribution approximately equal to DX .

3 Algorithms

For simplicity, we take X = [0, 1]d in this section and
the next. The problem setting we consider is slightly
unusual in terms of the number and kinds of samples
used. All of our algorithms “clump” together groups
of m different (xi, yi) pairs having nearby x values to
create a metasample of the form (x, y1, . . . , ym). In this
paper, n will always denote the number of metasam-
ples constructed and used by a particular algorithm.
This differs from N , the total number of data points

drawn by the algorithm. We focus on empirical risk
minimization over the metasamples,

argmin
f∈F

n∑
i=1

`f (xi, yi,1, . . . , yi,m).

Therefore, the algorithmic questions are (1) how to
draw or choose samples, and (2) how to construct
metasamples. Once addressed, in § 4 we will present
theoretical risk guarantees for some of these algorithms.

Learning paradigms. Our algorithms will apply in
two different paradigms. In supervised learning, the
algorithms draw N data points of the form (x, y) i.i.d.,
construct n metasamples, and then run ERM on the
metasamples. The sample complexity is N . In pool-
based active learning, the algorithms draw N unlabeled
x points. They may query up to one label y for each
x, drawn independently from Dx. This results in a
smaller number of labeled pairs (x, y), from which the
algorithms construct the metasamples. For those of
our algorithms with theoretical guarantees, the label
complexity will always be nm, because every label we
draw is used in exactly one metasample.1 We do not
consider (fully) active learning, where algorithms may
repeatedly choose any x, query it to obtain an inde-
pendent draw y ∼ Dx, and repeat. There, traditional
algorithms and guarantees will generally carry over to
the multi-observation setting, as one can query as many
i.i.d. observations from Dx as desired.

3.1 Unbiased algorithms

We first present algorithms for which we will later be
able to prove risk bounds, by ensuring that the x values
in the metasamples are i.i.d. samples from D. The
Naïve algorithm, Algorithm 1, starts by drawing n i.i.d.
data points X∗1 , . . . , X∗n and using them as the basis
for a metasample. For each X∗i , it then draws many
new data points, so that with high probability, enough
points come close enough to form a good metasample.
It then moves on to the next X∗i+1. In the sequel, the
notations Õ and Ω̃ omit log factors, including log 1

δ .

In § B we present a result (Lemma 3) which states
that if N = Ω̃(mn(d+3)/2dd/2), then with probability
at least 1−δ, most of the points (X∗j )j∈[n] have their m
nearest neighbors all within a proximity of 1√

n
. As we

will see shortly, this algorithm can be greatly improved.
Nevertheless, this algorithm and its analysis arguably
are already interesting. First, note that the guarantee
is fully general, holding for any probability distribution

1This is not always true of other algorithms described
below and tested in simulations, where the number of
metasamples is larger compared to the number of labels
because each y may appear in multiple metasamples.
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D over X = [0, 1]d while simultaneously providing a
guarantee that holds with high probability (i.e. paying
only log 1

δ in sampling complexity for failure probabil-
ity δ). In contrast, similar results from the k-nearest
neighbor (k-NN) literature that hold for arbitrary dis-
tributions only hold in expectation or asymptotically
[15, 16]. There are, however, results from the k-NN
literature which hold with high probability, but these
works impose additional regularity assumptions [17, 18],
a typical one being that the probability density of D
(with respect to Lebesgue measure) is lower bounded
by a positive constant on its support.

The key idea in the proof of Lemma 3 is to partition
X into “heavy” and “light” cells according to the prob-
ability mass of each and use Hoeffding’s inequality to
bound the number of X∗j points in light cells. This
idea is later leveraged as one part of the proof of our
guarantee for our improved algorithm.

To improve on Naïve Sampling, Algorithm 2 iteratively
draws batches of new samples and finds a globally good
assignment to the original base sample.2 The following
lemma guarantees this algorithm’s performance for
N = Ω̃

(
mn(d+1)/2d(d+2)/2

)
.

Lemma 2 (Improved Nonuniform Sampling Lemma).
Let d ∈ N and let x∗1, . . . , x∗n, x1, . . . , xN be drawn
independently from an arbitrary distribution D on
X = [0, 1]d. If N = Ω̃

(
mn(d+1)/2d(d+2)/2

)
, then with

probability at least 1 − δ, there is a set J ⊆ [n] with

|J | ≥ n −
√

(n log 2
δ )/2 and |J |m distinct indices

{i(j, k) ∈ [N ] : j ∈ J , k ∈ [m]}, such that for all
j ∈ J , k ∈ [m] we have ‖x∗j − xi(j,k)‖2 ≤ 1√

n
.

The full version of this result, Lemma 5, is stated and
proved in § B. The idea of the proof is to adopt the
high-level idea of the proof of Lemma 3 — the parti-
tioning of X into heavy and light cells — while using a
Poissonization argument to show that heavy cells have
enough samples, i.e. at least m xi’s for every x∗j . This
argument is also adapted to obtain a specialized re-
sult, Lemma 4 in § B, with considerably better sample
complexity for the uniform distribution.

We would like to again stress that Lemma 2 is fully
general in that it holds for any probability distribution
D over X = [0, 1]d and yet also provides a high prob-
ability guarantee. Leveraging results from the k-NN
literature would require either giving up on the high
probability nature of our guarantees or restricting the
class of distributions for which the result holds.

2Note that metasamples constructed conditional on X
still ensure that Y is drawn independently from DX .

3.2 Biased algorithms

We now briefly consider algorithms that we feel are
likely to perform well in practice and indeed do so in our
simulations. These algorithms construct a larger num-
ber of metasamples by reusing labels, thereby giving
them access to more information but making theoreti-
cal guarantees very difficult. For simplicity, we describe
both algorithms for single dimensional X , but they can
be generalized to higher dimensions at the expense of
computational complexity. The first algorithm, Sliding
Window, simply iterates from left to right over the x-
values on the real line and creates a metasample from
each group of m adjacent points.The second, dubbed
“ε-Nearby”, sets a fixed upper distance limit ε and con-
structs a metasample from all m-tuples of data points
whose x-values lie in an interval of diameter ε. Pseu-
docode for both algorithms is in § C; we demonstrate
their performance in § 5.2. We found that ε-Nearby
performed slightly better, but Sliding Window is free
of tuning parameters.

4 Risk bounds

Let D be a probability distribution over X ⊂ Rd, and,
for each x ∈ X , let Dx be the conditional distribution
over Y given x. We take X = [0, 1]d for simplicity. In
this section, we assume that loss values lie in [0, B]. As
discussed above, to make headway we will relate the
conditional distributions Dx for nearby x; formally, we
make a Lipschitz assumption on their total variation
distance,

DTV (Dx,Dx′) ≤ K‖x− x′‖2. (A1)

Intuitively, this means that samples from nearby con-
ditional distributions are almost interchangeable.

4.1 Excess risk bounds for general situations

Imagine an ideal setting where we have i.i.d. points
X∗1 , . . . , X

∗
n and, for each i, we are given m i.i.d. labels

Yi,1, . . . , Yi,m sampled from DX∗i . Then, for purposes
of analysis we could treat these labels as a single “mega-
label” Yi = (Yi,1, . . . , Yi,m). We would have a set of
i.i.d. data points of the form (X∗i ,Yi) together with
a loss `(f(X∗i ),Yi), and so we could directly apply
existing analyses of ERM. The idea of our analysis is to
relate the performance of our algorithms, which must
construct their own “noisy” metasamples from imperfect
data, to this ideal. We give results under both the
standard notion of sample complexity from supervised
learning and the (much smaller) label complexity from
pool-based active learning.

A key idea in the analysis is to view each metasample
as being drawn in this idealized fashion (i.e. each Yi,j ∼
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Algorithm 1: Naïve Sampling
Input: n,m,N ∈ N
Sample n points X∗1 , . . . , X∗n indep. from D
for i = 1 to n do

Sample k := N/n points X(i)
1 , . . . , X

(i)
k

independently from D
for j = 1 to m do

Set Xi,j to be the jth nearest neighbor of
X∗i among (X

(i)
j )j∈[k], with ties broken

arbitrarily
Sample a label Ỹi,j ∼ DXi,j

return f̂ = ERMF,`

(
(X∗i , (Ỹi,1, . . . , Ỹi,m))i∈[n]

)

Algorithm 2: Improved Sampling
Input: n,m,N ∈ N, ε ∈ (0, 1)
Sample n points X∗1 , . . . , X∗n independently from D
for j = 1 to m do

Sample k := N/m points X(j)
1 , . . . , X

(j)
k i.i.d. from D.

Find a maximum matching M (j) between X∗1 , . . . , X∗n
and X(j)

1 , . . . , X
(j)
k where X∗i and X(j)

i′ are adjacent iff
|X∗i −X

(j)
i′ | ≤ ε

If |M (j)| < n, arbitrarily match the remaining X∗i ’s
(ignoring distance constraints)
for i = 1 to n do

Let Xi,j denote the match of X∗i in M (j)

Sample a label Ỹi,j ∼ DXi,j
return f̂ = ERMF,`

(
(X∗i , (Ỹi,1, . . . , Ỹi,m))i∈[n]

)

DX∗i ), but with some chance of corruption. We show
this is possible by viewing any nearby distribution DX′
as a mixture of DX∗i with an arbitrary corruption. We
can then analyze ERM on a set of metasamples, most
of which are ideal, but some of which are corrupted.

Theorem 1 (Excess risk with corrupted samples). As-
sume that (A1) holds. Let N = Ω̃(md(d+2)/2n(d+1)/2),
and let f̃ be the hypothesis returned by Algorithm 2 on
(n,m,N, 1/

√
n). Then, for n ≥ 2 log 8

δ , with probability
at least 1− δ,

E[`f̃ (X,Y)]− E[`f∗(X,Y)]

≤ 2LRn(F) + 2B
(
2
√

log 4
δ +mK

)
1√
n
,

where X is drawn from D, and, conditionally on X,
Y = (Y1, . . . , Ym) is drawn from (DX)m.

The full versions of this result and Theorem 2, along
with proofs, can be found in § D.

Proof Sketch First, we appeal to Algorithm 2 to ob-
tain n metasamples {(Xi, Ỹi,1, . . . , Ỹi,m)}ni=1 with each
Xi an i.i.d. draw from D and each Ỹi,j an independent
draw from some DX′i with ‖X

′
i −Xi‖2 ≤ 1/

√
n. This

holds except for O(
√
n) metasamples.

Now, from Assumption (A1) we have, for each Xi,
m independent samples Ỹi,j from distributions that
are close to DXi . The key idea is to show that each
metasample i’s labels can be viewed as coming from
DmXi with high probability and from an arbitrary distri-
bution otherwise. This argument is first made for each
Ỹi,j : We can view it as a sample from a mixture that
puts high probability on DXi and small probability on
some other distribution. Under this view, with high
probability, every Ỹi,1, . . . , Ỹi,m comes from the DXi
component of its mixture. Of course, this fails to be

true for some of the metasamples, which we show again
number only O(

√
n) with high probability.

The final component is an analysis of ERM with cor-
rupted samples. Consider (even in the classical setting)
running ERM on a set of n samples, of which O(

√
n)

have been corrupted arbitrarily but the rest are drawn
i.i.d. from the underlying distribution. In this case, we
show that standard generalization bounds continue to
hold with an error loss of only O(1/

√
n).

Recall that nm is the label complexity (pool-based
active learning paradigm) and N is the sample com-
plexity (supervised learning paradigm).3 To illustrate
exactly how our results translate, let us adopt the
parametric setting where the Rademacher complex-
ity term Rn(F) decays at the rate of O(1/

√
n) with

n (meta)samples. Because the sample complexity is
N = Ω̃(md(d+2)/2n(d+1)/2), the excess risk decays as
the rate Õ(1/N1/(d+1)). Similarly, in pool-based active
learning, we can write n′ = nm for the label complexity
and get excess risk decaying at a rate O(

√
1/n′). (We

fix m here as it is inherent to the loss function.)

4.2 Faster rates under strong convexity and
the uniform distribution

Let F be a class of linear predictors, so that F can
be identified with a set W ⊂ Rd. For w ∈ W, and
fixed (x,y) ∈ X × Ym, we assume that the loss has
the generalized linear form ` : w 7→ c(〈w, φ(x)〉,y), for
some functions c and φ. The risk functional R is then

R : w 7→ E
[
c
(
〈w, φ(X)〉,Y

)]
,

3The algorithm is the same in both paradigms, except
the timing of label draws: in supervised learning, labels
are drawn with each X, but in pool-based active learning,
labels are only queried when X is added to a metasample.
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where X ∼ D and, conditionally on X, Y =
(Y1, . . . , Ym) ∼ (DX)

m.
Theorem 2. Assume that (A1) holds. Let F be a
class of linear functionals as above, with the loss taking
the generalized linear form. Suppose that ‖φ(x)‖ ≤ B
(the same B as for the upper bound on the loss). Let
ε = (mKn)−1 and N = Ω̃(m

(
n+d(

√
d
ε )d

)
), and let f̃ be

the hypothesis returned by Algorithm 2 on (n,m,N, ε).
If D is the uniform distribution over [0, 1]d and the
risk functional R is σ-strongly convex, then, for any
δ ≤ 3e−4 and n ≥ 2 log 8

δ , with probability at least 1− δ

E[`f̃ (X,Y)]− E[`f∗(X,Y)]

≤ 1
n3B log 3

δ + 1
σn8L2B2

(
32 + log 3

δ

)
where X is drawn from D, and, conditionally on X,
Y = (Y1, . . . , Ym) is drawn from (DX)m.

This result implies that the excess risk decays at the
rate O(1/n), where nm is the label complexity. Since
the sample complexity is N = Ω̃(m

(
n+d(mKn

√
d)d
)
),

this implies that the excess risk decay rate in terms
of N is Õ(1/N1/d). The proof of this result vitally
leverages Lemma 4 in § B, our specialized sampling
result for the uniform distribution.
Example 1 (Strongly convex risk functional). Take
the example of the variance with X ⊂ Rd. For fixed
(x, y1, y2), the loss and risk functional are, respectively,

` : w 7→
(
〈w, x〉 − 1

2 (y1 − y2)2
)2

,

R : w 7→ E X∼D
Y1,Y2∼DX

[(
〈w,X〉 − 1

2 (Y1 − Y2)2
)2]

.

Then ∇2
wR(w) = 2E[XXT ], and so if E[XXT ] � σI,

then (2σ)-strong convexity holds. In the special case of
d = 1, provided that X is non-trivial we clearly have
strong convexity of the risk.

4.3 Sample complexity and dimension

While our sample complexity results above apply for
any dimension d of X , they scale exponentially in d.
We are motivated by d = O(1) in this paper, where
the multi-observation approach can yield significant
practical improvements, as we show in the next section.
Nevertheless, we briefly note that an exponential de-
pendence on d is information-theoretically necessary
for any algorithm to model such higher-order statistics,
even for the simple problem of estimating the average
Var(y | x) over the distribution. We thus leave inves-
tigation of algorithms targeting higher dimension (for
example, active learning approaches) to future work.
For example, in § E we show:
Theorem 3. If X is in the d-dimensional hypercube
and the Lipschitz constant is K = 1, no algorithm for

regression on variance of y can have nontrivial accuracy
with o(2 d/2) samples.

Intuitively, the obstacle is that a subexponential num-
ber of samples can (and, under e.g. a uniform distribu-
tion, does) have all x values separated from each other
by a constant distance. Thus, any given region will
only have one (x, y) pair sampled, and, information-
theoretically, no knowledge can be gleaned about the
variance in that region. § E also provides a similar
lower bound for the case of the uniform distribution
over [0, 1]d, where K = d.

5 Comparison to single-observation
losses

The traditional ERM approach in our setting utilizes
single-observation losses to fit d̄ surrogate properties
and then computes the higher-order property of interest
from these. The theory of elicitation complexity [19,
20] gives a lower bound on the dimensionality d̄ of
any statistically consistent such procedure; e.g., for
variance, d̄ = 2 which can be achieved by fitting models
to the first and second moments, while for 2-norm,
d̄ is the support size of the distribution minus one.
Intuitively, this approach can be problematic for sample
complexity in two ways: one must model d̄ relationships
instead of just one, and these relationships may be much
more complex and require many more samples than the
original relationship of x with the high-order property.

We now compare multi-observation regression to the
typical single-observation approach, theoretically and
empirically, in the simple setting of fitting a parametric
model to the variance Var[Y |X]. The experiments also
compare our algorithms from § 3 and explore other
statistics of interest.

5.1 Lower bounds for single-observation
losses

One method for regressing the variance is a “two-
estimator” approach: use separate single-observation es-
timators to regress E[Y |X]2 and E[Y 2|X] respectively;
the variance can then be predicted in terms of the two
learned hypotheses. Intuitively, although the condi-
tional variance might have a simple parametric form,
this approach will fail if either of the two conditional mo-
ments do not. If we estimate the conditional moments
from small classes, we suffer large approximation error;
conversely, if we conservatively estimate them from
rich classes to match our Lipschitz assumption (A1),
we may overfit. Indeed, even when Y |X is Bernoulli,
so that E[Y 2|X] = E[Y |X], a minimax lower bound of
Stone [21] implies the following negative result for a
two-estimator approach.
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Corollary 1. There is a family of problems where
X = [0, 1]d and x 7→ E[Y |X = x] is 1

2 -Lipschitz (as
per (A1)) with range [0, 1] for which any two-estimator
approach f̂ has risk (under squared loss) for estimating
the variance E

[
(f̂(X)−Var[Y |X])2

]
decaying at a rate

no faster than n−2/(2+d).

Since the above bound is a minimax lower bound, it
holds for all estimators, not just those that predict
according to K-Lipschitz functions. Moreover, the
same lower bound holds in a similar setting even for
active learning strategies [22, Theorem 1].

To compare to our results, suppose that the variance
is captured by a generalized linear form which lies
within our model F , so that f∗ : x 7→ Var[Y |X =
x]. Then it is easy to show that the excess risk
E[`f̃ (X,Y)] − E[`f∗(X,Y)] in Theorem 2 takes the
form E

[
(f̃(X) − Var[Y |X])2

]
, where f̃ is our direct,

metasample-based estimator. When d = 1, the rate of
Theorem 2 is n−1 and hence better than the rate of
n−2/3 of the two-estimator approach. Note that there is
no contradiction with the minimax lower bound of [21]
because we assume that the variance takes a parametric
form. Were the variance to be an arbitrary K-Lipschitz
function, our rates would degrade; we believe in this
case that our rate for d = 1 would also be n−2/3, based
on existing fast rates results for classes whose metric en-
tropy grows as ε−1 (the class of K-Lipschitz functions
exhibits such growth).

In our experiments, we explore the performance of
the two-estimator approach using ERM, which can
be significantly worse than a direct multi-observation
regression of the variance.

5.2 Experiments

In our experiments we opted for synthetic data over real
data. Multi-observation loss functions help in learning
higher order statistics about Y |X=x; unfortunately,
with real data one generally does not know what the
true value of those statistics are and thus has no objec-
tive way of comparing different algorithms. By using
synthetic data we can choose the underlying values of
these statistics and evaluate algorithms by how closely
they approximate them.

We consider three statistics: the variance, 2-norm,
and upper confidence bound (UCB). As observed
in prior work [6], the variance can be elicited
by the two-observation loss function `(r, y1, y2) =(
r − 1

2 (y1 − y2)2
)2, and the 2-norm by the two-

observation loss `(r, y1, y2) =
(
r2 − 1{y1 =y2}

)2. The
UCB, often used in surrogate optimization for ro-
bust engineering design, is defined by ucbλ(Y ) =

E[Y ] + λ
√

Var[Y ] for a fixed λ. We show in § G that
it can be elicited by a two-observation loss function
under some restrictions on the distribution of Y .

In all of our experiments we are trying to learn a
statistic of Y |X=x, where X ∼ Unif([0, 1]). For the
variance, we tried different distributions Y |X = x of
the form f(x) +N(0, 1). We present here our results
when f(x) is either a sine wave or a line. Var(Y |X=
x) = 1 in all cases. For the 2-norm, we constructed
a distribution α|Y|(x) = Y |X=x designed to capture
our motivating biodiversity example. The 2-norm of
our distribution is very simple — in this case it is
constant — yet which species achieve that biodiversity
varies with X. In particular, we construct α|Y|(x) so
that the support size of the distribution is always at
most 3, but which outcomes are in that support varies
with x. For the ucbλ(Y ) experiments, we chose λ = 8
and Y |X = x ∼ Γ(k(x), θ(x)) where k(x) and θ(x)
were chosen such that E[Y |X=x] = 2 + sin(4πx) and
ucbλ(Y |X=x) = x+ 10.

As a baseline, we compare our algorithms in each case
to ERM with single observation loss functions, wherein
we learn models for surrogate statistics and combine
them to create a model for the desired statistic. In
the case of variance and ucbλ, we fit to E[Y |X = x]
and E[Y 2|X = x] and then combine those models to
estimate Var[Y |X = x] or ucbλ(Y |X = x). For the 2-
norm, for each y ∈ Y we fit a model to Pr(Y =y |X=x),
and then combine those models to estimate ||Y |X=
x||2. For ucbλ we also compared our algorithms to the
“Monte Carlo” approach which has the power to draw
multiple i.i.d. labels for each random x draw, compute
the empirical statistic for that x, and then fit a line
to the results. In all cases, unless otherwise specified,
the hypothesis class being used is the class of linear
functions. See § H for more details.

Our results are depicted in Figure 1. Observe that
in all of our experiments, the ε-Nearby algorithm per-
formed the best, closely followed by Sliding Window.
Fitting lines to the moments or full distribution never
performed well, which is not surprising as in all cases at
least one moment was non-linear. However, even when
fitting quadratics to moments which are quadratics
(in the case of the variance when f(x) = 2x− 1), our
two observation algorithms still outperformed the two
moment approach. This demonstrates that for the two
observation approach to be beneficial it is only neces-
sary that the statistic is simpler than the underlying
distribution, not that the underlying distribution is
from an entirely unknown class. Our algorithms only
show very slight improvement over the Monte Carlo ap-
proach for ucbλ, but even being competitive is valuable
since the Monte Carlo approach can sample multiple y
values for a given x, while our algorithms cannot.
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Figure 1: A comparison of ERM strategies. “2mom linear” and “2mom quad” fit lines and quadratics respectively
to the first two moments of Y |X=x. “full dist” fits lines to the probability of each possible value of Y . “unbiased”
is Algorithm 2. “sliding” and “ε-nearby” are the biased algorithms described in § 3.2. “monte carlo” fits a line to
empirical estimates of the given statistic. Methods are evaluated by mean squared error to the true value of the
statistic.

6 Conclusion and future work

ERM with multi-observation loss functions presents
challenges and complications as compared to tradi-
tional ERM, but also interesting opportunities. With
initial theoretical guarantees in hand, one next step
is to explore “risk” or “variance” regression problems
encountered in practice for which the multi-observation
approach may be useful. Active learning settings may
be among the most fruitful, as they are well-suited to
collecting multiple labels at or near the same feature.
This investigation will interact with elicitation and the
design of loss functions that are consistent for a desired
property of the conditional distribution, such as the
variance. In particular, an open problem is to discover
a loss function for the UCB property that does not
require restrictions on the distribution of Y .

Another direction lies in the dimension d of X . Our
lower bounds show that, without additional assump-
tions, the sample complexity of estimating e.g. the
variance is exponential in d. To make headway, one

could assume a low intrinsic dimension, embedded in
some higher-dimensional space, or appeal to active
learning, which could sidestep these lower bounds.

With respect to adapting to the intrinsic dimension, a
natural area for insight is the analysis of the k-nearest
neighbor method. To our knowledge, all works that
develop finite-sample high probability guarantees for
the k-NN method do so by invoking assumptions of
a stronger nature than those imposed in the present
paper. At a high level, these assumptions amount
to the density of D being lower bounded by a posi-
tive constant on the support of D. Adapting these
results to our setting, without stronger assumptions,
may be a major undertaking. Alternatively, some clas-
sical works [15, 16] avoid stronger assumptions but
only provide guarantees that hold in expectation or
asymptotically, which we view as a significant practi-
cal weakness. Thus, a new analysis which adapts to
the intrinsic dimension is an important, but nontrivial,
direction for future work.
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A Proofs from background

Proof of Lemma 1 Let P be the probability measure operator with respect to P , and let Pn be the empirical
measure operator with respect to the sample (X1, Y1), . . . , (Xn, Yn); that is, for each f ∈ F , we have P `f =
E[`f (X,Y )] and Pn `f = 1

n

∑n
i=1 `f (Xi, Yi).

From the bounded differences inequality (Lemma 1.2 of [23]) with bounded differences ci = B
n ,

Pr

(
sup
f∈F

(P −Pn )`f > E

[
sup
f∈F

(P −Pn )`f

]
+ t

)
≤ e−2nt2/B2

.

Next, let (X ′i, Y
′
i )i∈[n] be an independent copy of (Xi, Yi)i∈[n]. Jensen’s inequality implies that

E

[
sup
f∈F

(P −Pn )`f

]
= E

[
sup
f∈F

1

n

n∑
i=1

(E[`f (X ′i, Y
′
i )]− `f (Xi, Yi))

]

≤ E

[
sup
f∈F

1

n

n∑
i=1

(`f (X ′i, Y
′
i )− `f (Xi, Yi))

]
,

which, for independent Rademacher random variables ε1, . . . , εn is in turn equal to

E

[
Eε1,...,εn

[
sup
f∈F

1

n

n∑
i=1

εi (`f (X ′i, Y
′
i )− `f (Xi, Yi))

]]
≤ 2E

[
Eε1,...,εn

[
sup
f∈F

1

n

n∑
i=1

εi`f (Xi, Yi)

]]
= 2Rn({`f : f ∈ F}).

The result follows from Theorem 7 of [24], which shows that under the L-Lipschitzness of the loss as a function of
the prediction ŷ = f(x), we have the comparison inequality Rn({`f : f ∈ F}) ≤ LRn(F).

B Proofs of sampling methods

B.1 Naïve Sampling Lemma

Lemma 3 (Naïve Sampling Lemma). Let d ∈ N and let x∗1, . . . , x∗n, x1, . . . , xN be drawn independently from
a distribution D on X = [0, 1]d. If N ≥ mn(d+3)/2dd/2 log 2mn

δ , then with probability at least 1 − δ, there is a

set J of cardinality at least n −
√

(n log 2
δ )/2 for which, for each x∗j with j ∈ J , there are at least m points

xij,1 , . . . , xij,m satisfying ‖x∗j − xij,m‖2 ≤ 1√
n
, and all the i1,1, . . . , i1,m, . . . , i|J |,1, . . . , i|J |,m ∈ [N ] are distinct.

Proof. Take C1, . . . , Cr to be a partition of X for which every cell Cj has diameter supx,x′∈Cj ‖x− x
′‖2 at most

ε. Observe that we may always take r ≤ N (X , ε/2), where N (X , ε) is the minimum number of radius-ε balls in
the Euclidean norm ‖ · ‖2 whose union contains X . Note that r ≤ (

√
d/ε)d.

We take ε = 1√
n
and partition the set of cells of X into light cells and heavy cells, where any light cell Cj satisfies

Pr(Cj) ≤ 1
r
√
n
. Since there are at most r cells, the aggregate probability measure among all the light cells is at

most 1√
n
. Hoeffding’s inequality implies that only with probability at most δ/2 will more than

√
(n log 2

δ )/2

samples of x∗1, . . . , x∗n fall into light cells. The remainder of the points therefore fall into heavy cells, each of which
has probability measure at least 1

r
√
n
. Now, for some fixed x∗j in a heavy cell, if we sample r

√
n log 1

δ points, then
with probability at least 1− δ at least one of these latter points would fall into the same cell as x∗j . Thus, if we
sample

N = mn3/2r log
2mn

δ
≤ mn(d+3)/2dd/2 log

2mn

δ

points x1, . . . , xN , then with probability at least 1− δ/2 every x∗j in a heavy cell will have at least m samples
falling into its cell.
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B.2 Improved Uniform Sampling Lemma

Lemma 4 (Improved Uniform Sampling Lemma). Let ε ∈ (0, 1), d ∈ N and let x∗1, . . . , x∗n, x1, . . . , xN be drawn
independently from D = Unif([0, 1]d). If N ≥ Cm

(
n+(

√
d
ε )d(log m

δ +d log d
ε )
)
for a universal constant C, then with

probability at least 1− δ, for each j ∈ [n], there are at least m points xij,1 , . . . , xij,m satisfying ‖x∗j − xij,m‖2 ≤ ε,
and all the i1,1, . . . , i1,m, . . . , in,1, . . . , in,m ∈ [N ] are distinct.

Proof. We will prove this for the case when m = 1, from which the general result follows by setting δ = δ/m and
repeating m times.

We partition [0, 1]d into r = (
√
d/ε)d hypercubes of width w = ε/

√
d, C1, . . . , Cr. Si = |{i|x∗i ∈ Ci}| is the

number of x∗i ’s that lie in the ith hypercube. Similarly, let Ti = |{i|xi ∈ Ci}| be the number of xi’s that fall in the
ith hypercube. We will now show that for all i ∈ [r], Ti ≥ Si with probability at least 1− δ. The lemma follows
from this as we can then simply match up points within each hypercube and the maximum distance between two
points in a hypercube is w

√
d = ε.

In order to bound Pr[∀i Ti ≥ Si], we will first consider a slight alteration of our setting. Instead of having fixed
numbers of samples n and N , they will be random variables ñ ∼ Pois(2n) and Ñ ∼ Pois(N/2). In this setting,
we let S̃i and T̃i be the number of samples of each category falling into the ith interval. The key property we will
use here is that

S̃i ∼ Bin(ñ, wd) = Pois(2nwd),

and analogously T̃i ∼ Pois(Nwd/2).

Using this we have

Pr[T̃i < S̃i] = Pr[Pois(Nwd/2) < Pois(2nwd)]

≤ e−
(√

Nwd/2−
√

2nwd
)2

where the final inequality is a standard bound on Poisson races which follows from a Chernoff bound [25, Appendix
A]. By a union bound, the probability that T̃i ≥ S̃i for all i ∈ [r] is lower bounded by

1− r · e−
(√

Nwd/2−
√

2nwd
)2

.

Now observe that

Pr[∀i Ti ≥ Si] = Pr[∀i T̃i ≥ S̃i | Ñ = N ∧ ñ = n]

≥ Pr[∀i T̃i ≥ S̃i | Ñ ≤ N ∧ ñ ≥ n]

because increasing N or decreasing n only increases our chances of finding a matching. Let I be the event that
Ñ ≤ N ∧ ñ ≥ n, and let Ī be its negation.

Pr[∀i T̃i ≥ S̃i | I] =
Pr[∀i T̃i ≥ S̃i]− Pr[∀i T̃i ≥ S̃i | Ī] Pr[Ī]

Pr[I]

≥ 1− r · e−
(√

Nwd/2−
√

2nwd
)2

− Pr[Ī]

≥ 1− r · e−
(√

Nwd/2−
√

2nwd
)2

− e−Θ(n+N).

The final inequality follows from standard Poisson tail bounds [26, Proposition 1]. Plugging in N =

C

(
n+

(√
d
ε

)d (
log 1

δ + d log d
ε

))
, for a sufficiently large constant C, gives us the lemma.

B.3 Proof of Lemma 2 (Improved Nonuniform Sampling Lemma)

The next result is the full version of Lemma 2.
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Algorithm 3: Sliding Window
Input: n,m ∈ N
Sample n pairs (X1, Y1), . . . , (Xn, Yn)
Sort the pairs so that X1 ≤ X2 . . . ≤ Xn

for i = 1 to n−m+ 1 do
Set X̃i ← 1

m

∑m
j=1Xi+j−1

for j = 1 to m do
Set Ỹi,j ← Yi+j−1

f̂ = ERMF,`((X̃i, (Ỹi,1, . . . , Ỹi,m))n−m+1
i=1 )

return f̂

Algorithm 4: ε-Nearby
Input: n,m ∈ N, ε ∈ (0, 1)
Sample n pairs (X1, Y1), . . . , (Xn, Yn)
Sort the pairs so that X1 ≤ X2 . . . ≤ Xn

Set t← 1
for i1 = 1 to n−m+ 1 do

Set k ← max{j | i1 < j ≤ n ∧Xj −Xi1 ≤ ε}
for {i2, . . . , im} ⊆ {i1 + 1, . . . , k} do

Set X̃t ← 1
m

∑m
j=1Xij

Set Ỹt,j ← Yij
for j = 1 to m do Set t← t+ 1

return f̂ = ERMF,`((X̃i, (Ỹi,1, . . . , Ỹi,m))i∈[t])

Lemma 5 (Improved Nonuniform Sampling Lemma). Let d ∈ N and let x∗1, . . . , x∗n, x1, . . . , xN be drawn
independently from a distribution D on X = [0, 1]d. If N ≥ Cmn(d+1)/2dd/2

(
log m

δ + d log(nd)
)
for a sufficiently

large constant C, then with probability at least 1− δ, there is a set J ⊂ [n] of cardinality at least n−
√

(n log 2
δ )/2

for which, for each x∗j with j ∈ J , there are at least m points xij,1 , . . . , xij,m satisfying ‖x∗j − xij,m‖2 ≤ 1√
n
, and

all the i1,1, . . . , i1,m, . . . , i|J |,1, . . . , i|J |,m ∈ [N ] are distinct.

Proof. This follows from a combination of the proofs of Lemma 3 and Lemma 4. As in Lemma 3, we partition
[0, 1]d into heavy and light cells of diameter 1/

√
n and see that with probability δ/2 at most

√
(n log 2

δ )/2 x∗i ’s

fall in light cells. We then apply the argument of Lemma 4 to these heavy cells, using 1
r
√
n
(for r = (nd)d/2) as

their probability mass instead of wd. Thus, it suffices that

N ≥ Cmn(d+1)/2dd/2
(

log
m

δ
+ d log(nd)

)
≥ C ′m

(
n+ r

√
n log

mr

δ

)
for a sufficiently large constant C.

C Details of biased algorithms

Algorithms 3 and 4 provide the details of our biased algorithms for single dimensional X .

D Proofs of excess risk bounds

D.1 Proof of Theorem 1

The next result is the full version of Theorem 1.

Theorem 4 (Excess risk with corrupted samples). Assume that (A1) holds. Let N = Cmn(d+1)/2dd/2 log m(nd)d

δ

for some universal constant C, and let f̃ be the hypothesis returned by Algorithm 2 on (n,m,N, 1/
√
n). Then,

for n ≥ 2 log 8
δ , with probability at least 1− δ,

E[`f̃ (X,Y)]− E[`f∗(X,Y)] ≤ 2LRn(F) + 2B
(
2
√

log 4
δ +mK

)
1√
n
,

where X is drawn from D, and, conditionally on X, Y = (Y1, . . . , Ym) is drawn from (DX)m.

Proof of Theorem 4 For each i ∈ [n] and j ∈ [m], draw Yi,j independently according to distribution DX∗i .
This “clean” sample is simply a theoretical device for the analysis.

We first set up some convenient notation. For each i ∈ [n], define Yi := (Yi,1, . . . , Yi,m) and Ỹi := (Ỹi,1, . . . , Ỹi,m).
Let P be a probability measure operator, defined according to P `f = E[`f (X,Y)]; here, X is drawn from D,
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and, conditionally on X, Y = (Y1, . . . , Ym) is drawn from (DX)m. For a fixed f , P takes `f to its expected value
on a new draw from the distribution X and an m-tuple Y from DX . We also define the empirical probability
measure operators Pn and P̃n via

Pn `f =
1

n

n∑
i=1

`f (X∗j ,Yi) and P̃n `f =
1

n

n∑
i=1

`f (X∗i , Ỹi).

Now according to Lemma 6 below, we have for any positive t1, t2, t3,

Pr
(
P `f̃ > P `f∗ + t1 + 2t2 + t3

)
≤ Pr

(
sup
f∈F

(P −Pn )`f > t1

)
+ Pr

(
sup
f∈F
|(Pn −P̃n )`f | > t2

)
+ Pr

(
(Pn −P )`f∗ > t3

)
.

From Lemma 1, the first probability is at most δ/4 when t1 = 2LRn(F)+B
√

log(4/δ)
2n . From Hoeffding’s inequality,

the third probability is at most δ/4 when t3 = B
√

log(4/δ)
2n (note that f∗ is fixed). The remainder of the proof

controls the second probability. As we will see, we will be able to take t2 = O

(
B
√

log(1/δ)
n

)
when the probability

is at most δ/2.

First, under Lemma 5, with probability at least 1 − δ/4, there is a subset IG ⊂ [n] of cardinality at least

nG := n−
√

(n log 8
δ )/2 for which, for each X∗i with i ∈ IG, there are at least m points Xki,1 , . . . , Xki,m within

distance ε of x∗i , and all the k1,1, . . . , k1,m, . . . , kn,1, . . . , kn,m ∈ [N ] are distinct.

Next, we make the observation that the observed sample can be obtained by the following corruption modifications
to (Yi)i∈[n].

1. For i ∈ [n] \ IG, draw Ỹi,j from distribution DXi,j .

2. For i ∈ IG, observe that Assumption (A1) implies that, without loss of generality, we can view each Yi,j
as drawn in the following way. First, set Ỹi,j to Yi,j . Next, draw a Bernoulli random variable Zi,j with
success probability τ := Kε, and if Zi,j = 1, we corrupt Ỹi,j by setting it (again) to a new draw from some
distribution Qi,j that can depend on both X∗i and Xi,j .

For each i, if Zi,j = 0, we say that (i, j) are good, and if (i, 1), . . . , (i,m) all are good, we say that i is good.
If some i is not good, then it is bad. Clearly, for each i separately, with probability at least 1−mK/

√
n over

(Zi,j)j∈[m] it holds that i is good (recall that mτ = mKε = mK/
√
n). Thus, from Hoeffding’s inequality the

probability (over (Zi,j)i∈[n],j∈[m]) that at least (C+1)mKnG√
n

of the i’s are bad is at most e−2(nG/n)(mKC)2 ≤ e−C2

(recall that n ≥ 2 log 8
δ ) , so if C =

√
log 4

δ then this probability is at most δ/4 (and our total probability of
failure thus far is δ/2). We denote the (further diminished) good set of indices by I ′G := {i ∈ IG : i is good};

this set has cardinality at least n′G := nG

(
1−
√

log 4
δ+mK√
n

)
with probability at least 1− δ/2.

From the above argument, we see that with probability at least 1 − δ/2, at most n′B := n − n′G corruption
modifications occurred, and hence

sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

`f (X∗i , Ỹi)−
1

n

n∑
i=1

`f (X∗i ,Yi)

∣∣∣∣∣ ≤ B(n− n′G)

n
.



Rafael Frongillo, Nishant A. Mehta, Tom Morgan, Bo Waggoner

Observe that

n− n′G = n−

(
n−

√
(n log

8

δ
)/2

)1−

√
log 4

δ +mK
√
n


=
√
n

√log
4

δ
+mK +

√
log 8

δ

2

−
√

log 8
δ

2

(√
log

4

δ
+mK

)

≤
√
n

(
2

√
log

4

δ
+mK

)
,

and thus we may take t2 =
B
(

2
√

log 4
δ+mK

)
√
n

.

Lemma 6. Under the hypotheses of Theorem 4 we have the following, with probability taken over the random
sample (i.e. f̃ , Pn , and P̃n are functions of the random sample):

Pr
(
P `f̃ > P `f∗ + t1 + 2t2 + t3

)
≤ Pr

(
sup
f∈F

(P −Pn )`f > t1

)
+ Pr

(
sup
f∈F
|(Pn −P̃n )`f | > t2

)
+ Pr

(
(Pn −P )`f∗ > t3

)
.

Proof. First, observe that (using JEK for the 0-1 indicator function of a random event)
t(

sup
f∈F

(P −Pn )`f ≤ t1

)
∧

(
sup
f∈F
|(Pn −P̃n )`f | ≤ t2

)
∧
(
(Pn −P )`f∗ ≤ t3

)|
≤

r
P `f̃ ≤ P `f∗ + t1 + 2t2 + t3

z
.

To see this,

P `f̃ ≤ Pn `f̃ + t1 ≤ Pn `f̂ + Pn (`f̃ − `f̂ ) + t1

(a)

≤ Pn `f̂ + 2t2 + t1

(b)

≤ Pn `f∗ + 2t2 + t1

≤ P `f∗ + t3 + 2t2 + t1,

where (a) is from Lemma 7 and (b) is from the optimality of ERM under Pn .

By subtracting each side from one and rearranging, we get an implication on the negation of these events
t(

sup
f∈F

(P −Pn )`f > t1

)
∨

(
sup
f∈F
|(Pn −P̃n )`f | > t2

)
∨
(
(Pn −P )`f∗ > t3

)|
≥

r
P `f̃ > P `f∗ + t1 + 2t2 + t3

z

and we can use the union bound.

Lemma 7. The following statement is true:

Pn `f̃ − Pn `f̂ ≤ 2 sup
f∈F

∣∣∣(Pn −P̃n )`f

∣∣∣ .
Proof. Observe that

Pn `f̃ − Pn `f̂ =
(
Pn `f̃ − P̃n `f̃

)
+
(
P̃n `f̃ − Pn `f̂

)
≤
(
Pn `f̃ − P̃n `f̃

)
+
(
P̃n `f̂ − Pn `f̂

)
≤ 2 sup

f∈F

∣∣∣(Pn −P̃n )`f

∣∣∣ ,



Multi-Observation Regression

where the first inequality is from the optimality of f̃ under P̃n .

D.2 Proof of Theorem 2

The next result is the full version of Theorem 2.

Theorem 5. Assume that (A1) holds. Let F be a class of linear functionals as above, with the loss taking
the generalized linear form. Suppose that ‖φ(x)‖ ≤ B (the same B as for the upper bound on the loss). Let
ε = (mKn)−1 and N = Cm

(
n+ (

√
d
ε )d log 3mdd

δεd

)
for a universal constant C, and let f̃ be the hypothesis returned

by Algorithm 2 on (n,m,N, ε). If D is the uniform distribution over [0, 1]d and the risk functional R is σ-strongly
convex, then, for any δ ≤ 3e−4 and n ≥ 2 log 8

δ , with probability at least 1− δ

E[`f̃ (X,Y)]− E[`f∗(X,Y)] ≤ 1
n3B log 3

δ + 1
σn8L2B2

(
32 + log 3

δ

)
where X is drawn from D, and, conditionally on X, Y = (Y1, . . . , Ym) is drawn from (DX)m.

Proof of Theorem 5 For each i ∈ [n] and j ∈ [m], draw Yi,j independently according to distribution DX∗i .
This “clean” sample is simply a theoretical device for the analysis.

We first set up some convenient notation. For each i ∈ [n], define Yi := (Yi,1, . . . , Yi,m) and Ỹi := (Ỹi,1, . . . , Ỹi,m).
Let P be a probability measure operator, defined according to P `f = E[`f (X,Y)]; here, X is drawn from D,
and, conditionally on X, Y = (Y1, . . . , Ym) is drawn from (DX)m. For a fixed f , P takes `f to its expected value
on a new draw from the distribution X and an m-tuple Y from DX . We also define the empirical probability
measure operators Pn and P̃n via

Pn `f =
1

n

n∑
i=1

`f (X∗j ,Yi) and P̃n `f =
1

n

n∑
i=1

`f (X∗i , Ỹi).

Now according to Lemma 8 below, we have for any positive t1, t2,

Pr
(
P `f̃ > P `f∗ + t1 + 2t2

)
≤ Pr

(
sup
f∈F

{
P (`f − `f∗)− Pn (`f − `f̂ )

}
> t1

)
+ Pr

(
sup
f∈F
|(Pn −P̃n )`f | > t2

)
.

Now, since the risk is σ-strongly convex, the first probability is at most δ/3 from Theorem 1 of [27] with a = 1
and λ = 2σ, yielding the choice t1 = 8L2B2 (32 + log(3/δ)) /(σn).

The remainder of the proof controls the second probability. As we will see, we will be able to take t2 = O
(
B log(1/δ)

n

)
when the probability is at most 2δ/3.

First recall that by using Algorithm 2 with our choice of parameters, Lemma 4 gives us that with probability
at least 1− δ/3, for all i ∈ [n], there are at least m points Xki,1 , . . . , Xki,m within distance ε of X∗i , and all the
k1,1, . . . , k1,m, . . . , kn,1, . . . , kn,m ∈ [N ] are distinct.

Next, we make the observation that the observed sample can be obtained by the following “corruption” modifications
to (Yi)i∈[n].

1. For i ∈ [n] \ IG, draw Ỹi,j from distribution DXi,j .

2. For i ∈ IG, observe that Assumption (A1) implies that, without loss of generality, we can view each Yi,j as
drawn in the following way. First, set Ỹi,j to Yi,j . Next, draw a Bernoulli random variable Zi,j with success
probability τ := mKε, and if Zi,j = 1, we “corrupt” Ỹi,j by setting it (again) to a new draw from some
distribution Qi,j that can depend on both X∗i and Xi,j .

For each i, if Zi,j = 1, we say that (i, j) are good, and if (i, 1), . . . , (i,m) all are good, we say that i is good.
If some i is not good, then it is bad. Clearly, for each i separately, with probability at least 1 − 1/n over
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(Zi,j)j∈[m] it holds that i is good (recall that mτ = mKε = 1/n). Thus, from a multiplicative Chernoff bound4

the probability (over (Zi,j)i∈[n],j∈[m]) that at least 3
2 log 3

δ of the i’s are bad is at most δ/3 (for δ < 3e−4) (and
our total probability of failure thus far is 2δ/3). We denote the good set of indices by I ′G := {i ∈ [n] : i is good};
this set has cardinality at least n′G = n− 3

2 log 3
δ with probability at least 1− 2δ/3.

From the above argument, we see that with probability 1− 2δ/3, at most n′B := n− n′G corruption modifications
occur, and hence

sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

`f (X∗i , Ỹi)−
1

n

n∑
i=1

`f (X∗i ,Yi)

∣∣∣∣∣ ≤ B(n− n′G)

n
.

Thus, we may take t2 =
3
2B log 3

δ

n .

Lemma 8. Under the hypotheses of Theorem 5 we have the following, with probability taken over the random
sample (i.e. f̃ , Pn , and P̃n are functions of the random sample):

Pr
(
P `f̃ > P `f∗ + t1 + 2t2

)
≤ Pr

(
sup
f∈F

{
P (`f − `f∗)− Pn (`f − `f̂ )

}
> t1

)
+ Pr

(
sup
f∈F
|(Pn −P̃n )`f | > t2

)
.

Proof. First, observe that (using JEK for the 0-1 indicator function of a random event)
t(

sup
f∈F

{
P (`f − `f∗)− Pn (`f − `f̂ )

}
≤ t1

)
∧

(
sup
f∈F
|(Pn −P̃n )`f | ≤ t2

)|

≤
r
P `f̃ ≤ P `f∗ + t1 + 2t2

z
.

To see this,

P `f̃ ≤ P `f∗ + Pn (`f̃ − `f̂ ) + t1 ≤ P `f∗ + 2 sup
f∈F

∣∣∣(Pn −P̃n )`f

∣∣∣+ t1,

where the second inequality is from Lemma 7.

By subtracting each side from one and rearranging, we get an implication on the negation of these events
t(

sup
f∈F

{
P (`f − `f∗)− Pn (`f − `f̂ )

}
> t1

)
∨

(
sup
f∈F
|(Pn −P̃n )`f | > t2

)|

≥
r
P `f̃ > P `f∗ + t1 + 2t2 + t3

z

and we can use the union bound.

E Lower Bounds for High Dimensions

Theorem 3. If X is in the d-dimensional hypercube and the Lipschitz constant is K = 1, no algorithm for
regression on variance of y can have nontrivial accuracy with o(2 d/2) samples.

Proof. We consider the simplest nontrivial hypothesis class, constant functions (i.e. the set {fc : c ∈ R} where
each fc : x 7→ c (∀x). The instances we construct will be realizable, i.e. in each instance, there will exist a
constant c such that Var(y | x) = c (∀x).

Consider the discrete uniform distribution on the boolean hypercube X = {0, 1}d. We have Y = {0, 1}. In
instance A, Pr[y = 1 | x] = 0.5 independently for all x, and Var(y | x) = 0.25 for all x. In the family of instances

4The bound being used is Pr(Sn ≥ R) ≤ 2−R for R ≥ 6E[Sn], from equation (4.3) of [28], where Sn is the sum of i.i.d.
Bernoulli random variables with success probability 1/n.
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B, we construct an instance B by drawing, for each x, θx ∈ {0, 1} uniformly and independently at random; then
conditioned on x, the distribution of y is given by Pr[y = 1 | x] = θx. Notice that for all instances in the family B,
Var(y | x) = 0 for every x. Also, the Lipschitz constant satisfied by instances in B is 1, as all distinct x lie at a
distance at least 1 from each other.

Informal sketch. Any algorithm that is accurate must, with probability close to 1, produce a different output
when given access to A than when given access to a uniform instance from B. However, by the principle of
deferred decisions, we can rewrite the algorithm’s behavior in the latter case as follows: Each time a uniformly
random x is drawn, if the algorithm has already seen a sample from x, then set y consistent with that previous
sample; otherwise, draw θx uniformly at random and set y = θx.

Thus, the input to the algorithm is distributed exactly identically in both cases unless the algorithm obtains
multiple samples from the same x. However, with o(20.5d) samples, the probability of this occurring is o(1) (by
the “birthday paradox”), so the algorithm has the same distribution of outputs with probability 1− o(1).

Formal proof. Let M be an algorithm and write M(A) for the random variable which is M ’s hypothesis when
run on samples from A, while M(B) is M ’s hypothesis when run on samples from a uniformly randomly chosen
instance B from the family B. Suppose that M satisfies that, with probability at least 2

3 , its hypothesis (which is
some constant c) is within ε of the correct variance, i.e. M(A) ≥ 0.25− ε and M(B) ≤ ε each with probability at
least 2

3 .
5 Suppose ε < 0.125 and the number of samples drawn by M is o(20.5d); we show a contradiction.

Use s to denote a set of samples each of the form (x, y), and let NR denote those sample-sets which have “no
repeated x’s”, i.e. NR = {s : each x in s is unique}. Use PrA[s] to denote the probability of drawing a set of
samples s given access to A, with PrB [s] the probability of drawing s given access to a uniformly random instance
from B, and so on. We have

2

3
≤ Pr[M(A) ≥ 0.25− ε]

=
∑
s

Pr
A

[s] Pr[M(s) ≥ 0.25− ε]

=
∑
s∈NR

Pr
A

[s] Pr[M(s) ≥ 0.25− ε] +
∑
s6∈NR

Pr
A

[s] Pr[M(s) ≥ 0.15]

≤
∑
s∈NR

Pr
A

[s] Pr[M(s) ≥ 0.25− ε] +
∑
s6∈NR

Pr
A

[s]. (1)

Now, for all s ∈ NR, we claim PrA[s] = PrB [s], as each is equal to

∏
(x,y)∈s

Pr[x] Pr[y | x] =
∏

(x,y)∈s

2−d
(

1

2

)
.

(In the case of A, this is immediate; in the case of B, by the principle of deferred decisions, we can construct
B piece-by-piece; as each sample (x, y) ∈ s ∩NR is drawn, we draw θx ∈ {0, 1} uniformly at random and set
Pr[y = 1] = θx, which results in a uniform distribution on y.)

Meanwhile,
∑
s 6∈NR PrA[s] is the probability of drawing a sample with some repeated x value, which we claim is

o(1) with o(20.5d) samples. The distribution is uniform on the 2d possible x values. The probability of a repeat
or “collision”, by Markov’s inequality, is at most the expected number of collisions; with m samples, there are(
m
2

)
pairs each with a 2−d chance of collision, so the expected number of collisions is O

(
m2

2d

)
, which is o(1) for

m = o(20.5d).

So with o(20.5d) samples, we have by (1) that

2

3
≤
∑
s∈NR

Pr
B

[s] Pr[M(s) ≥ 0.25− ε] + o(1)

≤ Pr[M(B) ≥ 0.25− ε] + o(1)

5One can also state this condition as an ≈ ε generalization error guarantee for M with appropriate loss function.
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which, if ε < 0.125, implies that Pr[M(B) ≤ ε] ≤ 1
3 + o(1). This contradicts the accuracy assumption that

Pr[M(B) ≤ ε] ≥ 2
3 , so with this small number of samples, no such accurate M exists.

Theorem 6. With a uniform distribution on the unit hypercube [0, 1]d in d dimensions, with Lipschitz constant
K = d, there is no algorithm for regression on variance with nontrivial accuracy drawing o(20.5d) samples.

More precisely, estimating average variance over the hypercube to accuracy ε < 1
32 with success rate at least 2

3
requires Ω(20.5d) samples.

Proof. The construction is very similar to the Boolean hypercube above. We have Y = {0, 1}. On instance A, for
every x, Pr[y = 1 | x] = 0.5. Hence, Var(y | x) = 0.25 for all x.

Constructing B. We now construct the family of instances B and show that each has Lipschitz constant K ≤ d
and has average variance Ex Var(y | x) ≤ 3

16 .

In each instance, the hypercube is divided into “corners” and “interior regions”. Let β = 1
2

1
2d and let α = 1

2 − β.
Each “corner” Cv is a hypercube of side length α, inscribed in the unit hypercube and sharing the vertex v ∈ {0, 1}d.
In other words, Cv = {x : ‖x− v‖∞ ≤ α}. The portions of [0, 1]d not contained in any corner are considered the
“interior regions”.

To construct an instance in the family B, draw θv ∈ {0, 1} i.i.d. uniformly for each v. For points x in some
corner Cv, we have Pr[y = 1 | x] = θv. For points x in the interior regions, let the notation ‖x − Cv‖2
denote minx′∈Cv ‖x′ − x‖2. If there exists a v such that ‖x − Cv‖2 < β, then, letting r = ‖x − Cv‖2, set
Pr[y = 1 | x] =

(
1− r

β

)
θv +

(
r
β

) (
1
2

)
. (Note that this can only be true for at most one v, as this implies

‖x − v‖∞ < 1
2 , i.e. x is contained within the “corner” of side length 1

2 touching v.) For all other x (those not
within β of any Cv), we have Pr[y = 1 | x] = 1

2 .

Now we show that any instance in family B has Lipschitz constant K = d. For shorthand, write px := Pr[y = 1 | x].
Note that total variation distance between the distributions on y at x and at x′ is |px − px′ |. The Lipschitz
constant is bounded by the maximal directional derivative of px with respect to x in any direction. This is zero
if x lies within some Cv or if x is not within distance β of some Cv. Otherwise, if x′ = argminx′′∈Cv ‖x

′′ − x‖2,
then the absolute value of the directional derivative is maximized in the direction x′ − x, where it is 1

2β . This
gives a Lipschitz constant of 1

2β .

Now we bound the average variance of y given x. The volume of each corner Cv is αd and there are 2d corners,
so the total volume of the corners is

2dαd = 2d
(

1

2
− 1

2

1

d

)d
=

(
1− 1

d

)d
≥
(

1− 1

2

)2

=
1

4

assuming d ≥ 2. For any x ∈ Cv for any v, Var(y | x) = 0. For all other x, Var(y | x) ≤ 0.25; and the volume
computation shows that they make up at most 3

4 of the hypercube. Hence, average variance in this instance is at
most 0.25

(
3
4

)
= 3

16 .

(We note that, by letting β = 1
2

1
Cd for C ≥ 1, the same derivation gives Lipschitz constant K = C

d and an average
variance bounded by 4C−1

16C2 ≤ 1
4C .)

Indistinguishability. From here, the proof is almost identical to the Boolean case. Consider any algorithm
M that is with ε < 1

32 of the correct average variance with probability at least 2
3 . For each vertex v, let

Rv = {x : ‖x− v‖∞ < 1
2}. There are 2d disjoint regions Rv, each with volume 1

2d
, and with probability 1, each

sample (x, y) has x ∈ Rv for some v.
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Let s denote a set of samples drawn by M and let NR = {s : s has no repeated xs}. If M draws o(2d) samples,
then Pr[s ∈ NR] = o(1). If s 6∈ NR, then we claim PrA[s] = PrB[s], where the notation is shorthand for
the probability of drawing the samples s given oracle access to A, or to a uniformly chosen member B of B,
respectively. The reason is that, by the principle of deferred decisions, we can in the case of B choose θv at
the moment that a sample (x, y) is drawn with x ∈ Rv, which occurs at most once for each v because s 6∈ NR.
Because the distribution on θv is uniform {0, 1}, for any x ∈ Rv, the distribution of px = Pr[y = 1 | x] is uniform
around 1

2 , or in other words, the unconditional probability that this y = 1 is exactly 1
2 .

So,

2

3
≤ Pr[M(A) ≥ 0.25− ε]

=
∑
s∈NR

Pr
A

[s] Pr[M(s) ≥ 0.25− ε] + o(1)

=
∑
s∈NR

Pr
B

[s] Pr[M(s) ≥ 0.25− ε] + o(1)

≤ Pr[M(B) ≥ 0.25− ε] + o(1).

For ε < 1
32 , this contradicts the accuracy requirement that Pr[M(B) ≤ 3

16 + ε] with probability 2
3 .

F Supporting arguments for Lipschitz regression lower bound

In this section, we show how the the minimax lower bound of [21] implies Corollary 1, our minimax lower bound
for predictors that adopt the two-estimator (single-observation) approach. All notation in this section is from [21].

Proof of Corollary 1 The goal can be equivalently stated as minimizing the L2(D)-estimation error of Var[Y |
X], i.e., to find an estimator f̂ for which E

[(
f̂(X)−Var[Y | X]

)2] is as small as possible. In the two-estimator

approach, f̂ takes the form f̂ = ĝ − ĥ for estimators ĝ and ĥ of E[Y 2 | X] and (E[Y | X])
2 respectively. Then

E
[(
f̂(X)−Var[Y | X]

)2]
= E

[((
ĝ(X)− E

[
Y 2 | X

])
+
(
E [Y | X]

2 − ĥ(x)
))2]

. (2)

The two-estimator approach needs to ensure that L2(D) norm of ĝ(X)− E
[
Y 2 | X

]
is small (and likewise for the

second term). Suppose that Y | X = x is Bernoulli for any x ∈ X . Then this latter necessary goal reduces to the
familiar regression problem of minimizing E

[
(ĝ(X)− E[Y | X])

2]. The above minimax lower bound will apply to
the above estimation problem in the following setting:

Take X = [0, 1]d and let D be the uniform distribution over X . For all x ∈ X , the distribution Dx is a certain
subclass of Bernoulli distributions6 with x 7→ E[Y | X = x] a K-Lipschitz function. Then for any estimator ĝ,
there exists a law Y | X satisfying the aforementioned assumptions such that

E
[
(ĝ(X)− E[Y | X])2

]
= Ω

(
n−2/(2+d)

)
,

and there is a matching upper bound, so that this is the minimax optimal rate of convergence for this problem.

To see how the above result follows from [21], we take T (θ) = θ and observe that the Lipschitz condition is
reflected in Stone’s equation (1.2) by setting K2 to our K, k to zero, and β = 1 (so that p = k + β = 1 and
hence r = 1/(2 + d)). Since θ is the parameter of a Bernoulli distribution, we need to verify from the lower
bound construction that for all choices of θ ∈ Θn used in the lower bound, we have θ ∈ (0, 1). We now do this
verification.

As mentioned in the proof of Lemma 1 of [21], for any binary sequence τn ∈ {0, 1}Vn , the corresponding7 g
(τ)
n

vanishes at the boundary of [0, 1]d. Moreover, by assumption each g(τ)
n is K-Lipschitz for K = 1/(2

√
d). Let

6See Condition 2 of [21] for details; in our setting, we have t = θ(x) = E[Y | X = x], so the Bernoulli distribution can
vary with x, as further explained on p. 1350 of [29].

7We use the notation g(τ)n rather than Stone’s notation gn to make explicit the dependence on τ .
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us verify that, for all θ ∈ Θn and for all x ∈ [0, 1]d, it holds that θ(x) ∈ (0, 1). Let θ0 ≡ 1
2 , and note that

θ(x) = θ0(x) + g(τ)(x). It suffices to show that |g(τ)
n (x)| ≤ 1

2
√

2
for all τ ∈ {0, 1}d and all x ∈ [0, 1]d. This is easily

verified. First, observe that

|g(τ)
n (x)| =

∣∣∣g(τ)
n (x)− g(τ)

n (0)
∣∣∣ =

∣∣∣g(τ)
n (x)− g(τ)

n (1)
∣∣∣ ,

since g(τ) vanishing at the boundary of [0, 1]d implies that g(τ)
n (0) = g

(τ)
n (1) = 0. Therefore,

|g(τ)
n (x)| = min

{∣∣∣g(τ)
n (x)− g(τ)

n (1)
∣∣∣ , ∣∣∣g(τ)

n (x)− g(τ)
n (0)

∣∣∣}
≤ K min {‖x− 1‖, ‖x− 0‖}

= K

∥∥∥∥1

2
· 1
∥∥∥∥

= K
√
d/2

=
1

2
√

2
.

The result then follows by applying Theorem 1 of [21] with q = 2.

G Eliciting the Upper Confidence Bound

Given a random variable Y , define ucbλ(Y ) = E[Y ] + λσ[Y ], where σ[Y ] =
√

Var[Y ] =
√
E[Y 2]− E[Y ]2. We

show here the motivation behind the loss function used in § 5.2.

The level sets of ucbλ, as a function of the law of Y , i.e., the distribution, are given by

r = ucbλ(Y ) = E[Y ] + λσ[Y ] . (3)

We can rewrite this as follows:

r − E[Y ] = λσ[Y ] (4)

(r − E[Y ])2 = λ2 Var[Y ] (5)

0 = λ2 Var[Y ]− E[Y ]2 + 2rE[Y ]− r2 , (6)

though note that we have introduced another solution: both r = E[Y ] + λσ[Y ] and r = E[Y ] − λσ[Y ] now
satisfy eq. (6) but only the former satisfies eq. (3). Apart from this spurious solution, the following would be an
identification function for ucbλ, meaning a distribution has zero expectation if and only if it is in the level set for
r; see [30, 31].

V (r, y1, y2) =
λ2

2
(y1 − y2)2 − y1y2 + (y1 + y2)r − r2 , (7)

whence
E[V (r, Y1, Y2)] = λ2 Var[Y ]− E[Y ]2 + 2E[Y ]r − r2 , (8)

where of course Y1, Y2 ∼ Y are independent.

Despite the fact that V does not completely identify ucbλ, as for a given r, distributions where E[Y ]− σ[Y ] = r
also satisfy E[V (r, Y1, Y2)] = 0, we can still try to integrate −V with respect to r to get a loss function. The
result is

`(r, y1, y2) = −
(
λ2

2
(y1 − y2)2 − y1y2

)
r − 1

2
(y1 + y2)r2 +

1

3
r3 . (9)

As V was not a true identification function, we know that E[`(r, Y1, Y2)] has multiple extrema, at r = E[Y ]±λσ[Y ].
What’s worse, since ` is cubic, we see that one can actually achieve arbitrarily negative loss as r → −∞. Still, we
can impose conditions on r and Y so that r = ucbλ(Y ) is the unique minimizer of E[`]. In particular, if we restrict
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r to the range E[Y ] − 2λσ[Y ] ≤ r ≤ ∞, then the loss will elicit ucbλ. If we further restrict r ≥ E[Y ] − λσ[Y ],
then E[`] is quasi-convex. Finally, if we further restrict r ≥ E[Y ], then E[`] is convex.

Another possible loss is obtained by integrating −rV , that is, r times −V . This gives us,

`(r, y1, y2) = −1

2

(
λ2

2
(y1 − y2)2 − y1y2

)
r2 − 1

3
(y1 + y2)r3 +

1

4
r4 .

This removes the problem of unbounded negative loss for incorrect reports, but can still have a local optimum at
r = E[Y ]− λσ[Y ].

H Simulation Details

Algorithm implementation. For Algorithm 2 and the ε-Nearby algorithm, we used ε = 1
2
√
n
, which we found

to generally perform the best. There is some question about how to apply Algorithm 2 in the setting where one is
given a fixed set of samples, rather than an oracle for drawing samples. The strategy that we found to work best,
which we used here, was given n̂ samples, to use the first n for X∗1 , . . . , X∗n and the remaining N = n̂ − n for
X

(1)
1 , . . . , X

(1)
N . We then binary searched to find the largest n which allowed a perfect matching.8 In all of our

experiments, our two-observation methods used the linear functions as their hypothesis class. In all cases, the
true statistic is within this class.

Monte Carlo approach. For ucbλ we compared against the standard strategy used in practice. This strategy
is to sample n/k random points x1, . . . , xn/k from X, and then for each xi sample k values yi,1, . . . , yi,k ∼ Y |X=xi.
For each i, we compute the empirical ucbλ ui of yi,1, . . . , yi,k and then fit a line to (x1, u1), . . . , (xn/k, un/k) via
least-squares regression. We found that best results were achieved by letting k =

√
n.

αk(x) implementation. For the 2-norm, we chose our distribution αk(x) = (Y |X=x) so that ||αk(x)||22 = 1/2
for all x ∈ [0, 1] and the support is always at most 3, but what values make up that support shift with x.
We constructed αk(x) as follows. Y = {0, . . . , k − 1}. Given x ∈ [0, 1), choose r ∈ {0, . . . , k − 3} such that
r ≤ (k−2)x ≤ r+1. Let a = (x(k−2)−r)/2 and b = (2a−1+

√
1 + 4a− 12a2)/4. Then Pr[αk(x) = r] = 1/2−a,

Pr[αk(x) = r + 1] = 1/2 + b, Pr[αk(x) = r + 2] = a− b, and all other outcomes have probability 0.

Evaluation framework. As we used simple underlying statistics (1, 1/2, and x+ 10) and simple hypothesis
classes, we were able to compute the mean squared error between an algorithm’s reported hypothesis and the
true statistic via closed form expressions. The only exception to this was for the two moment method of learning
ucbλ, where the instead we estimated the mean squared error via 1000 sample Monte Carlo integration. Each
data point in Figure 1 is the median of 1000 independent trials.

8Note that this modification may introduce some bias so our theoretical results about Algorithm 2 no longer directly
apply. Nevertheless, we found this modification to be effective in practice.
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