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A Proof of Section 2

A.1 Proof of Theorem 1

Proof. We rewrite the spectral norm error in terms of
the polynomial representations (8) and (9) as
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where the last inequality comes from the fact that
‖sym(T )‖sp ≤ ‖T ‖sp. Then we study each term in (23).
For simplicity of notation, denote the estimation error
E(p)
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j − Gj , then we have
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(24)

Now we study the spectral norm of E(p)
j , which can

be upper bounded by the Frobenius norm. Then by
Lemma 2.1, we have,

‖E(p)
j ‖sp ≤ ‖E

(p)
j ‖F =

√√√√ ∑
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(
E(p)
j

)2
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= O(dj/2hp+1−j) +Op(dj/2(nhd+2j)−1/2). (25)

Since for any j ≤ m, we have hp+1−j → 0 and
nhd+2j → ∞ as n → ∞. So for sufficiently large
n, we have

∑
j∈λ ‖E

(p)
j ‖sp ≤ 1 with high probability.

Then, plug it into (24), we get
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= O(djmax/2hp+1−jmax)
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here constant C = maxν
∏
j∈λ\ν Cj and jmax =

max{j : j ∈ λ}. The last inequality comes from the fact
that ey−1 ≤ 2y for any y ≤ 1. Since λ is a partition of
integer m, we have jmax ≤ m, and the equation holds
if and only if λ = {m}. Therefore the only term in (23)
that achievesO(dm/2hp+1−m)+Op(dm/2(nhd+2m)−1/2)
is ‖Â(p)

m − Gm‖sp, with cm(λ) = 1. Therefore, we com-
plete the proof.

B Proofs of Section 3

The key technical lemma behind our results is the
Stein’s lemma and its generalizations which we present
below.
Lemma B.1 (Stein et al. (1972)). Let x ∼ N (0, Id)
and g : Rd → R be such that both E[∇g(x)] and
E[g(x)x] exist and are finite. Then

E[g(x)x] = E[∇xg(x)]. (27)

The following lemma generalizes Stein’s lemma to more
general distributions and higher-order derivatives.
Lemma B.2 (Sedghi and Anandkumar (2014)). Let
m ≥ 1 and Sm(x) be defined as in (2). Then for any
g : Rd → R satisfying some regularity conditions, we
have

E[g(x) · Sm(x)] = E[∇(m)
x g(x)]. (28)

The following theorem gives an alternate characteriza-
tion of the loss function L and is the key step in the
proof of Theorem 2.
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Theorem 4. The loss function L(·) defined in (19)
satisfies that

L(A)
=

∑
i∈[d]

w∗i E[g(4)(〈a∗i , x〉)]
∑

j,k∈[d],j 6=k

〈a∗i , aj〉2〈a∗i , ak〉2

−µ
∑
i,j∈[d]

w∗i E[g(4)(〈a∗i , x〉)]〈a∗i , aj〉4

+λ
∑
i∈[d]

(‖ai‖ − 1)2 . (29)

Proof. Since η is zero-mean and independent of x, we
have that

E[y · Sm(x)] =
∑
i∈[k]

w∗i E[g(〈a∗i , x〉 · Sm(x))] , (30)

Putting m = 4 in Lemma B.2, in view of (30), we
obtain that

E[y · S4(x)] =
∑
i∈[k]

w∗i E[g(4)(〈a∗i , x〉)](a∗i )⊗4. (31)

Thus for any fixed aj , ak, we have

E[y · S4(x)(aj , aj , ak, ak)] = E[y · t1(x)]

=
∑
i∈[k]

w∗i E[g(4)(〈a∗i , x〉)]〈a∗i , aj〉2〈a∗i , ak〉2, (32)

E[y · S4(x)(aj , aj , aj , aj)] = E[y · t2(x)]

=
∑
i∈[k]

w∗i E[g(4)(〈a∗i , x〉)]〈a∗i , aj〉4. (33)

Now summing over j, k finishes the proof.

B.1 Proof of Theorem 2

Proof. The proof directly follows from Theorem 2.3 of
Ge et al. (2017) and Theorem 4.

B.2 Proof of Theorem 3

We formally state our assumptions for the finite sample
landscape analysis below.
Assumption 3. (a) ‖x‖ has exponentially decaying

tails, i.e.

P
[
‖x‖2 ≥ t

]
≤ K1e

−K2t
2
, ∀t ≥ 0, (34)

for some constants K1,K2 > 0.

(b) Let l(x, y,A) be such that L(A) = E[l(x, y,A)] +
λ
∑
i∈[k](‖ai‖

2− 1)2. Then there exists a constant
K > 0 which is at most a polynomial in d and a
constant p ∈ N such that

‖∇Al(x, y,A)‖ ≤ K ‖x‖p ,∥∥∇2
Al(x, y,A)

∥∥ ≤ K ‖x‖p , (35)

for all A such that ‖Ai‖ ≤ 2.

In order to establish that the gradient and the Hessian
of L are close to their finite sample counterparts, we
first consider its truncated version LT defined as

LT , E[l(x, y,A)1E ], E , {‖x‖ ≤ R}, (36)

where R = Cd log(1/ε) for some ε < 0. It follows that
LT is well behaved and exhibits uniform convergence
of empirical gradients/Hessians to its population ver-
sion Ge et al. (2017) for A with bounded norm. Then
Theorem 3 follows from showing that the gradient and
the Hessian of LT are close to that of L as well in
this setting, which we prove in Lemma B.3. Next we
combine this result with Lemma E.5 of Ge et al. (2017)
which shows that A with large row norms must also
have large gradients and hence cannot be local minima.
First we define LT
Lemma B.3. Let LT be defined as in (36) and As-
sumption 3 hold. Then for a sufficiently large constant
C and a sufficiently small ε > 0, we have that

‖∇L(A)−∇LT (A)‖2 ≤ ε, (37)∥∥∇2L(A)−∇2LT (A)
∥∥

2 ≤ ε. (38)

for all A with row norm ‖Ai‖ ≤ 2.

Proof. We have that

‖∇L(A)−∇LT (A)‖2
= ‖E[∇l(x, y,A)(1− 1E)]‖
(a)
≤ E[‖∇l(x, y,A)‖1{‖x‖ ≥ R}]
=

∑
i≥0

E[‖∇l(x, y,A)‖1{‖x‖ ∈ [2iR, 2i+1R]}]

(b)
≤

∑
i≥0

K(2i+1R)pP
[
‖x‖ ≥ 2iR

]
≤

∑
i≥0

K(2i+1R)pe−2iR

(c)
≤

∑
i≥0

e−2i−1R

=
∑
i≥0

εCd2i−1

(d)
≤

∑
i≥0

ε/2i+1 = ε, (39)

where (a) follows from the Jensen’s inequality, (b) fol-
lows from Assumption 3, (c) follows from the fact that
K(2x)pe−x ≤ e−x/2 for x sufficiently large, and (d)
follows from choosing C sufficiently large. Similarly for∥∥∇2L(A)−∇2LT (A)

∥∥
2.
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We are now ready to prove Theorem 3.

Proof. Let A be such that norms of all the rows are
less than 2. Then we have from Lemma B.3 that

‖∇L(A)−∇LT (A)‖2 ≤ ε/4, (40)∥∥∇2L(A)−∇2LT (A)
∥∥

2 ≤ τ0/4. (41)
Notice that the gradient and Hessian of l(x, y,A)1E
are bounded τ = poly(d, 1/ε) for some fixed polyno-
mial poly. Hence using the uniform convergence of the
sample gradients/Hessians to their population counter-
parts (Ge et al., 2017, Theorem E.3), we have that∥∥∥∇LT (A)−∇L̂T (A)

∥∥∥
2
≤ ε/6, (42)∥∥∥∇2LT (A)−∇2L̂T (A)

∥∥∥
2
≤ τ0/6, (43)

whenever N ≥ poly(d, 1/ε), with high probability.
Moreover, from standard concentration inequalities
(such as multivariate Chebyshev) it follows that∥∥∥∇L̂(A)−∇L̂T (A)− (∇L(A)−∇LT (A))

∥∥∥
2

≤ ε/6, (44)∥∥∥∇2L̂(A)−∇2L̂T (A)− (∇2L(A)−∇2LT (A))
∥∥∥

2
≤ τ0/6, (45)

with high probability, whenever N ≥ poly(d, 1/ε).
Hence, we obtain that∥∥∥∇L(A)−∇L̂(A)

∥∥∥
2
≤ ε/2, (46)∥∥∥∇2L(A)−∇2L̂(A)

∥∥∥
2
≤ τ0/2. (47)

If A is such that there exists a row Ai with ‖Ai‖ ≥
2, we have from (Ge et al., 2017, Lemma E.5) that
〈∇L̂(A), Ai,≥〉cλ ‖Ai‖4 for a small constant c and thus
A cannot be a local minimum for L̂. Hence all local
minima of L̂ must have ‖Ai‖ ≤ 2 and thus in view of
(47) it follows that it also a ε-approximate local minima
of L, or more concretely,

‖∇L(A)‖ ≤ ε, ∇2L(A) < −τ0Id. (48)

B.3 Landscape design for k < d

In the setting where k = d and the regressors a∗1, . . . , a∗d
are linearly independent, our loss functions L4(·) can
modified in a straightforward manner to arrive at the
loss function F (·) defined in Appendix C.2 of Ge et al.
(2017). Hence we have the same landscape properties
as that of Theorem B.1 of Ge et al. (2017). The proof
is exactly similar to that of our Theorem 2.
In a more geneal scenario where k < d and the regres-
sors a∗1, . . . , a∗d are linearly independent, it turns out
that our loss function L4(·) can also be transformed
to obtain the loss F(·) in Appendix C.3 of Ge et al.
(2017) to arrive at Theorem C.1 of Ge et al. (2017) in
our setting. The proof is again similar.


