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Abstract

Composite convex optimization problems
which include both a nonsmooth term and a
low-rank promoting term have important ap-
plications in machine learning and signal pro-
cessing, such as when one wishes to recover
an unknown matrix that is simultaneously
low-rank and sparse. However, such prob-
lems are highly challenging to solve in large-
scale: the low-rank promoting term prohibits
efficient implementations of proximal meth-
ods for composite optimization and even sim-
ple subgradient methods. On the other hand,
methods which are tailored for low-rank op-
timization, such as conditional gradient-type
methods, which are often applied to a smooth
approximation of the nonsmooth objective,
are slow since their runtime scales with both
the large Lipchitz parameter of the smoothed
gradient vector and with 1/ε, where ε is the
target accuracy. In this paper we develop ef-
ficient algorithms for stochastic optimization
of a strongly-convex objective which includes
both a nonsmooth term and a low-rank pro-
moting term. In particular, to the best of
our knowledge, we present the first algorithm
that enjoys all following critical properties
for large-scale problems: i) (nearly) opti-
mal sample complexity, ii) each iteration re-
quires only a single low-rank SVD compu-
tation, and iii) overall number of thin-SVD
computations scales only with log 1/ε (as op-
posed to poly(1/ε) in previous methods). We
also give an algorithm for the closely-related
finite-sum setting. We empirically demon-
strate our results on the problem of recov-
ering a simultaneously low-rank and sparse
matrix.
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1 Introduction

Our paper is strongly motivated by low-rank and non-
smooth matrix optimization problems which are quite
common in machine learning and signal processing ap-
plications. These include tasks such as low-rank and
sparse covariance matrix estimation, graph denoising
and link prediction [18], analysis of social networks
[20], and subspace clustering [19], to name a few.

Such optimization problems often fit the following very
general optimization model:

min
X∈V

f(X) := G(X) +RNS(X) + h(X), (1)

where V is a finite linear space over the reals, G(·) is
convex and smooth, RNS(·) is convex and (generally)
nonsmooth, and h(·) is convex and proximal-friendly
(e.g., it is an indicator function for a convex set or a
convex regularizer). Motivated by large-scale machine
learning settings, we further assume G(·) is stochastic,
i.e., G(X) = Eg∼D[g(X)], where D is a distribution
over convex and smooth functions, and either given
by a sampling oracle (stochastic setting), or admits a
finite support and given explicitly (finite-sum setting).
Finally, we assume f(·) is strongly-convex (either due
to strong convexity of G(·) or RNS(·)). For instance
the simultaneously low-rank and sparse covariance es-
timation problem [18] can be written as:

min
tr(X)≤τ, X�0

1

2
‖X−M‖2F + λ‖X‖1, (2)

where M = YY> + N is a noisy observation of some
low-rank and sparse covariance matrix YY>. Here,
V = Sn (space of n × n real symmetric matrices),
G(X) = 1

2‖X−M‖2F (which is deterministic in this
simple example), RNS(X) = λ‖X‖1, and h(X) is
an indicator function for the trace-bounded positive
semidefinite cone (which both constraints the solution
to be positive semidefinite and promotes low-rank)1.

1A closely related problem to (2) to which all of the
following discussions apply, is when X ∈ V = Rm×n is not
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The general model (1) is known to be a very diffi-
cult optimization problem to solve in large scale, al-
ready in the specific setting of Problem (2). In par-
ticular, many of the traditional first-order convex op-
timization methods used for solving non-smooth opti-
mization problems are not efficiently applicable to it.
For instance, proximal methods for composite opti-
mization, such as the celebrated FISTA algorithm [1],
do not admit efficient implementations for composite
problems which include both a non-smooth term and
a low-rank promoting term. When applied to Prob-
lem (2), each iteration of FISTA will require to solve a
problem of the same form as the original problem, and
hence is inefficient. Another type of well known first-
order methods that are applicable to nonsmooth prob-
lems are deterministic/stochastic subgradient/mirror-
descent methods [16, 3]. However these methods are
also inefficient for problems such as (2), since each it-
eration requires projecting a point onto the feasible
set, which requires a full-rank SVD computation on
each iteration that is is computationally-prohibitive
for large-scale problems.

Another type of methods, which are often suitable
for large-scale low-rank matrix optimization problems,
and have been studied extensively in this context
in recent years, are Conditional Gradient-type meth-
ods (aka Frank Wolfe-type methods), see for instance
[9, 5, 8, 7, 17, 14, 11, 10, 15, 6]. These type of algo-
rithms, when applied to optimization over a nuclear-
norm ball or over the trace-bounded positive semidefi-
nite cone (as in Problem (2)), avoid expensive full-rank
SVD computations, and only compute a single leading
singular vector pair on each iteration (i.e., rank-one
SVD), and hence are much more scalable. However,
Conditional Gradient methods can usually be applied
only to smooth problems, and so, the non-smooth term
RNS(X) is often replaced with a smooth approxima-
tion R(X). A general theory and framework for gen-
erating such smooth approximation (i.e., replacing the
non-smooth term with a smooth function that is point-
wise close to the original), often referred to as smooth-
ing, is described in [2]. Unfortunately, smoothing a
function often results in a large Lipschitz constant of
the gradient vector of the smoothed function. For ex-
ample, the smooth approximation of the `1 norm is via
the well known Huber function for which the Lipschitz
constant of the gradient often scales like dim(V)/ε,
where ε is target accuracy to which the problem needs
to be solved. Since the convergence rate of smooth
optimization algorithms such as conditional gradient-
type methods discussed above often scales with βD2/ε,

constrained to be positive semidefinite (or even symmet-
ric), and a low-rank solution is encouraged by constraining
X via a nuclear norm constraint ‖X‖∗ ≤ τ , where ‖ · ‖∗ is
the `1 norm applied to the vector of singular values.

where β is the Lipschitz parameter of the gradient and
D is the distance of the initial point to an optimal so-
lution, these methods are often not scalable for nons-
mooth objectives such as Problem (2) and the general
model (1) (even after smoothing them), since typically
all three parameters 1/ε,D, β can be quite large. In
particular, we note that for strongly-convex functions,
it is possible to obtain (via other types of first-order
methods) rates that depend only logarithmically on
1/ε,D.

Another issue with conditional gradient methods is
that, as opposed to projected subgradient methods,
their analysis does not naturally extend to handle
stochastic objectives (recall that, motivated by ma-
chine learning settings, in the general model (1) we
assume G(·) is stochastic). In particular, a straight-
forward variant of the method for stochastic objectives
results in a highly suboptimal sample complexity [7].
In a recent related work [13], the authors consider a
variant of the conditional gradient method for solving
stochastic optimization problems that cleverly com-
bines the conditional gradient method with Nesterov’s
accelerated method and stochastic sampling to obtain
an algorithm for smooth stochastic convex optimiza-
tion that, in the context of low-rank matrix optimiza-
tion problems, i) requires only 1-SVD computation on
each iteration (as in the standard conditional gradi-
ent method) and ii) enjoys (nearly) optimal sample
complexity (both in the strongly convex case and non-
strongly convex case). In a recent work [7], the tech-
nique of [13] was extended to the finite-sum stochastic
setting and combined with a popular variance reduc-
tion technique [12], resulting in a conditional gradient-
type method for smooth and strongly-convex finite-
sum optimization that i) requires only 1-SVD com-
putation on each iteration, and ii) enjoys a gradient-
oracle complexity of the same flavor as usually ob-
tained via variance-reduction methods [12], greatly im-
proving over naive applications of conditional gradi-
ent methods which do not apply variance reduction.
Unfortunately, both results [13, 7], while greatly im-
proving the first-order oracle complexity of previous
conditional-gradient methods, still require an overall
number of 1-SVD computations that scales like βD/ε.
Hence, when applied to smooth approximations of
nonsmooth problems such as Problems (2), (1), the
overall very large number of thin-SVD computations
needed greatly limits the applicability of these meth-
ods.

The limitations of previous methods in tackling large-
scale low-rank and nonsmooth matrix optimization
problems naturally leads us to the following question.

In the context of low-rank and nonsmooth matrix
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optimization, is it possible to combine all following
three key properties for solving large-scale instances of
Model (1) into a single algorithm?

1. (nearly) optimal sample complexity,

2. use of only low-rank SVD computations,

3. overall number of low-rank SVD computations
scales with log(1/ε) (not poly(1/ε) as in previous
methods).

In this paper we answer this question in the affirma-
tive. To better discuss our results we now fully for-
malize the considered model and assumptions.

We consider the following general model:

min
X∈V

f(X) := G(X) +R(X) + h(X), (3)

where V is a finite linear space over the reals equipped
with an inner product 〈·, ·〉. Throughout the paper we
let ‖ ·‖ denote the norm induced by the inner product.

Throughout the paper we consider the following as-
sumptions for model (3).

Assumption 1. • G is stochastic, i.e., G(X) =
Eg∼D[g(X)], where D is a distribution over func-
tions g : V → R, given by a sampling oracle.
G is differentiable, and for all g ∈ supp(D), g
is βG-smooth, and there exists σ ≥ 0 such that
σ ≥ sup

X∈dom(h)

√
E[‖∇G(X)−∇g(X)‖2].

• R : V → (−∞,∞] is deterministic, βR-smooth,
and convex,

• G+R is α-strongly convex,

• h : V → (−∞,∞] is deterministic, non-smooth,
proper, lower semicontinuous and convex.

For simplicity we define β := βG + βR. As discussed
above, R(·) can be thought of as a smooth approx-
imation of some nonsmooth term RNS(·) (hence, we
generally expect that βR >> βG), and h(·) can be
thought of as either an indicator function for a convex
set (e.g., a nuclear-norm ball) or a convex regularizer.

A quick summary of our results and comparison to
previous conditional gradient-type methods for solv-
ing Model (3) in case h(·) is either an indicator for a
nuclear norm ball of radius τ or the set of all positive
semidefinite matrices with trace at most τ , is given in
Table 1.

Our algorithm and novel complexity bounds are based
on a combination of the variance reduction technique
introduced in [12] and the use of, what we refer to in

this work as, a weak-proximal oracle (as opposed to the
standard exact proximal oracle used ubiquitously in
first-order methods), which was introduced in the con-
text of nuclear-norm-constrained optimization in [8],
and further generalized in [17]. In the context of low-
rank matrix optimization problems, implementation of
this weak-proximal oracle requires a SVD computation
of rank at most rank(X∗) - the rank of the optimal so-
lution X∗, as opposed to an exact proximal oracle that
requires in general a full-rank SVD computation. Since
for such problems we expect that rank(X∗) is much
smaller than the dimension, and since the runtime of
low-rank SVD computations (when carried out via fast
iterative methods such as variants of the subspace iter-
ation method or Lanczos-type algorithms) scales nicely
with both the target rank and sparsity of gradients2,
for such problems the weak-proximal oracle admits a
much more efficient implementation than the standard
proximal oracle.

While both of these algorithmic ingredients are pre-
viously known and studied, it is their particular com-
bination that, quite surprisingly, proves to be key to
obtaining all three complexity bounds listed in our pro-
posed question, simultaneously. In particular, it is im-
portant to note that while the use of a weak proximal
oracle, as we define precisely in the sequel, suffices to
obtain an algorithm that uses overall only O(log(1/ε)
low-rank SVD computations (currently treating for
simplicity all other parameters as constants), to the
best of our knowledge it does not suffice in order to
also obtain (nearly) optimal sample complexity. The
reason, at a high-level, is that the weak-proximal ora-
cle is strong enough to guarantee decrease of the loss
function on each iteration (in expectation), but does
not give a stronger type of guarantee, which holds for
the exact proximal oracle, that is crucial for obtain-
ing optimal sample complexity with algorithms such
as Stochastic Gradient Descent [3] and the conditional
gradient-type method of [13] (that indeed rely on ex-
act, or nearly exact, proximal computations). It turns
out that the use of a variance reduction technique
(such as [12]) is key to bypassing this obstacle and
obtaining also (near) optimal sample complexity, on
top of the low SVD complexity. We also give a variant
of our algorithm to the finite-sum setting that obtains
similar improvements.

Finally, while our main motivation comes from low-
rank and nomsmooth matrix optimization problems,
it is important to note that as captured in our gen-
eral Model (3), our results are applicable in a much
wider setting than that of low-rank matrix optimiza-
tion problems. Our method is suitable especially for
stochastic nonsmooth convex problems for which im-

2see for instance discussions in [8].
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Algorithm #Exact #Stochastic SVD #SVD

Gradients Gradients rank Computations

↓ Stochastic Setting ↓
Stochastic Cond. Grad. [7] 0 σ2βτ4

ε3
1 βτ2

ε

CGS [13] 0 σ2

αε
1 βτ2

ε

This work (Alg. 1) 0 σ2

αε
rank(X∗) β

α
ln
(
1
ε

)
↓ Finite Sum ↓

STORC [7] ln
(
1
ε

) (
β
α

)2
ln
(
1
ε

)
1 βτ2

ε

This work finite sum (Alg. 2) ln
(
1
ε

) β2
Gβ

α3 ln
(
1
ε

)
rank(X∗) β

α
ln
(
1
ε

)
Table 1: Comparison of complexity bound for conditional gradient-type methods for solving Model (3). X∗

denotes the unique optimal solution. Table only lists the leading-order terms.

plementing a weak proximal oracle is much more effi-
cient than an exact proximal oracle.

2 Algorithm and Results

Our algorithm for solving Model (3), Algorithm 1, is
given below. We now briefly discuss the main two
building blocks of the algorithm, namely a variance
reduction technique and the use of a weak proximal
oracle.

Our use of the variance reduction technique of [12]
is quite straightforward as observable in Algorithm 1.
Importantly, while [12] applied it to finite-sum opti-
mization, here we apply it to the more general black-
box stochastic setting, and hence the sample-size pa-
rameter ks used for the ”snap-shot” gradient ∇̃g(Xs)
on epoch s grows from epoch to epoch. This modifi-
cation of the technique is along the lines of [4].

The weak proximal oracle strategy is applied in our al-
gorithm as follows. For a step-size ηt, a composite op-
timization proximal algorithm, which treats the func-
tion h(·) in proximal fashion and the functions G,R
via a gradient oracle, will compute on each iteration
an update of the form

Vt ← arg min
V∈V

{
ψt(V) :=

1

βηt
h(V)

+ ‖V −Xs,t
1

2βηt
(∇̂g(Xs,t) +∇R(Xs,t))‖2 +

}
. (4)

For instance, if V = Rm×n and h(·) is an in-
dicator function for the nuclear-norm ball {X ∈
Rm×n | ‖X‖∗ ≤ τ}, then computing Vt in Eq. (4)
amounts to Euclidean projection of the matrix At =
Xs,t − 1

2βηt
(∇̂g(Xs,t) − ∇R(Xs,t)) onto the nuclear-

norm ball of radius τ . This projection is carried out
by computing a full-rank SVD of At and projecting
the singular values onto the τ -scaled simplex. Since a
full-rank SVD is required, this operation takes O(m2n)
time (assuming m ≤ n), which is prohibitive for very

large m,n.

Our algorithm avoids the computational bottleneck of
full-rank SVD computations by only requiring that Vt

satisfies the inequality:

ψt(Vt) ≤ ψt(X∗), (5)

where X∗ is the (unique) optimal solution to (3). We
call a procedure for computing such updates - a weak
proximal oracle. In the context discussed above, i.e.,
h(·) is an indicator for the radius-τ nuclear-norm ball,
(5) can be satisfied simply by projecting the rank(X∗)-
approximation of the matrix At onto the nuclear-
norm ball. This only requires to compute the top
rank(X∗) components in the singular value decom-
position of At, and thus the runtime scales roughly
like O(rank(X∗) ·nnz(At)) using fast Krylov Subspace
methods (e.g., subspace iteration, Lanczos), which re-
sults in a much more efficient procedure (see further
detailed discussions in [8, 17]).

Since in many settings of interest, especially in the
context of matrix optimization problems, the compu-
tation of Vt requires some numeric procedure which
is prone to accuracy issues, or in cases in which X∗

is not low-rank but only very close to a low-rank ma-
trix (in some norm), we introduce an error-tolerance
parameter δ in the proximal computation step in Al-
gorithm 1 which allows to absorb such errors that can
be controlled (e.g., by properly tuning precision of the
thin-SVD computation).

2.1 Outline of main results

Theorem 1 (stochastic setting). Assume that As-
sumption 1 holds. There is an explicit choice for the
parameters in Algorithm 1 for which the total num-
ber of epochs (iterations of the outer-loop) required in
order to find an ε-approximated solution in expecta-
tion for Problem (3) is bounded by O

(
ln
(
1
ε

))
, the total

number of calls to the weak proximal oracle is bounded

by O
(
β
α ln

(
1
ε

))
, and the total number of stochastic
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Algorithm 1 Stochastic Variance-Reduced General-
ized Conditional Gradient for Problem (3)

Input: T , {ηt}T−1t=1 ⊂ [0, 1], {kt}T−1t=1 , {ks}s≥1 ⊂ N,
δ ≥ 0.
Initialization: Choose some X1 ∈ dom(h) .
for s = 1, 2, ... do

Sample g(1), ..., g(ks) from D.
∇̃g(Xs) = 1

ks

∑ks
i=1∇g(i)(Xs) {snap-shot gradi-

ent} {in the finite-sum setting we use ∇̃g(Xs) =
1
n

∑n
i=1∇g(i)(Xs)}.

Xs,1 = Xs

for t = 1, 2, ..., T − 1 do
Sample g(1), ..., g(kt) from D.

∇̂g(Xs,t) =
∑kt
i=1(∇g

(i)(Xs,t)−(∇g(i)(Xs)−∇̃g(Xs)))
kt

.

Vt = arg min
V∈V

ψt(V) (see Eq. (4)) {in fact it

suffices that ψt(Vt) ≤ ψt(X∗) + δ for some op-
timal solution X∗}.
Xs,t+1 = (1− ηt)Xs,t + ηtVt

end for
Xs+1 = Xs,T

end for

gradients sampled is bounded by O
(
σ2

αε +
β2
Gβ
α3 ln

(
1
ε

))
.

We note that under Assumption 1, the overall num-
ber of calls to a weak proximal oracle to reach ε-
approximated solution matches the overall number of
calls to an exact proximal oracle used by the proximal
gradient method for smooth and strongly convex opti-
mization. Also, under Assumption 1, the leading term
in the bound on overall number of stochastic gradients
is optimal (up to constants).

Theorem 2 (finite-sum setting). Assume that As-
sumption 1 holds and that D is an explicitly given
uniform distribution over n functions. There exist an
explicit choice for the parameters in Algorithm 2 (see
appendix) for which the total number of epochs required
in order to find an ε-approximated solution in expec-
tation for Problem (3) is bounded by O

(
ln
(
1
ε

))
, the

total number of calls to the weak proximal oracle is

bounded by O
(
β
α ln

(
1
ε

))
, and the total number of gra-

dients computed for any of the n functions in the sup-

port of D is bounded by O
((
n+

β2
Gβ
α3

)
ln
(
1
ε

))
.

We see that as is standard in variance-reduced meth-
ods for smooth and strongly convex optimization, the
overall number of gradients decouples between terms
that depend on the smoothness and strong convexity
of the objective (e.g., the condition number β/α), and
the overall number of functions n.

3 Analysis

Due to lack of space most of the proofs and formal
arguments are deferred to the appendix. Here we out-
line the main steps in proving Theorem 1. The treat-
ment for Theorem 2 is very similar and given in the
appendix.

The following lemma bounds the expected decrease in
function value after a single iteration of the inner-loop
in Algorithm 1. The proof relies on the smoothness
and strong convexity of G + R, the use of the weak-
proximal oracle and the unbiased gradient estimator.

Lemma 1 (expected decrease). Assume that As-
sumption 1 holds. Fix some epoch s of Algo-
rithm 1, and let {Xs,t}T+1

t=1 , {Vt}Tt=1 be the iter-
ates generated throughout the epoch, and suppose that
ψt(Vt) ≤ ψt(X̃) + δ for some fixed feasible solution
X̃. Then, if 2βηt ≤ α, we have that E[f(Xs,t+1)] ≤
(1− ηt)E[f(Xs,t)]+ηtf(X̃)+

σ2
s,t

2β +βη2t δ, where σs,t =√
E[‖∇G(Xs,t)− ∇̂g(Xs,t)‖2].

The following lemma bounds the variance the gradient
estimator used in any iteration of the inner-loop of
Algorithm 1. The proof is based on the smoothness of
functions in the support of D and strong-convexity of
G+R.

Lemma 2 (variance bound). Assume that Assump-
tion 1 holds. Fix some epoch s of Algorithm 1, and
let {Xs,t}T+1

t=1 be the iterates generated throughout the

epoch. Then, σ2
s,t = E[‖∇G(Xs,t) − ∇̂g(Xs,t)‖2] ≤

8β2
G

αkt
(E[f(Xs)] − f(X∗)) +

8β2
G

αkt
(E[f(Xs,t)] − f(X∗)) +

2σ2

ks
.

The following theorem, from which Theorem 1 (and
with slight changes also Theorem 2) essentially follows,
bounds the approximation error of Algorithm 1.

Theorem 3. Assume that Assumption 1 holds. Let
{Xs}s≥1 be a sequence generated by Algorithm 1 with

parameters T = 8β
3α ln 8 + 1, ηt = α

2β , ks = 32σ2

αC0
2s−1

and kt =
32β2

G

α2 , where C0 ≥ h1. Then, for all s ≥ 1 it

holds that: E[f(Xs)]− f(X∗) ≤ C0

(
1
2

)s−1
+ 8αδ

7 .

Proof. Let us define hs := E[f(Xs)] − f(X∗) for all
s ≥ 1, and hs,t := E[f(Xs,t)] − f(X∗) for all s, t ≥ 1.
Fix some epoch s and iteration t of the inner loop.

Using Lemma 1 with X̃ = X∗, and Lemma 2 we have
that

hs,t+1 ≤ (1− ηt)hs,t +
1

2β

(
8β2

G

αkt
hs +

8β2
G

αkt
hs,t +

2σ2

ks

)
+ βη2t δ

=

(
1− ηt +

4β2
G

αβkt

)
hs,t +

(
4β2

G

αβkt
hs +

σ2

βks
+ βη2t δ

)
.
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Plugging kt =
16β2

G

αβηt
we get

hs,t+1 ≤
(

1− ηt +
ηt
4

)
hs,t +

(
ηt
4
hs +

σ2

βks
+ βη2t δ

)
.

Plugging ηt = α
2β we get

hs,t+1 ≤
(

1− 3α

8β

)
hs,t +

(
α

8β
hs +

σ2

βks
+
α2δ

4β

)
.

Fixing an epoch s and unrolling the recursion for t =
(T − 1) . . . 1 we get

hs,T ≤
(

1− 3α

8β

)
hs,T−1 +

(
α

8β
hs +

σ2

βks
+
α2δ

4β

)
≤
(

1− 3α

8β

)T−1
hs,1

+

(
α

8β
hs +

σ2

βks
+
α2δ

4β

) T−1∑
k=1

(
1− 3α

8β

)T−k−1
=

(
1− 3α

8β

)T−1
hs,1

+

(
1

3
hs +

8σ2

3αks
+

2αδ

3

)(
1−

(
1− 3α

8β

)T−1)
.

hs,T = hs+1 and hs,1 = hs and so

hs+1 ≤
(

1− 3α

8β

)T−1

hs

+

(
1

3
hs +

8σ2

3αks
+

2αδ

3

)(
1−

(
1− 3α

8β

)T−1
)

=

(
1

3
+

2

3

(
1− 3α

8β

)T−1
)
hs

+

(
8σ2

3αks
+

2αδ

3

)(
1−

(
1− 3α

8β

)T−1
)

≤
(

1

3
+

2

3
e
− 3α

8β
(T−1)

)
hs

+

(
8σ2

3αks
+

2αδ

3

)(
1−

(
1− 3α

8β

)T−1
)
.

Choosing T = 8β
3α ln 8 + 1, we get

hs+1 ≤
(

1

3
+

2

3
e−

3α
8β ( 8β

3α ln 8)

)
hs

+

(
8σ2

3αks
+

2αδ

3

)(
1−

(
1− 3α

8β

) 8β
3α ln 8

)

≤ 5

12
hs +

8σ2

3αks
+

2αδ

3
.

Finally, plugging the value of ks, the result follows
from a simple induction over s (see appendix for com-
plete argument)

4 Applications to Non-smooth
Problems

4.1 Applying our results to non-smooth
problems via smoothing

In order to fit the nonsmooth problems considered in
this section to our smooth model (3), we build on the
smoothing framework introduced in [2], which replaces
the nonsmooth term R(X) with a smooth approxima-
tion.

The following definition is taken from [2].

Definition 1. Let R : V → (−∞,∞] be a closed,
proper and convex function and let X ⊆ dom(R) be a
closed and convex set. R is (θ, γ,K)-smoothable over
X if there exists γ1 and γ2 such that γ = γ1 + γ2 ≥ 0
such that for every µ ≥ 0 there exists a continuously
differentiable function Rµ : V→ (−∞,∞] such that:

(a) R(x) − γ1µ ≤ Rµ(x) ≤ R(x) + γ2µ for every x ∈
X.

(b) There exists K ≥ 0 and θ ≥ 0 such that

‖∇Rµ(x)−∇Rµ(y)‖ ≤
(
K + θ

µ

)
‖x−y‖ for every

x, y ∈ X.

Formally, now we consider applying our algorithms
to non-smooth optimization problems of the following
form:

min
X∈V

f(X) := G(X) +R(X) + h(X), (6)

with the following assumptions.

Assumption 2. We make the same assumptions as
in Assumption 1 with the single difference that now R
need not be smooth, but only (θ, γ,K)-smoothable.

We will denote the µ-smooth approximation of R(X)
as Rµ(X), and its smoothness parameter to be βR =(
K + θ

µ

)
.

As in our discussions so far, considering Model (6) es-
pecially in the context of low-rank matrix optimiza-
tion problems (e.g., h(·) is an indicator function for a
nuclear-norm ball), we assume that the optimal so-
lution X∗ is naturally of low-rank and we want to
rely on SVD computations whose rank does not ex-
ceeds that of X∗ - the optimal solution to the original
non-smooth problem. However, the rank of SVD com-
putations required by the results developed in previ-
ous sections corresponded to the optimal solution of
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the smoothed problem, i.e., after R(·) is replaced with
a smooth approximation Rµ(·), which can be higher.
Thus, towards developing an algorithm that relies on
SVD computation with rank at most that of the non-
smooth optimum, we introduce the following modified
definition of a weak-proximal oracle.

Definition 2. We say an Algorithm A is a (δ1, δ2)-
weak proximal oracle for Model (6),if for point X ∈
dom(h) and step-size η, A(X, η) returns a point V ∈
dom(h) such that ψ(V,X, η) ≤ ψ(X̃∗,X, η)+δ1, where
X̃∗ is a feasible point satisfying |f(X∗)− f(X̃∗)| ≤ δ2,
ψ(V,X, η) := ‖V−X + 1

2βηt
(∇̂g(X) +∇Rµ(X))‖2 +

1
βηt

h(V), and Rµ(·) is the µ-smooth approximation of

R(·).

Henceforth, we consider Algorithm 1 with the single
difference: now Vt is the ouput of a (δ1, δ2)-weak prox-
imal oracle, as defined in Definition 2. Note that in
the context of low-rank problems and in the ideal case
δ1 = δ2 = 03, the implementation of the oracle in Defi-
nition 2 is exactly the same as the weak proximal oracle
discussed before, i.e., if h(·) is for instance the indi-
cator function for a radius-τ nuclear-norm ball, then
implementing the oracle in Definition 2 amounts to a
Euclidean projection of the rank(X∗)-approximation
of At := X− 1

2βηt
(∇̂g(X)+∇Rµ(X)) onto the nuclear-

norm ball. Here, the tolerances δ1, δ2 allow us to ab-
sorb the error due to the smoothing approximation
and numerical errors in SVD computations.

Corollary 1. Assume that Assumption 2 holds.
Choosing parameters δ1 = 7ε

32α and µ = 7ε
92γ , guar-

antees that the overall number of epochs to reach an
ε-approximated solution in expectation is bounded by
O
(
ln
(
1
ε

))
, the total number of calls to the (δ1, δ2)-

weak proximal oracle is bounded by O
(
β
α ln

(
1
ε

))
, and

the total number of stochastic gradients sampled is

bounded by O
(
σ2

αε +
β2
Gβ
α3 ln

(
1
ε

))
. 4

4.2 Specific examples

4.2.1 Low-rank and sparse matrix estimation

As discussed in the introduction, this work is largely
motivated by matrix recovery problems, such as the
following low-rank and sparse matrix estimation.

min
‖X‖∗≤τ

1

2
‖X− EM∼D[M]‖2F + λ‖X‖1, (7)

where D is an unknown distribution over instances.

3these can be made arbitarily small by the choice of
smoothing parameter and accuracy in SVD computations.

4Recall that in this section β = βG + βR = βG + K +
θ/µ, which will typically scale with 1/ε (inverse of desired
approximation error). See following examples.

For problem (7) to fit the Model (6), we take G(X) =
E(M,N)∼D×D

[
1
2 〈X−M,X−N〉

]
. Since M and N

are i.i.d, this is equivalent to

G(X) =
1

2
〈EM∼D[X−M],EN∼D[X−N]〉

=
1

2
〈X− EM∼D[M],X− EM∼D[M]〉

=
1

2
‖X− EM∼D[M]‖2F .

Smoothing the `1-norm has a well known solution, as
shown in [2]. The µ-smooth approximation of ‖X‖1
is Rµ(X) =

∑d
j=1

∑m
i=1Hµ(Xij), with parameters

(1, md2 , 0), where Hµ(t) is the one dimensional Huber
function:

Hµ(t) =

{
t2

2µ , |t| ≤ µ
|t| − µ

2 , |t| > µ
.

This satisfies Rµ(X) ≤ ‖X‖1 ≤ Rµ(X) + mdµ
2 .

4.2.2 Linearly constrained low-rank matrix
estimation

Another example, is the problem of recovering a low-
rank matrix subject to linear constraints, which can
be written in penalized form as:

min
‖X‖∗≤τ

1

2
‖X− EM∼D[M]‖2F + max

i∈[n]
(〈Ai,X〉 − bi),

(8)
where D is again an unknown distribution over in-
stances. Here the matrices {Ai}i∈[n] and scalars
{bi}i∈[n] can absorb a penalty factor λ.

Here, by [2], the µ-smooth approxima-
tion of maxi∈[n] (〈Ai,X〉 − bi) is Rµ(X) =

µ log
(∑n

i=1 e
1
µ (〈Ai,X〉−bi)

)
, with parameters

(‖A‖2, log n, 0), where A : Rm×d → Rn
is a linear transformation with the form
A(X) =

(
tr(AT

1 X), tr(AT
2 X), . . . , tr(AT

nX)
)>

,
for A1, ...,An ∈ Rm×d, and ‖A‖ =
max{‖A(X)‖2 : ‖X‖F = 1}. This satisfies
Rµ(X) ≤ maxi∈[n] (〈Ai,X〉 − bi) ≤ Rµ(X) + µ log n.

4.2.3 Low-rank matrix sensing with
Elastic-net

Finally, we very briefly discuss a matrix-sensing prob-
lem, where both a nuclear-norm constraint is used to
promote low-rank solutions and the well known elastic-
net regularizer [21] is used to promote sparsity.

min
‖X‖∗≤τ

E(A,b)∼D

[
1

2
(〈A,X〉 − b)2

]
+λ1‖X‖1+λ2‖X‖2F .
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Figure 1: Comparison between methods with rank(YY>) = 1.
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Figure 2: Comparison between methods with rank(YY>) = 10.

In this example, G(X) = E(A,b)∼D

[
1
2 (〈A,X〉 − b)2

]
need not be strongly convex as in previous examples,
however the elastic-net regularizer R(X) := λ1‖X‖1 +
λ2‖X‖2F is strongly convex. The smoothing of in this
example and resulting application of our method goes
along the same lines as our treatment of Problem (7).

5 Experiments

In support of our theory, we present preliminary em-
pirical experiments on the problem of low-rank and
sparse matrix estimation, Problem (7). We com-
pare our Algorithm 1 (SVRGCG) to previous condi-
tional gradient-type stochastic methods including the
Stochastic Conditional Gradient Algorithm (SCG) [7]5

and the Stochastic Conditional Gradient Sliding Al-
gorithm (SCGS) [13]. We use synthetic randomly-
generated data for the experiments. For all ex-
periments the input matrix is of the form M0 =
EM∼D[M] = YY> + N, where Y ∈ Rd×r is a ran-
dom sparse matrix for which each entry is zero w.p.
1 − 1/

√
d and U{1, . . . , 10} w.p. 1/

√
d, N is a d × d

random matrix with i.i.d. standard Gaussian entries.
We set the dimension to d = 300 and the rank of Y,
r to either 1 or 10. In all experiments we set λ = 2,
ε = 0.01·‖YY>‖2F (i.e., the approximation error is rel-
ative to magnitude of signal), µ = ε/d2 (in accordance
with Corollary 3) , and τ = Tr(YY>). The stochastic
oracle is implemented by taking noisy observations of
M0 using: M(i) = M0 + σQ(i), where each Q(i) is
random with i.i.d. standard Gaussian entries and we
fix σ = 5.

5In [7] it appears as Stochastic Frank-Wolfe (SFW).

For all three methods we measure i) the obtained (orig-
inal non-smooth) function value (see (7)) vs. num-
ber of stochastic gradients used, ii) function value vs.
overall runtime (seconds), and iii) function value vs.
overall number of rank-one SVD computations used.
Since the overall running time is highly dependent
on specific implementation, we bring the number of
rank-one SVD computations as an implementation-
independent proxy for the overall runtime. For our
method SVRGCG, we compute the overall number of
rank-one SVD computations by multiplying the num-
ber of SVD factorizations with the rank of the factor-
ization used6. In the first experiment (Figure 1) we
set rank(Y) = 1, and in a second experiment (Figure
2), we set rank(Y) = 10 in which case, our algorithm
SVRGCG uses rank-10 SVD computations. The re-
sults for each experiment are averages of 30 i.i.d. runs.
All three algorithms were implemented using parame-
ters as suggested by theory without attempts to opti-
mize their performance.

In Figures 1,2, it can be seen that our algorithm
SVRGCG clearly outperforms both SCG and SCGS
with respect to all three measures in the two experi-
ments.
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6This is reasonable since the runtime for low-rank SVD
typically scales linearly with rank.
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A Proof of Theorem 1

A.1 Proof of Lemma 1

We first restate the lemma.

Lemma 3 (expected decrease). Assume that Assumption 1 holds. Fix some epoch s of Algorithm 1, and let
{Xs,t}T+1

t=1 , {Vt}Tt=1 be the iterates generated throughout the epoch, and suppose that ψt(Vt) ≤ ψt(X̃) + δ for

some fixed feasible solution X̃. Then, if 2βηt ≤ α, we have that

E[f(Xs,t+1)] ≤ (1− ηt)E[f(Xs,t)] + ηtf(X̃) +
σ2
s,t

2β
+ βη2t δ, (9)

where σs,t =
√
E[‖∇G(Xs,t)− ∇̂g(Xs,t)‖2].

Proof. Denote φ := G+R to be the smooth part of f . φ is β-smooth and so by the well known Decent Lemma,

φ(Xs,t+1) ≤ φ(Xs,t) + 〈Xs,t+1 −Xs,t,∇φ(Xs,t)〉+
β

2
‖Xs,t+1 −Xs,t‖2

= φ(Xs,t) + 〈Xs,t+1 −Xs,t, ∇̂g(Xs,t) +∇R(Xs,t)〉

+ 〈Xs,t+1 −Xs,t,∇G(Xs,t)− ∇̂g(Xs,t)〉+
β

2
‖Xs,t+1 −Xs,t‖2.

Plugging in Xs,t+1 = (1− ηt)Xs,t + ηtVt, we get

φ(Xs,t+1) ≤ φ(Xs,t) + ηt〈Vt −Xs,t, ∇̂g(Xs,t) +∇R(Xs,t)〉

+ ηt〈Vt −Xs,t,∇G(Xs,t)− ∇̂g(Xs,t)〉+
βη2t
2
‖Vt −Xs,t‖2.

(10)

In addition, it holds that

0 ≤
∥∥∥ 1√

βηt
(∇G(Xs,t)− ∇̂g(Xs,t))−

√
βηt(Vt −Xs,t)

∥∥∥2
=

1

βηt
‖∇G(Xs,t)− ∇̂g(Xs,t)‖2 − 2〈Vt −Xs,t,∇G(Xs,t)− ∇̂g(Xs,t)〉

+ βηt‖Vt −Xs,t‖2.

Rearranging we get,

〈Vt −Xs,t,∇G(Xs,t)− ∇̂g(Xs,t)〉 ≤
1

2βηt
‖∇G(Xs,t)− ∇̂g(Xs,t)‖2 +

βηt
2
‖Vt −Xs,t‖2.

Plugging this last inequality into (10), we get

φ(Xs,t+1) ≤ φ(Xs,t) + ηt〈Vt −Xs,t, ∇̂g(Xs,t) +∇R(Xs,t)〉

+ ηt

(
1

2βηt
‖∇G(Xs,t)− ∇̂g(Xs,t)‖2 +

βηt
2
‖Vt −Xs,t‖2

)
+
βη2t
2
‖Vt −Xs,t‖2

= φ(Xs,t) + ηt〈Vt −Xs,t, ∇̂g(Xs,t) +∇R(Xs,t)〉

+
1

2β
‖∇G(Xs,t)− ∇̂g(Xs,t)‖2 + βη2t ‖Vt −Xs,t‖2.

Using the convexity of h we have that

h(Xs,t+1) = h((1− ηt)Xs,t + ηtVt) ≤ (1− ηt)h(Xs,t) + ηth(Vt).
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Combining the last two inequalities and recalling that f = φ+ h we get

f(Xs,t+1) ≤ (1− ηt)f(Xs,t) + ηt(φ(Xs,t) + h(Vt)) +
1

2β
‖∇G(Xs,t)− ∇̂g(Xs,t)‖2

+ηt〈Vt −Xs,t, ∇̂g(Xs,t) +∇R(Xs,t)〉+ βη2t ‖Vt −Xs,t‖2

= (1− ηt)f(Xs,t) + ηtφ(Xs,t) +
1

2β
‖∇G(Xs,t)− ∇̂g(Xs,t)‖2

+βη2t

(
ψt(Vt)−

1

(2βηt)2
‖∇̂g(Xs,t) +∇R(Xs,t)‖2

)
.

By the definition of Vt and the assumption of the lemma we have

f(Xs,t+1) ≤ (1− ηt)f(Xs,t) + ηtφ(Xs,t) +
1

2β
‖∇G(Xs,t)− ∇̂g(Xs,t)‖2

+βη2t

(
ψt(X̃)− 1

(2βηt)2
‖∇̂g(Xs,t) +∇R(Xs,t)‖2 + δ

)
= (1− ηt)f(Xs,t) + ηt(φ(Xs,t) + h(X̃)) +

1

2β
‖∇G(Xs,t)− ∇̂g(Xs,t)‖2

+ηt〈X̃−Xs,t, ∇̂g(Xs,t) +∇R(Xs,t)〉+ βη2t ‖X̃−Xs,t‖2 + βη2t δ.

Taking expectation with respect to the randomness in ∇̂g(Xs,t),

Et[f(Xs,t+1)] ≤ (1− ηt)f(Xs,t) + ηt(φ(Xs,t) + h(X̃)) +
σ2
s,t

2β

+ ηt〈X̃−Xs,t,∇G(Xs,t) +∇R(Xs,t)〉+ βη2t ‖X̃−Xs,t‖2 + βη2t δ.

Using the α-strong convexity of φ = G+R we get

Et[f(Xs,t+1)] ≤ (1− ηt)f(Xs,t) + ηt(φ(Xs,t) + h(X̃)) +
σ2
s,t

2β

+ ηt

(
φ(X̃)− φ(Xs,t)−

α

2
‖X̃−Xs,t‖2

)
+ βη2t ‖X̃−Xs,t‖2 + βη2t δ

= (1− ηt)f(Xs,t) + ηtf(X̃)− αηt
2
‖X̃−Xs,t‖2 + βη2t ‖X̃−Xs,t‖2

+
σ2
s,t

2β
+ βη2t δ.

Using our assuming that 2βηt ≤ α we have that

Et[f(Xs,t+1)] ≤ (1− ηt)f(Xs,t) + ηtf(X̃) +
σ2
s,t

2β
+ βη2t δ.

Taking expectation over both sides w.r.t all randomness, we get

E[f(Xs,t+1)] ≤ (1− ηt)E[f(Xs,t)] + ηtf(X̃) +
σ2
s,t

2β
+ βη2t δ, (11)

We have the following immediate corollary.

Corollary 2. Assume that Assumption 1 holds. Fix some epoch s of Algorithm 1, and let {Xs,t}T+1
t=1 be

the iterates generated throughout the epoch. Then, if 2βηt ≤ α, we have that E[f(Xs,t+1)] − f(X∗) ≤
(1− ηt) (E[f(Xs,t)]− f(X∗)) +

σ2
s,t

2β + βη2t δ, where σs,t =
√

E[‖∇G(Xs,t)− ∇̂g(Xs,t)‖2].

Proof. By choosing X̃ = X∗ in (9) and subtracting f(X∗) from both sides, we get the desired result.
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A.2 Proof of Lemma 2

First we restate the lemma.

Lemma 4. Assume that Assumption 1 holds. Fix some epoch s of Algorithm 1, and let {Xs,t}T+1
t=1 be the iterates

generated throughout the epoch. Then,

σ2
s,t = E[‖∇G(Xs,t)− ∇̂g(Xs,t)‖2] ≤ 8β2

G

αkt
(E[f(Xs)]− f(X∗))

+
8β2

G

αkt
(E[f(Xs,t)]− f(X∗)) +

2σ2

ks
. (12)

Proof. Fix some epoch s and iteration t of the inner loop. Since for all 1 ≤ i < j ≤ kt, ∇g(i)(X) and ∇g(j)(X)
are i.i.d. random variables, and Ei[∇g(i)(X)] = Ej [∇g(j)(X)] = ∇G(X),

E
[∥∥∥ 1

kt

kt∑
i=1

(
∇g(i)(Xs)−∇g(i)(Xs,t)

)
−
(
∇G(Xs)−∇G(Xs,t)

)∥∥∥2]
=

1

kt
E
[∥∥∥∇g(1)(Xs)−∇g(1)(Xs,t)−

(
∇G(Xs)−∇G(Xs,t)

)∥∥∥2]. (13)

In the same way,

E[‖∇G(Xs)− ∇̃g(Xs)‖2] =
1

kt
E[‖∇G(Xs)−∇g(1)(Xs)‖2] ≤ σ2

ks
. (14)

By the definition of ∇̂g(X) we have that

E[‖∇G(Xs,t)− ∇̂g(Xs,t)‖2] = E
[∥∥∥∇G(Xs,t)−∇G(Xs)−

1

kt

kt∑
i=1

∇̂g(i)(Xs,t)

+
1

kt

kt∑
i=1

∇̂g(i)(Xs)− ∇̃g(Xs) +∇G(Xs)
∥∥∥2]

≤ 2E
[∥∥∥ 1

kt

kt∑
i=1

(
∇̂g(i)(Xs)− ∇̂g(i)(Xs,t)

)
−
(
∇G(Xs)−∇G(Xs,t)

)∥∥∥2]+ 2E[‖∇G(Xs)− ∇̃g(Xs)‖2].

Using (13) and (14), we get

E[‖∇G(Xs,t)− ∇̂g(Xs,t)‖2] ≤ 2

kt
E[‖∇g(1)(Xs)−∇g(1)(Xs,t)

− (∇G(Xs)−∇G(Xs,t))‖2] +
2σ2

ks
.

For any random vector v, the variance is bounded by its second moment, i.e. E[‖v − E[v]‖2] ≤ E[‖v‖2]. In our
case E[∇g(1)(Xs)−∇g(1)(Xs,t)] = ∇G(Xs)−∇G(Xs,t). Therefore,

E[‖∇G(Xs,t)− ∇̂g(Xs,t)‖2] ≤ 2

kt
E[‖∇g(1)(Xs)−∇g(1)(Xs,t)‖2] +

2σ2

ks

=
2

kt
E[‖∇g(1)(Xs)−∇g(1)(X∗)

−∇g(1)(Xs,t) +∇g(1)(X∗)‖2] +
2σ2

ks

≤ 4

kt
E[‖∇g(1)(Xs)−∇g(1)(X∗)‖2]

+
4

kt
E[‖∇g(1)(Xs,t)−∇g(1)(X∗)‖2] +

2σ2

ks
.
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Using the βG-smoothness of g(1) we have

E[‖∇G(Xs,t)− ∇̂g(Xs,t)‖2] ≤ 4β2
G

kt
E[‖Xs −X∗‖2] +

4β2
G

kt
E[‖Xs,t −X∗‖2] +

2σ2

ks
.

Finally, using the α-strong convexity of f we obtain

E[‖∇G(Xs,t)− ∇̂g(Xs,t)‖2] ≤8β2
G

αkt
(E[f(Xs)]− f(X∗))

+
8β2

G

αkt
(E[f(Xs,t)]− f(X∗)) +

2σ2

ks
.

The following theorem bounds the approximation error of Algorithm 1.

A.3 Proof of Theorem 3

Fe first restate the theorem.

Theorem 4. Assume that Assumption 1 holds. Let {Xs}s≥1 be a sequence generated by Algorithm 1 with

parameters T = 8β
3α ln 8 + 1, ηt = α

2β , ks = 32σ2

αC0
2s−1 and kt =

32β2
G

α2 , where C0 ≥ h1. Then, for all s ≥ 1 it holds
that:

E[f(Xs)]− f(X∗) ≤ C0

(
1

2

)s−1
+

8αδ

7
. (15)

Proof. Let us define hs := E[f(Xs)] − f(X∗) for all s ≥ 1, and hs,t := E[f(Xs,t)] − f(X∗) for all s, t ≥ 1. Fix
some epoch s and iteration t of the inner loop.

Using Corollary 2 and Lemma 2 we have that

hs,t+1 ≤ (1− ηt)hs,t +
1

2β

(
8β2

G

αkt
hs +

8β2
G

αkt
hs,t +

2σ2

ks

)
+ βη2t δ

=

(
1− ηt +

4β2
G

αβkt

)
hs,t +

(
4β2

G

αβkt
hs +

σ2

βks
+ βη2t δ

)
.

Plugging kt =
16β2

G

αβηt
we get

hs,t+1 ≤
(

1− ηt +
ηt
4

)
hs,t +

(
ηt
4
hs +

σ2

βks
+ βη2t δ

)
.

Plugging ηt = α
2β we get

hs,t+1 ≤
(

1− 3α

8β

)
hs,t +

(
α

8β
hs +

σ2

βks
+
α2δ

4β

)
.

Fixing an epoch s and unrolling the recursion for t = (T − 1) . . . 1 we get

hs,T ≤
(

1− 3α

8β

)
hs,T−1 +

(
α

8β
hs +

σ2

βks
+
α2δ

4β

)
≤ ... ≤

(
1− 3α

8β

)T−1
hs,1 +

(
α

8β
hs +

σ2

βks
+
α2δ

4β

) T−1∑
k=1

(
1− 3α

8β

)T−k−1
=

(
1− 3α

8β

)T−1
hs,1 +

(
1

3
hs +

8σ2

3αks
+

2αδ

3

)(
1−

(
1− 3α

8β

)T−1)
.
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hs,T = hs+1 and hs,1 = hs and so

hs+1 ≤
(

1− 3α

8β

)T−1
hs +

(
1

3
hs +

8σ2

3αks
+

2αδ

3

)(
1−

(
1− 3α

8β

)T−1)

=

(
1

3
+

2

3

(
1− 3α

8β

)T−1)
hs +

(
8σ2

3αks
+

2αδ

3

)(
1−

(
1− 3α

8β

)T−1)

≤
(

1

3
+

2

3
e−

3α
8β (T−1)

)
hs +

(
8σ2

3αks
+

2αδ

3

)(
1−

(
1− 3α

8β

)T−1)
.

Choosing T = 8β
3α ln 8 + 1, we get

hs+1 ≤
(

1

3
+

2

3
e−

3α
8β ( 8β

3α ln 8)

)
hs +

(
8σ2

3αks
+

2αδ

3

)(
1−

(
1− 3α

8β

) 8β
3α ln 8

)

=
5

12
hs +

(
8σ2

3αks
+

2αδ

3

)(
1−

(
1− 3α

8β

) 8β
3α ln 8

)

≤ 5

12
hs +

8σ2

3αks
+

2αδ

3
.

(16)

Now, we use induction over s to prove our claimed bound

hs ≤ C0

(
1

2

)s−1
+

8αδ

7
. (17)

The base case s = 1, follows from the choice C0 ≥ h1.

For s ≥ 1 using (16) with ks = 32σ2

αC0
2s−1 we get,

hs+1 ≤
5

12
hs +

C0

12

(
1

2

)s−1
+

2αδ

3
.

Using the induction hypothesis for hs in (17) gives us

hs+1 ≤
5

12
C0

(
1

2

)s−1
+

5

12

8αδ

7
+
C0

12

(
1

2

)s−1
+

2αδ

3
= C0

(
1

2

)s
+

8αδ

7
.

A.4 Proof of Theorem 1

We now prove Theorem 1, which is a direct corollary of Theorem 3.

Proof of Theorem 1. By Theorem 3 it is implied that to achieve an ε-expected error, it suffices to fix δ = 7ε
16α

and to complete

S = log2

(
C0

ε

)
+ 2

epochs of Algorithm 1.

For this number of epochs we upper bound the overall number of stochastic gradients as follows.

S∑
s=1

ks =
32σ2

αC0

S∑
s=1

2s−1 =
32σ2

αC0

(
2S − 1

)
=

32σ2

αC0

(
2log2 (C0

ε )+2 − 1
)
≤ 128σ2

α

1

ε
. (18)
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S∑
s=1

T∑
t=1

kt =

S∑
s=1

T∑
t=1

32β2
G

α2
=

32β2
G

α2

(
8β

3α
ln 8 + 1

)(
log2

(
C0

ε

)
+ 2

)
. (19)

All together,

S∑
s=1

ks +

S∑
s=1

T∑
t=1

kt ≤
128σ2

α

1

ε
+

32β2
G

α2

(
8β

3α
ln 8 + 1

)(
log2

(
C0

ε

)
+ 2

)
. (20)

B Finite-Sum Setting and Poof of Theorem 2

In this section we assume that G(X) from Problem (3) is in the form of a finite sum, i.e.

G(X) =
1

n

n∑
i=1

gi(X).

The stochastic oracle in this setting simply samples a function gi(X), i ∈ [n], uniformly at random. In this case,
in the outer loop of Algorithm 1 we take

∇̃g(X) =
1

n

n∑
i=1

∇gi(X) = ∇G(X).

Algorithm 2 Finite-Sum Variance-Reduced Generalized Conditional Gradient

Input: T , {ηt}T−1t=1 ⊂ [0, 1], {kt}T−1t=1 , {ks}s≥1 ⊂ N, δ ≥ 0.
Initialization: Choose some X1 ∈ dom(h).
for s = 1, 2, ... do
∇̃g(Xs) = 1

n

∑n
i=1∇gi(Xs) {snap-shot gradient}.

Xs,1 = Xs

for t = 1, 2, ..., T − 1 do
Sample g(1), ..., g(kt) from D.

Define ∇̂g(Xs,t) = 1
kt

∑kt
i=1

(
∇g(i)(Xs,t)−

(
∇g(i)(Xs)− ∇̃g(Xs)

))
.

Vt = arg min
V∈V

{
ψt(V) := ‖V −Xs,t + 1

2βηt
(∇̂g(Xs,t) +∇R(Xs,t))‖2F + 1

βηt
h(V)

}
{in fact it suffices that ψt(Vt) ≤ ψt(X∗) + δ for some optimal solution X∗}.
Xs,t+1 = (1− ηt)Xs,t + ηtVt

end for
Xs+1 = Xs,T

end for

The following theorem is analogous to Theorem 3 and bounds the approximation error of Algorithm 2.

Theorem 5. Assume that Assumption 1 holds. Let {Xs}s≥1 be a sequence generated by Algorithm 2. Then,

Algorithm 2 with T = 8β
3α ln 8 + 1 iterations of the inner loop at each epoch s, a step size of ηt = α

2β , and

kt =
32β2

G

α2 gradients implemented by the stochastic oracle at inner loop iterations t, such that C0 ≥ h1, for all
s ≥ 1 guarantees that:

E[f(Xs)]− f(X∗) ≤ C0

(
5

12

)s−1
+

8αδ

7
.
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Proof. Since ∇̃g(X) = 1
n

∑n
i=1∇gi(X) = ∇G(X), we get that E[‖∇G(Xs)−∇̃g(Xs)‖2] = 0. Using this inequality

instead of (14) in the proof of Lemma 2, directly gives us the improved bound:

E[‖∇G(Xs,t)− ∇̂g(Xs,t)‖2] ≤ 8β2
G

αkt
(E[f(Xs)]− f(X∗)) +

8β2
G

αkt
(E[f(Xs,t)]− f(X∗)).

We define hs, hs,t for all s, t ≥ 0 as in the proof of Theorem 3.

Plugging the above new bound into Corollary 2, we get

hs,t+1 ≤ (1− ηt)hs,t +
1

2β

(
8β2

G

αkt
hs +

8β2
G

αkt
hs,t

)
+ βη2t δ

=

(
1− ηt +

4β2
G

αβkt

)
hs,t +

4β2
G

αβkt
hs + βη2t δ.

From here the rest of the proof closely follows that of Theorem 3.

Taking kt =
16β2

G

αβηt
,

hs,t+1 ≤
(

1− ηt +
ηt
4

)
hs,t +

ηt
4
hs + βη2t δ.

Taking ηt = α
2β we get

hs,t+1 ≤
(

1− 3α

8β

)
hs,t +

α

8β
hs +

α2δ

4β
.

Unrolling the recursion for all t in epoch s:

hs,T ≤
(

1− 3α

8β

)
hs,T−1 +

α

8β
hs +

α2δ

4β

≤ ... ≤
(

1− 3α

8β

)T−1
hs,1 +

(
α

8β
hs +

α2δ

4β

) T−1∑
k=1

(
1− 3α

8β

)T−k−1
=

(
1− 3α

8β

)T−1
hs,1 +

(
1

3
hs +

2αδ

3

)(
1−

(
1− 3α

8β

)T−1)
.

hs,T = hs+1 and hs,1 = hs and so

hs+1 ≤
(

1− 3α

8β

)T−1
hs +

(
1

3
hs +

2αδ

3

)(
1−

(
1− 3α

8β

)T−1)

=

(
1

3
+

2

3

(
1− 3α

8β

)T−1)
hs +

2αδ

3

≤
(

1

3
+

2

3
e−

3α
8β (T−1)

)
hs +

2αδ

3
.

Choosing T = 8β
3α ln 8 + 1, we get

hs+1 ≤
(

1

3
+

2

3
e−

3α
8β ( 8β

3α ln 8)

)
hs +

2αδ

3
=

5

12
hs +

2αδ

3
.

Using the same induction argument as in the proof of Theorem 3, we conclude that for all s:

hs+1 ≤
(

5

12

)s
C0 +

2αδ

3

s∑
k=1

(
5

12

)s−k
=

(
5

12

)s
C0 +

24αδ

21

(
1−

(
5

12

)s)
≤
(

5

12

)s
C0 +

8αδ

7
.
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We now prove Theorem 2, which is a direct corollary of Theorem 5.

Proof of Theorem 2. By Theorem 5 it is implied that to achieve an ε-expected error, setting δ = 7ε
16α , we need

to compute at most

S = log 12
5

(
2C0

ε

)
+ 1

epochs of Algorithm 2.

Therefore, the overall number of exact gradients to be computes is at most

S∑
s=1

n = n

(
log 12

5

(
2C0

ε

)
+ 1

)
,

and the overall number of stochastic gradients is at most

S∑
s=1

T∑
t=1

kt =

S∑
s=1

T∑
t=1

32β2
G

α2
=

32β2
G

α2

(
8β

3α
ln 8 + 1

)(
log 12

5

(
2C0

ε

)
+ 1

)
.

C Proof of Corollary 1

The following theorem is analogues to Theorem 3.

Theorem 6. Assume that Assumption 2 holds. Let {Xs}s≥1 be a sequence generated by Algorithm 1 when
applied to the smooth approximation of Problem (6), and let X∗ denote the optimal solution of the non-smooth

problem. Then, using the parameters T = 8β
3α ln 8 + 1, ηt = α

2β , ks = 32σ2

αC0
2s−1 and kt =

32β2
G

α2 for C0 such that
C0 ≥ h1, guarantees that for all s ≥ 1:

E[f(Xs)]− f(X∗) ≤ C0

(
1

2

)s−1
+

8

7
αδ1 +

23

7
γµ.

Proof. Denote the smoothed function by fµ(X) := G(X) + Rµ(X) + h(X). Let X∗ and X∗µ denote the optimal
solutions of the non-smooth and smoothed functions respectively. By applying Algorithm 1 to fµ(X), such that
at each iteration Vt is chosen as a point that satisfies ψt(Vt) ≤ ψt(X∗) + δ1, we get according to Lemma 1

E[fµ(Xs,t+1)] ≤ (1− ηt)E[fµ(Xs,t)] + ηtfµ(X∗) +
σ2
s,t

2β
+ βη2t δ1. (21)

We notice that by the definition of the smoothing and optimality of X∗,

fµ(X∗) ≤ f(X∗) + γ2µ ≤ f(X∗µ) + γ2µ ≤ fµ(X∗µ) + γµ. (22)

By plugging (22) into (21) and subtracting fµ(X∗µ) from both sides we get

E[fµ(Xs,t+1)]− fµ(X∗µ) ≤ (1− ηt) (E[fµ(Xs,t)]− fµ(X∗µ)) +
σ2
s,t

2β
+ βη2t δ1 + ηtγµ.

Following the proof of Theorem 3 with δ = δ1 + µγ
βηt

gives us

E[fµ(Xs)]− fµ(X∗µ) ≤ C0

(
1

2

)s−1
+

8

7
(αδ1 + 2γµ) . (23)
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Using the optimality of X∗µ and the definition of the smoothing we get,

E[fµ(Xs)]− fµ(X∗µ) ≥ E[fµ(Xs)]− fµ(X∗µ) ≥ E[f(Xs)]− f(X∗µ)− γµ. (24)

Combining (23) and (24) we obtain

E[f(Xs)]− f(X∗) ≤ C0

(
1

2

)s−1
+

8

7
αδ1 +

23

7
γµ.

We can now prove the corollary.

Proof. By Theorem 6 it is implied that to achieve an ε-stochastic error E[f(XS)]−f(X∗) ≤ ε we need to compute

S ≥ log2

(
C0

ε

)
+ 2

iterations.

The rest follows from the calculations brought in (18),(19),(20).

D Convergence Rates for Nonsmooth Examples

Corollary 3. Consider running Algorithm 1 for the smooth approximation of Problem (7), with parameters

T = 8 ln 8
3

(
λ
µ + 1

)
+ 1, ηt = µ

2λ+2µ , ks = 32E[‖M−E[M ]‖2]
C0

2s−1 and kt = 32. Let X∗ denote the optimal solution

Problem (7). Then, running S ≥ log2

(
C0

ε

)
+ 2 epochs of the outer-loop guarantees that:

E[f(XS)]− f(X∗) ≤ ε

4
+

8

7
δ1 +

23md

14
µ. (25)

In particular, taking a smoothing parameter of µ = 7ε
46md and δ1 = 7ε

32 , we obtain

E[f(XS)]− f(X∗) ≤ ε. (26)

Proof. The parameters of the problem are as follows: α = 1, βG = 1, γ = md
2 , βR = λ

µ , σ2 = E[‖M − E[M ]‖2].

Therefore, by Theorem 6 we get the result in (25). By choosing µ = 7ε
46md and δ1 = 7ε

32 , the result in (26) is
immediate.

Corollary 4. Consider running Algorithm 1 for the smooth approximation of Problem (8), with parameters

T = 8 ln 8
3

(
‖A‖2
µ + 1

)
+ 1, ηt = µ

2‖A‖2+2µ , ks = 32E[‖M−E[M ]‖2]
C0

2s−1, kt = 32, and let X∗ denote the optimal

solution to Problem (8). Then, running S ≥ log2

(
C0

ε

)
+ 2 epochs of the outer-loop guarantees that:

E[f(XS)]− f(X∗) ≤ ε

4
+

8

7
δ1 +

23 log n

7
µ. (27)

In particular, taking a smoothing parameter of µ = 7ε
92 logn and δ1 = 7ε

32 , we obtain

E[f(XS)]− f(X∗) ≤ ε. (28)

Proof. The parameters of the problem are as follows: α = 1, βG = 1, γ = log n, βR = ‖A‖2
µ , σ2 = E[‖M−E[M ]‖2].

Therefore, by Theorem 6 we get the result in (27). By choosing µ = 7ε
92 logn and δ1 = 7ε

32 , the result in (28) is
immediate.
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