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Appendix A Mechanical Turk experiment, simulations, and re-
sults

In this section, we expand upon the results discussed in Section 5. We design and run an experiment
that a real platform may run to design a rating system. We follow the general framework in
Section 4. We first run an experiment to estimate a ψ(θ, y), the probability at which each item
with quality θ receives a positive answer under different questions y. Then, we design H(y), using
our optimal β for various settings (different objectives w and matching rates g). Then, we simulate
several markets (using the various matching rates g) and measure the performance of the different
rating system designs H, as measured by various objective functions (2).

A.1 Experiment description

We now describe our Mechanical Turk experiment. We ask subjects to rate the English proficiency
of ten paragraphs. These paragraphs are modified TOEFL (Test of English as a Foreign Language)
essays with known scores as determined by experts (Educational Testing Service, 2005). Subjects
were given six answer choices, drawn randomly from the following list: Abysmal, Awful, Bad, Poor,
Mediocre, Fair, Good, Great, Excellent, Phenomenal, following the recommendation of Hicks et al.
(2000). Poor and Good are always chosen, and the other four are sampled uniformly at random
for each worker. One paragraph is shown per page; returning to modify a previous answer is not
allowed; and paragraphs are presented in a random order. This data is used to calibrate a model
of ψ for optimization, i.e. to simulate a system with a set of questions Y, where each question y
corresponds to a adjective, “Would you characterize the performance of this item as [adjective] or
better?”.1

Different experiment trials are described below. Pilots were primarily used to garner feedback
regarding the experiment from workers (fair pay, time needed to complete, website/UI comments,
etc). All trials yield qualitatively similar results in terms of both paragraph ratings and feedback
rating distributions for various scales.

Pilot 1 30 workers. Similar conditions as final experiment (6 words sampled for paragraph ratings,
all uniformly at random, 5 point scale feedback rating), with identical question phrasing, “How
does the following rate on English proficiency and argument coherence?”.

1The data from the experiment is also used for a separate paper, Garg and Johari (2018). In that work, we analyze
the full multi-option question directly, but the main focus is reporting the results of a separate, live trial on a large
online labor platform.
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Figure 1: Additional information for MTurk experiment

Pilot 2 30 workers. 7 words sampled for paragraph ratings, 6 point scale feedback rating, with
the following question phrasing: “How does the following person rate on English proficiency
and argument coherence?”.

Experiment 200 workers. 6 words sampled for paragraph ratings, with 2 fixed as described above,
5 point scale feedback rating. Question phrasing, “How does the following rate on English
proficiency and argument coherence?”.

We use paragraphs modified from a set published by the Educational Testing Service (Educa-
tional Testing Service, 2005). There are 10 paragraphs, 5 each on 2 different topics. For each topic,
the paragraphs have 5 distinct expert scores. Paragraphs are shortened to just a few sentences, and
the top rated paragraphs are improved and the worst ones are made worse, preserving the ranking
according to the expert scores.

Figure 1a shows time spent on each page of the experiment, Figure 1b shows the time spent per
paragraph, and Figure 1c shows the cumulative density function for time spent by workers. The
paragraphs are presented to workers in a random order. No workers are excluded in our data and
all workers were paid $1.00, including the ones that spent 2-3 seconds per page. 7/60 workers in
the pilots received a bonus of $0.20 for providing feedback. The instructions advised workers to
spend no more than a minute per question, though this was not enforced.

The instructions for the main experiment were as follows: “Please rate on English proficiency
(grammar, spelling, sentence structure) and coherence of the argument, but not on whether you
agree with the substance of the text.” No additional context was provided.

A.2 Calculating optimal β and H

Figure 2 shows the empirical ψ̂(θ, y) as measured through our experiment. The colors encode the
true quality as rated by experts (light blue is best quality, dark blue is worst); recall there are 10
paragraphs with 5 distinct expert ratings (paragraphs 0 and 5 are rated the best, paragraphs 4 and
9 are rated the worst).

With the β calculated and visualized using the methods in Section 3, we now find the optimal H
for various settings using the methods in Section 4. We view our set of paragraphs as representative
items Θ from a larger universe of paragraphs. In particular, we view our worst quality paragraphs
as in the 10th percentile of paragraphs, and our best items as in the 90th percentile. In other
words, from the empirical ψ̂, we carry out the methods in Section 4 using a ψ s.t. ψ(.1, y) =
(ψ̂(4, y) + ψ̂(9, y)/2 (and similarly for ψ(.3, y), ψ(.5, y), ψ(.7, y), ψ(.9, y), where e.g. ψ̂(4, y) is the
empirical rate at which paragraph 4 received a positive rating on question y.
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Figure 2: Paragraph rating distribution – for paragraph θ and rating word y, the empirical ψ̂(θ, y)
is shown. Colors encode the true quality as rated by experts (light blue is best quality, dark blue
is worst).
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(b) Linearly increasing search, g(θ) = 1+10θ
11 .

Figure 3: Optimal H(y) varying by w(θ1, θ2) using Mechanical Turk data

Then, we solve the optimization problem for H stated in Section 4. From the above discussion,
we want to find an H such that the worst rated paragraphs in our experiment have a probability
of receiving a positive rating that is approximately β(.1).

Figure 3 shows the optimal H calculated for various platform settings. These distributions
illustrate how often certain binary questions should be asked as it depends on the matching rates
and platform objective. For example, as Figure 3a shows, when there is uniform matching and
the platform cares about the entire ranking (i.e. has Kendall’s τ or Spearman’s ρ objective), it
should ask most buyers to answer the question, “Would you rate this item as having ‘Fair’ quality
or better?”.

Several qualitative insights can be drawn from the optimal H. Most importantly, note that the
optimal designs vary significantly with the platform objective and matching rates. In other words,
given the same empirical data ψ̂, the platform’s design changes substantially based on its goals
and how skewed matches are on the platform. Further, note that the differences in H follow from
the differences in β that are illustrated in Figure 1: when the platform wants to accurately rank
the best items, the questions that distinguish amongst the best (e.g., “Would you rate this item as
having ‘Good’ quality?”) are drawn more often.
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A.3 Simulation description

Using the above data and subsequent designs, we simulate markets with a binary rating system as
described in Section 3.1. Our simulations have the following characteristics.

• 500 items. Items have i.i.d. quality in [0, 1]. For item with quality θ, we model buyer rating
data using the ψ collected from the experiment as follows. In particular, we presume the items
are convex combinations of the representative items in our experiment – items with quality
θ ∈ [.1, .3] are assumed to have rating probabilities ψ(θ, y) = αψ(.1, y) + (1 − α)ψ(.3, y),
where α = (θ − .1)/.2. Similarly for θ in other intervals. This process yields the β̃ shown in
Figure 2b.

• In some simulations, all items enter the market at time k = 0 and do not leave. In the others,
with entry and exit, each item independently leaves the market with probability .02 at the
end of each time period, and a new item with quality drawn i.i.d. from [0, 1] enters.

• There are 100 buyers, each of which matches to an item independently. In other words,
matching is independent across items, and items can match more than once per time period.

• Matching is random with probability as a function of an item’s estimated rank θ̂ according to
score, rather than actual rank. In other words, the optimal systems were designed assuming
item θ would match at rate g(θ); instead it matches according to g(θ̂), where θ̂ is the item’s

rank according to score. We use both g = 1 and linear search, g(θ̂) = 1+10θ̂
11 .

• Y is the set of 9 adjectives from our MTurk experiments.

• We test several possible H: naive with H(y) = 1
|Y| , and then the various optimal H calculated

for the different sections, illustrated in Figure 3.

A.3.1 Simulation results

Figure 4 contains plots from a simulated system that has binary ratings. Figures 4a, 4b are with
uniform search (g = 1), Figures 4c and 4d plot the objective prioritizing the worst items, and
Figures 4e and 4f are with linearly increasing search. For each setting, we include both plots with
and without birth/death.

Together, the results suggest that the asymptotic and rate-wise optimality of our calculated
β hold even under deviations of the model, and that the real-world design approach outlined in
Section 4 would provide substantial information benefits to platforms.

Several specific qualitative insights can be drawn from the figures, alongside those discussed in
the main text.

1. From all the plots with uniform search, the H designed using our methods for the given setting
outperforms other H designs, as expected, and the optimal β (for the given setting) significantly
outperforms other designs both asymptotically and rate-wise.

2. Qualitatively, again with uniform search, heterogeneous item age also does not affect the results.
In fact, it seems as if the optimal β and best possible H (given the data) as calculated from our
methods outperforms other designs both asymptotically and rate-wise. Note that this is true
even though items entering and leaving the market means that the system may not enter the
asymptotics under which our theoretical results hold.
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3. Figures 4c and 4d show the same system parameters as Figures 4a, 4b, i.e. uniform search.
However, while 4a, 4b show Kendall’s τ correlation over time, 4c and 4d show the objective
prioritizing bottom items (w = (1 − θ1)(1 − θ2)(θ1 − θ2)). Note that the β calculated for the
actual objective outperforms that calculated for Kendall’s τ , including asymptotically.

Similarly, complementing the fact that H design changes significantly with the weight function,
these plots show the value of designing while taking into account one’s true objective value
– the different designs perform differently. Mis-specifying one’s objective (e.g. designing to
differentiate the best items when one truly cares about the worst items) leads to a large gap in
performance (e.g. see the gap between the dark green and red lines in 4c and 4d).

Note that comparing the performance of β for the misspecified objective and H for the true
objective is not a fair comparison: the former differentiates between all items (though potentially
not in a rate-optimal way), while H is constrained by reality, i.e. ψ and Y.

4. Now, consider Figures 4e and 4f, which plot the system with linearly increasing search. Note
that, contrary to expectation, the optimal β for uniform search outperforms the β for the actual
system simulated, with linear search! This pattern is especially true for small time k and with
item birth/death.

This inversion can be explained as follows. Uniformization occurs with heterogeneous age and
matching according to observed quality: new items of high type are likely to be mis-ranked
lower, while new items of low type are more likely to be mis-ranked higher. (We note that this
may not matter in practice, where the search function itself is fit through data, which already
captures this effect.) These errors are prominent at low time k and with item birth/death, i.e., in
the latter our system never reaches the asymptotics at which the linear β is the optimal design.

This pattern can be seen more clearly by comparing the two β curves in Figures 4e, without
item birth/death. At small k, when errors are common and so search is more effectively uniform,
the β for uniform matching performs the best. However, as such errors subside over time, the
performance of the β for linear search catches up and eventually surpasses that of uniform
optimal β.
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Figure 4: Simulations from data from Mechanical Turk experiment – Binary rating system
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Appendix B Supplementary theoretical information and results

We now give some additional detail and develop additional results. Section B.1 contains the formal
specification and update of our deterministic dynamical system. Section B.2 gives our algorithm,
Nested Bisection, is far more detailed pseudo-code. Section B.3 formalizes our earlier qualitative
discussion on how matching rates affects the function β. Section B.4 includes a convergence result
for functions βM as M increases. Finally, Section B.5 contains simple results on how one can learn
ψ(θ, y) through experiments, even if one does not have a reference set of items Θ with known quality
before one begins experiments.

B.1 Formal specification of system state update

Recall that µk(Θ, X) is the mass of items with true quality θ ∈ Θ ⊆ [0, 1] and a reputation score
x ∈ X ⊆ [0, 1] at time k. Let Ek = {θ : nk(θ) = nk−1(θ) + 1}. These are the items who receive an
additional rating at time k; for all θ ∈ Eck, nk(θ) = nk−1(θ). Our system is completely deterministic,
and evolves according to the distributions of the individual seller dynamics.

For each θ ∈ Ek, x, x′, define ω(θ, x, x′) as follows:

ω(θ, x, x′) = β(θ)I{nk(θ)x− nk−1(θ)x′ = 1}+ (1− β(θ))I{nk(θ)x− nk−1(θ)x′ = 0}.

Then ω gives the probability of transition from x′ to x when an item receives a rating. We then
have:

µk+1(Θ, X) =

∫
Ek

∫ 1

x′=0

∫
x∈X

ω(θ, x, x′)dxµk(dx
′, dθ) +

∫
Eck

∫
x∈X

µk(dx, dθ).

It is straightforward but tedious to check that the preceding dynamics are well defined, given our
primitives.

B.2 Detailed algorithm

Here, we present the Nested Bisection algorithm, which is described at a high level and summarized
in pseudo-code in the main text, in more detail.
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ALGORITHM 1: Nested Bisection given in more detail

Data: Set size M , grid width δ, match function g /* Assume δ << mini ti − ti−1 */

Result: βM levels {t0 . . . tM−1}
Function main (M , δ, g)

t0 = 0, tM−1 = 1

` = 1− 1
M−1 , u = 1− δ

while u− ` > δ/2 do
jM−2 = r+`

2
ratelast = −gM−2 log(tM−2)
{j1 . . . jM−3} = CalculateOtherLevels(jM−2, ratelast, g)
ratefirst = −g1 log(1− t1)
if ratefirst < ratelast then ` = jM−2

else u = jM−2

{t1 . . . tM−2} = CalculateOtherLevels(u, g)
tM−2 = u
return {ti}

Function PairwiseRate (tm−1, tm, gm, gm−1)

return −(gm−1 + gm) log

[
(1− tm−1)

gm−1
gm−1+gm (1− tm)

gm
gm−1+gm + t

gm−1
gm−1+gm

m−1 t
gm

gm−1+gm
m

]
Function CalculateOtherLevels (jM−2, ratetarget, g)

/* Given target rate from current guess jM−2, sequentially fix other levels. */

foreach m ∈M − 3 . . . 1 do
jm = BisectNextLevel(jm+1, ratetarget, gm, gm+1)

return {j1 . . . jM−3}
Function BisectNextLevel (jm, ratetarget, gm−1, gm)

` = 0, r = jm − δ
while r − ` > δ/2 do

jm−1 = r+`
2

ratem = PairwiseRate(jm−1, jm, gm−1, gm)
if ratem ≤ ratetarget then r = jm−1

else ` = jm−1

return r
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B.3 Formalization of effect of matching rates shifting

Matching concentrating at the top items moves mass of β(θ) away from high θ, and subsequently
mass of H(y) away from the questions that help distinguish the top items, as observed in Fig-
ures 1b and 3b above. Informally, this occurs because when matching concentrates, top items are
accumulating many ratings more ratings comparatively, and so the amount of information needed
per rating is comparatively less. We formalize this intuition in Lemma B.1 below.

The lemma states that if matching rates shift such that there is an index k above which matching
rates increase and below which they decrease, then correspondingly the levels of β, (i.e. ti) become
closer together above k.

Lemma B.1. Suppose k, g, g̃ such that ∀j ∈ {k+1 . . .M−1}, gj ≥ g̃j, and ∀j ∈ {0 . . . k−1}, gj ≤ g̃j,
and gk = g̃k. Then, t∗k ≥ t̃∗k.

Proof. This proof is similar to that of Lemma 3.1, except that with the matching function changing
the overall rate function can either increase, decrease, or stay the same. Suppose the overall rate
function decreased or stayed the same when the matching function changed from g̃ to g. Then
gM−2 > g̃M−2 and the target rate is no larger, and so t∗M−2 > t̃∗M−2. Then, t∗M−3 > t̃∗M−3 (a smaller
width is needed because the matching rates are higher and the rate is no larger, and the next value
also increased). This shifting continues until t∗k+1 > t̃∗k+1. Then, t∗k > t̃∗k.

Suppose instead that the overall rate function increased when the matching function changed
from g̃ to g. Then g1 < g̃1 and the target rate is larger, and so t∗1 > t̃∗1. Then, t∗2 > t̃∗2 (a larger
width is needed and the previous value also increased). This shifting continues until t∗k−1 > t̃∗k−1.
Then, t∗k > t̃∗k.

B.4 Limit of β as M →∞

Let βwM denote the optimal β with M intervals for weight function w, with intervals {SwMi } =
{[swMi , swMi+1 )} and levels twM . Let qwM (θ) = i/M when θ ∈ [swMi , swMi+1 ), i.e. the quantile of
interval item of type θ is in.

Then, we have the following convergence result for βM .

Theorem B.1. Let g be uniform. Suppose w such that qwM converges uniformly. Then, ∀C ∈
N,∃βw s.t. βw

C2N+1
→ βw uniformly as N →∞.

The proof is technical and is below. We leverage the fact that, for g uniform, the levels of β2M
can be analytically written as a function of the levels of βM . We believe (numerically observe)
that this theorem holds for the entire sequence as opposed to the each such subsequence, and for
general matching functions g. However, our proof technique does not carry over, and the proof
would leverage more global properties of the optimal βM .

Furthermore, the condition on w is light. For example, it holds for Kendall’s τ , Spearman’s ρ,
and all other examples mentioned in this work.

This convergence result suggests that the choice of M when calculating a asymptotic and rate
optimal β is not consequential. As M increases, the limiting value of Wk increases to 1 (i.e. the
asymptotic value increases), but the optimal rate decreases to 0. As discussed above, with strictly
increasing and continuous β, the asymptotic value is 1 but the large deviations rate does not exist,
i.e. convergence is polynomial.

This result could potentially be strengthened as follows: first, show convergence on the entire
sequence as opposed to these exponential subsequences, as conjectured; second, show desirable
properties of the limiting function itself. It is conceivable but not necessarily true that the limiting

9



function is “better” than other strictly continuous increasing functions in some rate sense, even
though the comparison through large deviations rate is degenerate.

B.5 Learning ψ(θ, y) through experiments

Now, we show how a platform would run an experiment to decide to learn ψ(θ, y). In particular,
one potential issue is that the platform does not have any items with know quality that it can use
as representative items in its optimization. In this case, we show that it can use ratings within the
experiment itself to identify these representative items. The results essentially follow from the law
of large numbers.

We assume that |Θ| = L representative items i ∈ {1 . . . L} are in the experiment, and each are
matched N times. The experiment proceeds as follows: every time an item is matched, show the
buyer a random question from Y. For each word y ∈ Y, track the empirical ψ̂(i, y), the proportion
of times a positive response was given to question y. Alternatively, if Y is totally ordered (i.e. a
positive rating for a given y also implies positive ratings would be given to all “easier” y′), and
can be phrased as a multiple choice question, data collection can be faster: e.g., as we do in our
experiments: Y consists of a set of totally ordered adjectives that can describe the item; the rater is
asked to pick an adjective out of the set; this is interpreted as the item receiving a positive answer
to the questions induced by the chosen answer and all worse adjectives, and a negative answer to
all better adjectives.

First, suppose the platform approximately knows the quality θi of each item i, and θi are evenly
distributed in [0, 1]. Suppose the items are ordered by index, i.e. θ1 < θ2 < · · · < θL. Then let
ψ̂(θ, y) = ψ̂(i, y) when θ ∈ [θi−1, θi]. Call this procedure KnownTypeExperiment.

Lemma B.2. Suppose ψ(θ, y) is Lipschitz continuous in θ. With KnownTypeExperiment, ψ̂(i, y)→
ψ(θi, y)∀y uniformly as N →∞. As L→∞, ψ̂(θ, y)→ ψ(θ, y)∀θ uniformly.

Proof. The proof follows directly from the Strong Law of Large Numbers. As N →∞, ∀i, ψ̂(i, x)→
ψ(θi, x) uniformly. Now, let L→∞. ∀ε, ∃L′ s.t. ∀L > L′, ∀θ,∃i s.t. |θ−θi| < ε. ψ(θ, x) is Lipschitz
in θ by assumption, and so ψ̂(θ, x)→ ψ(θ, x) uniformly.

We now relax the assumption that the platform has an existing set of items with known qualities.
Suppose instead the platform has many items L of unknown quality who are expected to match N
times each over the experiment time period. For each item, the platform would again ask questions
from Y, drawn according to any distribution (with positive mass on each question). Then generate
ψ̂(θ, y) as follows: first, rank the items according to their ratings during the experiment itself.
Then, for each y, ψ̂(θ, y) is the empirical performance of the θth percentile item in the ranking, i.e.
ψ̂(θ, y) = ψ̂(θi, y) for θ ∈

[
i−1
L , iL

]
. Call this procedure UnknownTypeExperiment.

Lemma B.3. Suppose ψ(θ, y) is Lipschitz continuous in θ. With UnknownTypeExperiment, ψ̂(θ, y)→
ψ(θ, y)∀y, θ uniformly as L,N →∞.

Proof. Fix L. Denote each item in the experiment as i ∈ {1 . . . L} (with true quality θi 6= θj),
and each item has N samples. Without loss of generality, assume the items are indexed according
to their rank on the average of their scores on the samples, defined as the percentage of positive
ratings received. i = 1 is then the worst item, and i = L is the best item according to scores in the
experiment.

For ψ(θ, x) increasing in θ, as N →∞, Pr(θi > θj |i < j)→ 0 almost surely by SLLN, and for

a fixed L, {θi} this convergence is uniform. Furthermore, by SLLN, ψ̂(i, x)→ ψ(θi, x) as N →∞.
Recall ψ̂(θ, x) = ψ̂(i, x) for θ ∈

[
i−1
L , iL

]
.
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Now, let L → ∞. ∀ε, ∃L′ s.t. ∀L > L′, ∀θ,∃i s.t. |θ − θi| < ε. ψ(θ, x) is Lipschitz in θ by
assumption, and so ψ̂(θ, x)→ ψ(θ, x) uniformly.

Appendix C Proofs

In this Appendix section, we prove our results.
Sections C.1-C.3 develop rate functions for Pk and Wk. While rates for Pk follow immediately

from large deviation results, the rate function for Wk requires more effort as the quantity is an
integral over a continuum of (θ1, θ2), each of which has a rate corresponding to that of Pk(θ1, θ2).

Then in Section C.4 we prove Theorem 3.1 and Lemma 3.1.
Section C.5 then contains additional necessary lemmas required for the proof of the algorithm

and convergence result, Theorem B.1. The main difficulty for the former is showing a Lipschitz
constant in the resulting rate if a level ti is shifted, which requires lower and upper bounds for t1 and
tM−2, respectively. For the former, we need to relate the solutions of the sequence of optimization
problems used to find βM as M increases. It turns out that both properties follow by relating the
levels of βM to those of β2M−1.

These additional lemmas are used to prove the algorithm approximation bound (Theorem 3.2)
and the convergence result (Theorem B.1) in Section C.6 and C.7, respectively.

Finally in Section C.8 we prove the comments we make in the main text about Kendall’s τ
and Spearman’s ρ rank correlations belonging in our class of objective functions, with asymptotic
values of Wk maximized when s is equispaced in [0, 1].

C.1 Rate functions for Pk(θ1, θ2)

Lemma C.1.

lim
k→∞

−1

k
log [µ((xk(θ1)− xk(θ2)) ≤ 0|θ1, θ2)] = inf

a∈R
{g(θ1)I(a|θ1) + g(θ2)I(a|θ2)}

where I(a|`) = supz{za − Λ(z|θ)}, and Λ(z|θ) is the log moment generating function of a single
sample from x(θ1) and g(θ) is the sampling rate.

Proof. limk→∞− 1
k log [µ((xk(θ1)− xk(θ2)) ≤ 0|θ1, θ2)]

= lim
k→∞

−1

k
log

[∫
a∈R

µ((xk(θ1) = a|θ1)µ(xk(θ2) ≥ a|θ2)da
]

(1)

= lim
k→∞

−1

k
log

[∫
a∈R

e−kg(θ1)I(a|θ1)e−kg(θ2)I(a|θ2)da

]
(2)

= inf
a∈R
{g(θ1)I(a|θ1) + g(θ2)I(a|θ2)} Laplace principle (3)

Where (2) is a basic result from large deviations, where kg(θi) is the number of samples item
of quality θi has received.

Note that this lemma also appears in Glynn and Juneja (2004), which uses the Gartner-Ellis
Theorem in the proof. Our proof is conceptually similar but instead uses Laplace’s principle.

Recall that KL(a||b) = a log b
a +(1−a) log 1−b

1−a is the Kullback-Leibler (KL) divergence between
Bernoulli random variables with success probabilities a and b respectively. It is well known that
for a Bernoulli random variable with success probability t,

I(a|t) = KL(a||t)

11



Then, we have

Lemma C.2. Let θ1 > θ2 and I(a|θ) = KL(a||β(θ)). Further, Let P k(θ1, θ2) = 1 − Pk(θ1, θ2).
Then,

− lim
k→∞

1

k
logP k(θ1, θ2) = inf

a∈R
{g(θ1)I(a|θ1) + g(θ2)I(a|θ2)} , (4)

Proof. Follows directly from Lemma C.1.

− lim
k→∞

1

k
logP k(θ1, θ2|β)

= lim
k→∞

−1

k
log [1 + µk(xk(θ1)− xk(θ2) < 0|θ1, θ2)− µk(xk(θ1)− xk(θ2) > 0|θ1, θ2)]

= lim
k→∞

−1

k
log [2µk(xk(θ1)− xk(θ2) < 0|θ1, θ2) + µk(xk(θ1)− xk(θ2) = 0|θ1, θ2)]

= lim
k→∞

−1

k
log [µk(xk(θ1)− xk(θ2) ≤ 0|θ1, θ2)]

= inf
a∈R
{g(θ1)I(a|θ1) + g(θ2)I(a|θ2)} Lemma C.1

C.2 Laplace’s principle with sequence of rate functions

In order to derive a rate function for W k = (limkWk)−Wk, we need to be able to relate its rate to
that of P k(θ1, θ2). The following theorem, related to Laplace’s principle for large deviations allows
us to do so.

Theorem C.1. Suppose that X is compact with finite Lebesgue measure µ(X) <∞. Suppose that
ϕ(x) has an essential infimum ϕ on X, that ϕn(x) has an essential infimum ϕ

n
, that both ϕ and

all ϕn are nonnegative, and that ϕn → ϕ uniformly:

lim
n→∞

sup
x∈X
|ϕn(x)− ϕ(x)| = 0.

Then:

lim
n→∞

1

n
log

∫
X
e−nϕn(x)dx = −ϕ. (5)

Proof. First, we note that for all x and n, e−nϕn(x) ≤ e−nϕn . Therefore, letting (∗) denote the
LHS of (5), we have:

(∗) ≤ lim
n→∞

1

n
log

∫
X
e−nϕndx = −ϕ,

where the last limit follows from the fact that ϕn converges uniformly to ϕ, so that ϕ
n
→ ϕ.

Next, for ε > 0 let An(ε) = {x : ϕn(x) ≤ ϕ
n

+ ε} and let A(ε) = {x : ϕ(x) ≤ ϕ + ε}. It
follows (again by uniform convergence) that for all sufficiently large n, A(ε/2) ⊆ An(ε), so that
µ(A(ε/2)) ≤ µ(An(ε)) for all sufficiently large n. Further, µ(A(ε/2)) > 0, since ϕ is the essential
infimum.

Since: ∫
X
e−nϕn(x)dx ≥ µ(An(ε))e−n(ϕn+ε),

12



it follows that:

(∗) ≥ −ϕ− ε+ lim
n→∞

1

n
logµ(An(ε)).

To complete the proof, observe that since µ(An(ε)) is bounded below by a positive constant for all
sufficiently large n, the last limit is zero. Therefore:

(∗) ≥ −ϕ− ε.

Since ε was arbitrary, this completes the proof.

Remark C.1. Let X = [0, 1] × [0, 1], ϕn(θ1, θ2) = − 1
n logPn(θ1, θ2). Then, all the conditions for

Theorem C.1 are met.

C.3 Rate function for Wk

Our next lemma shows that we can obtain a nontrivial large deviations rate for Wk when β is a
step-wise increasing function.

Recall Wk =
∫
θ1>θ2

w(θ1, θ2)Pk(θ1, θ2|β)d(θ1, θ2).

Let P k(θ1, θ2) = 1− Pk(θ1, θ2).
Further, let W k = (limkWk) −Wk =

∫
θ1>θ2

w(θ1, θ2)P k(θ1, θ2|β)d(θ1, θ2). (recall we assumed
w integrates to 1 without loss of generality).

Lemma C.3. Suppose β is piecewise constant with M levels {ti}. Let gi , infθ∈Si g(θ) = g(si)
Then,

− lim
k→∞

1

k
logW k = min

0≤i≤M−2
inf
a∈R
{gi+1I(a|ti+1) + giI(a|ti)} , r, (6)

where I(a|t) = KL(a||t) as defined in Lemma C.2.

Proof. When β is step-wise increasing with M levels {ti}, then

W k =
∑

0≤i<j<M

∫
θ2∈Si,θ1∈Sj

w(θ1, θ2)P k(θ1, θ2|β)d(θ1, θ2)

as P k(θ1, θ2) = 0 when β(θ1) = β(θ2).
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− limk→∞
1
k logW k

= − lim
k→∞

1

k
log

∫
θ1>θ2

w(θ1, θ2)P k(θ1, θ2|β)d(θ1, θ2) (7)

= − lim
k→∞

1

k
log

∑
0≤i<j<M

∫
θ2∈Si,θ1∈Sj

w(θ1, θ2)P k(θ1, θ2|β)d(θ1, θ2) (8)

= − max
0≤i<j<M

(
lim
k→∞

1

k

[
log

∫
θ2∈Si,θ1∈Sj

w(θ1, θ2)P k(θj , θi|β)d(θ1, θ2)

])
(9)

= − max
0≤i<j<M

sup
θ1∈Sj ,θ2∈Si

(
lim
k→∞

1

k

[
logw(θ1, θ2)P k(θj , θi|β)

])
(10)

= − max
0≤i<j<M

sup
θ1∈Sj ,θ2∈Si

(
lim
k→∞

1

k
logP k(θj , θi|β)

)
(11)

= min
0≤i<j<M

inf
θ1∈Sj ,θ2∈Si

(
− lim
k→∞

1

k
logP k(θj , θi|β)

)
(12)

= min
0≤i<j<M

inf
θ1∈Sj ,θ2∈Si

inf
a∈R
{g(θ1)I(a|tj) + g(θ2)I(a|ti)} (13)

= min
0≤i<j<M

inf
a∈R
{gjI(a|tj) + giI(a|ti)} (14)

= min
0≤i<M−1

inf
a∈R
{gi+1I(a|ti+1) + giI(a|ti)} (15)

The last line follows from adjacent ti, ti+1 dominating the rate due to monotonicity properties.
Line (10) follows from Theorem C.1.

Line (9) follows from: ∀aεi ≥ 0, lim supε→0

[
ε log

(∑N
i a

ε
i

)]
= maxNi lim supε→0ε log(aεi), which

is a finite case version (with fewer assumptions) of Theorem C.1. See, e.g., Lemma 1.2.15 in (Dembo
and Zeitouni, 2010) for a proof of this property.

Lemma C.4. β(θ) is piecewise constant ⇐⇒ ∃c(β) > 0 s.t. − limk→∞
1
k log(W k) = c(β).

Proof. =⇒ follows directly from Lemma C.3: infa∈R {gi+1I(a|ti+1) + giI(a|ti)} > 0 when ti 6= ti+1,
which holds when β is piece-wise constant with the appropriate number of levels.

⇐= Consider β that is not piece-wise constant. Recall that we further assume that β is non-
decreasing, and discontinuous only on a measure 0 set. Following algebra steps similar to those in
Lemma C.3, but for general β:

− lim
k→∞

1

k
logW k = − lim

k→∞

1

k
log

∫
θ1>θ2

w(θ1, θ2)P k(θ1, θ2|β)d(θ1, θ2) (16)

= inf
θ1>θ2

(
− lim
k→∞

1

k
logP k(θj , θi|β)

)
(17)

= 0 (18)

Where the last line follows from β continuous at some θ1, and so limθ2→θ1 P k(θ1, θ2|β) = 1.
Intuitively, what goes wrong with continuous β is that P k(θ1, θ2|β) does not converge uniformly:

∀ε, k, ∃θ2 6= θ1 P k(θ1, θ2) > ε

14



i.e. close by items are very hard to distinguish from one another. Then, because the large deviations
rate of W k is dominated by the worst rates under the integral, we don’t get a positive rate.

C.4 Proofs of Lemma 3.1 and Theorem 3.1

Remark C.2. The KL divergence for two Bernoulli random variables is continuous and strictly
convex, with minima at a = b, when a, b ∈ (0, 1). Note that infa{giKL(a||ti) + g(i+ 1)KL(a||ti+1)},
for all feasible g, is also continuous and strictly convex in ti, ti+1, with minima at ti = ti+1.

One consequence of the above fact is that fixing either ti or ti+1 and moving the other farther
away monotonically increases KL, while moving it closer decreases KL.

C.4.1 Proof of Theorem 3.1

Proof. We use the same notation as the proof for Lemma C.3.
Part 1.

lim
k→∞

Wk = lim
k→∞

∑
0≤i<j<M

[∫
θ2∈Si,θ1∈Sj

w(θ1, θ2)Pk(θ1, θ2|β)d(θ1, θ2)

]
(19)

=
∑

0≤i<j<M

∫
θ2∈Si,θ1∈Sj

w(θ1, θ2)d(θ1, θ2) (20)

(20) follows from bounded convergence and Pk(θ1, θ2|β)→ 1 for θ1 ∈ Sj , t2 /∈ Sj . Thus choosing s
to maximize (20) maximizes the asymptotic value of Wk.

Part 2. Follows directly from Lemma C.3.

C.4.2 Proof of Lemma 3.1

Proof. Recall r(t) , − limk→∞
1
k log(W−Wk) = min0≤i≤M−2 infa∈R {gi+1KL(a||ti+1) + giKL(a||ti)}.

We show the following:
r(t) =

min

(
log(1− t1)−g1 ,

log

[
(1− ti−1)

gi−1
gi−1+gi (1− ti)

gi
gi−1+gi + t

gi−1
gi−1+gi

i−1 t

gi
gi−1+gi

i

]−gi−1−gi

for 1 < i < M − 1,

log(tM−2)
−gM−2

)

and t∗ maximizes rw(t) ⇐⇒ all the terms inside the minimization rw(t∗) are equal. Further, the
optimal levels t∗ are unique. The result immediately follows, that {ti} is the unique solution that
equalizes the rates inside the minimization, by noting that the optimal r has t0 = 0, tM−1 = 1.

We first prove the alternative form for r. Note that {gi−1KL(a||ti−1) + giKL(a||ti)} is convex
in a, and so we can find an analytic form for the infinum over a.
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Let ai = arg infa∈[ti−1,ti]{gi−1KL(a||ti−1) + giKL(a||ti)}

=⇒ ∇ai [gi−1KL(ai||ti−1) + giKL(ai||ti)] = 0

=⇒ ∇ai
[
gi−1

(
ai log

ai
ti−1

+ (1− ai) log
1− ai

1− ti−1

)
+ gi

(
ai log

ai
ti

+ (1− ai) log
1− ai
1− ti

)]
= 0

=⇒ gi−1

(
log

ai
ti−1
− log

1− ai
1− ti−1

)
+ gi

(
log

ai
ti
− log

1− ai
1− ti

)
= 0

=⇒ log

(
ai

1− ai

)gi−1+gi

= log

(
ti−1

1− ti−1

)gi−1

+ log

(
ti

1− ti

)gi
=⇒ ai

1− ai
=

[(
ti−1

1− ti−1

)gi−1
(

ti
1− ti

)gi] 1
gi−1+gi

=⇒ ai =
c

1 + c
, where c =

[(
ti−1

1− ti−1

)gi−1
(

ti
1− ti

)gi] 1
gi−1+gi

Then,
gi−1KL(ai||ti−1) + giKL(ai||ti)

= gi−1a log
a

ti−1
+ gia log

a

ti
+ gi−1(1− a) log

1− a
1− ti−1

+ gi(1− a) log
1− a
1− ti

= a

[
(gi−1 + gi) log

a

1− a
+ gi−1 log

1− ti−1
ti−1

+ gi log
1− ti
ti

]
+ log(1− a)gi−1+gi − log(1− ti−1)gi−1(1− ti)gi

= (gi−1 + gi) log(1− a)− log(1− ti−1)gi−1(1− ti)gi (21)

= −(gi−1 + gi) log

[[
1 +

[(
ti−1

1− ti−1

)gi−1
(

ti
1− ti

)gi] 1
gi−1+gi

]
(1− ti−1)

gi−1
gi−1+gi (1− ti)

gi
gi−1+gi

]

= −(gi−1 + gi) log

[
(1− ti−1)

gi−1
gi−1+gi (1− ti)

gi
gi−1+gi + t

gi−1
gi−1+gi

i−1 t

gi
gi−1+gi

i

]
(22)

Where line (21) uses a
1−a = c and (gi−1 + gi) log c = log

[(
ti−1

1−ti−1

)gi−1
(

ti
1−ti

)gi]
. Note that the

first and last rates emerge, respectively, by plugging in t0 = 0, tM = 1, which holds trivially at the
optimum from monotonicity.

We note that a similar derivation, of the large deviation rate for two binomial distributions with
different probability of successes and match rates, appears in Glynn and Juneja (2004). In that
work, the authors seek to optimize the g in order to identify the single best item out of a set of
possible items, and a concave program emerges. In this work, because we optimize the probability
of successes and care about retrieving a ranking of the items, no such concave or convex program
emerges.

Now we show that t∗ maximizes rw(t) ⇐⇒ all the terms inside the minimization rw(t) are
equal.

equalizes =⇒ optimal. Let r(i) be the ith term in the minimization, starting at i = 1. Note
that (holding the other fixed) increasing ti increases the ith term monotonically and decreases the
(i + 1)th term monotonically. Suppose β s.t. r(i) = r(j)∀i, j. To increase the minimization term,
one must increase r(i) , ∀i. To increase r(1), t1 must increase, regardless of what the other levels
are. Then, to increase r(2), t2 must increase . . . to increase r(M−2), tM−2 must increase. However,
to increase r(M − 1), tM−2 must decrease, and we have a contradiction. Thus, one cannot increase
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all terms simultaneously.

equalizes ⇐= optimal. Suppose t maximizes r(t) but the terms inside the minimization are
not equal. Then ∃i s.t. r(i) = minj r(j) and either r(i) 6= r(i − 1) or r(i) 6= r(i + 1). r(i) can be
increased without lowering the overall rate. This method can be repeated ∀i : r(i) = minj r(j) and
so t would not be optimal, a contradiction.

Uniqueness follows from the overall rate unique determining t1, tM−2 and so iteratively uniquely
determining the rest.

C.5 Additional necessary lemmas

Now, we begin the set-up that will lead to a proof for Theorem 3.2. It turns out that proving the
theorem requires, in the process, essentially proving our convergence result with M → ∞, Theo-
rem B.1. For Theorem 3.2, we need a lower bound for t1 as a function of M . This seems hard
to do in general. Luckily, in our case, there is a property for how t∗ changes when M is doubled.
Using this property, we can derive that t∗1 ≥ O(M−3).

Recall that step-wise increasing β with M intervals Si = [si, si+1) has levels {ti}M−1i=0 , where
t0 = 1, tM−1 = 1, and s0 , 0, sM , 1.

Furthermore, we use the following notation for the large deviation rate

ri = −(gi−1 + gi) log

[
(1− ti−1)

gi−1
gi−1+gi (1− ti)

gi
gi−1+gi + t

gi−1
gi−1+gi

i−1 t

gi
gi−1+gi

i

]
(23)

for i ∈ {1 . . .M − 1}, which implies r1 = −g1 log(1− t1) and rM−1 = −gM−2 log(tM−2).
We further use rM−1 to be the rate achieved by the optimal βM with M intervals.

Lemma C.5. Suppose g uniform, i.e. gi = 1, ∀i and that βM has values {ti}M−1i=0 . Then β2M−1
has values {t′i}

2M−2
i=0 , where t′2i = ti, ∀i ∈ {0 . . .M − 1}, t′1 = 1

2

(
1−
√

1− t1
)

and t′2M−3 =
1
2 (1 +

√
tM−2).

Proof. We first set the values t′2i = ti and then optimally choose the remaining values t′k, k odd.
Then, we show that the resulting large deviation rates between all adjacent pairs are equal. Then,
by the proof of Lemma 3.1, which showed that equalizing the rates between adjacent intervals is a
sufficient condition for optimality, β2M−1 has the levels {t′i}

2M−2
i=0 .

Let r′ denote rates between adjacent t′ as r does for t. Supposing t′2 = t1, we find t′1 such that
r′1 = r′2 and t′1 < t′2.

− log(1− t′1) = −2 log

[√
(1− t′1)(1− t′2) +

√
t′1t
′
2

]
=⇒ 1− t′1 = (1− t′1)(1− t′2) + t′1t

′
2 + 2

√
(1− t′1)(1− t′2)t′1t′2

=⇒ t′1 =
1

2

(
1−

√
1− t′2

)
=

1

2

(
1−
√

1− t1
)

Similarly, r′2M−3 = r′2M−2 when t′2M−3 = 1
2 (1 +

√
tM−2). It follows that r′1 = r′2 = r′2M−3 = r′2M−2

by choosing such t′1, t
′
2M−3.
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Next, we find t′k ∈ (t′k−1, t
′
k+1) for k ∈ {3, 5, . . . 2M − 5} such that the rates r′k = r′k+1.

−2 log
[√

(1− t′k)(1− t′k−1) +
√
t′kt
′
k−1

]
= −2 log

[√
(1− t′k)(1− t′k+1) +

√
t′kt
′
k+1

]
=⇒ t′k =

c

1 + c
, where c =


√

1− t′k+1 −
√

1− t′k−1√
t′k−1 −

√
t′k+1

2

Now, we show that r′k = r′j ,∀j, k by showing that the difference between each rate ri and its
analogous rate r′2i is constant. rk = rj ,∀j, k by assumption and so r′k = r′j ,∀j, k follows.

rM−1 = − log tM−2 and r′2M−2 = − log 1
2 (1 +

√
tM−2). Thus if ri = − log x for some x, then

r2i = − log 1
2 (1 +

√
x) would imply that all the rates are equal. Thus, it is sufficient to show that[√

(1− t′2i−1)(1− t′2i) +
√
t′2i−1t

′
2i

]2
=

1

2

[
1 +

√
(1− ti−1)(1− ti) +

√
ti−1ti

]
(24)

≡

[√(
1− c

1 + c

)
(1− ti) +

√
c

1 + c
ti

]2
=

1

2

[
1 +

√
(1− ti−1)(1− ti) +

√
ti−1ti

]
(25)

where c =

[√
1− ti −

√
1− ti−1√

ti−1 −
√
ti

]2
The proof for (25) is algebraically tedious and is shown in Remark C.3 below.

Then, by the proof of Lemma 3.1, which shows that equalizing the rates inside the minimization
terms implies an optimal {ti}, β2M−1 has the levels {t′i}

2M−2
i=0 .

Remark C.3.[√(
1− c

1 + c

)
(1− ti) +

√
c

1 + c
ti

]2
=

1

2

[
1 +

√
(1− ti−1)(1− ti) +

√
ti−1ti

]
where c =

[√
1− ti −

√
1− ti−1√

ti−1 −
√
ti

]2

Proof. Let x =
√
ti, y =

√
1− ti, z =

√
ti−1, and w =

√
1− ti−1. Note that x > z,w > y, y =

1− x2, w = 1− z2. Then,

c

c+ 1
=

(y − w)2

2− 2xz − 2yw
, and

1

c+ 1
=

(x− z)2

2− 2xz − 2yw

(To show the above two equalities, factor out 1
(x−z)2 from numerator and denominator, and substi-

tute y = 1− x2, w = 1− z2).
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Now, the left hand side:[√(
1− c

1 + c

)
(1− ti) +

√
c

1 + c
ti

]2
=

1

2− 2xz − 2yw

[√
(x− z)2y2 +

√
(y − w)2x2

]2
=

(x− z)2y2 + (y − w)2x2 + 2xy(x− z)(w − y)

2− 2xz − 2yw

√
(y − w)2 = w − y,

√
(x− z)2 = x− z

=
z2y2 + w2x2 − 2wxyz

2− 2xz − 2yw

The right hand side:

1

2

[
1 +

√
(1− ti−1)(1− ti) +

√
ti−1ti

]
=

1

2
[1 + (wy + xz)]

Multiplying both sides by 2− 2xz − 2yw, we have:[√(
1− c

1 + c

)
(1− ti) +

√
c

1 + c
ti

]2
=

1

2

[
1 +

√
(1− ti−1)(1− ti) +

√
ti−1ti

]
≡ z2y2 + w2x2 − 2wxyz = 1− (wy + xz)2

≡ z2(1− x2) + (1− z2)x2 − 2wxyz = 1− w2y2 − x2z2 − 2wxyz

≡ z2 − 2x2z2 + x2 = 1− (1− z2)(1− x2)− x2z2

≡ 0 = 0

Corollary C.1. Suppose g uniform, i.e. gi = 1, ∀i. ∀ε > 0,∃M s.t. ∀M ′ ≥M , rM
′
< ε.

Proof. Let M = 2N ,M ′ = 2N+1 − 1, for some N . We show that rM
′ ≤ 1

2r
M . The corollary follows

by noting that rK
′
< rK ∀K ′ > K and that rK <∞,∀K.

rM − rM ′ = − log tMM−2 + log tM
′

M ′−2

= − log tMM−2 + log

[
1

2
+

1

2

√
tMM−2

]
Lemma C.5

= log

1

2

1

tMM−2
+

1

2

1√
tMM−2


≥ −1

2
log tMM−2

√
tMM−2 ≥ t

M
M−2

=⇒ rM
′ ≤ 1

2
rM
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Corollary C.2. Suppose g uniform, i.e. gi = 1,∀i. ∀δ > 0,∃N s.t. ∀M ≥ N , maxk t
M
k − tMk−1 < δ.

Proof. This corollary follows directly from Corollary C.1. If the rates are upper bounded, then so
are the level differences.

We first find where the rate is minimized given a width between levels of δ

xm = arg min
x
−2 log

[√
(1− x− δ)(1− x) +

√
x(x+ δ)

]
=

1

2
− 1

2
δ

Then given an upper bound of ε on the rate, there is a bound on δ determined by the largest
possible difference at levels symmetric around 1

2 .

rL = −2 log

[
2

√
(
1

2
− δ)(1

2
+ δ)

]
= − log

[
1− 4δ2

]
≥ ε when δ >

1

2

√
1− e−ε

Lemma C.6. Suppose g is non-decreasing in θ. Then, tM−2 ≥ 1− 1
M−1 .

Proof. Note that, with uniform matching, ∀x ∈ (0, 1], y ∈ [0, 1 − x] the rate with values ti−1 =
y, ti = y+x is no more than the last with tM−2 = 1−x. With width x, in other words, the extreme
points have a larger rates than the middle points. For i /∈ {1,M − 1}:

ri = inf
a
{gi−1KL(a||ti−1) + giKL(a||ti)}

= inf
a
{KL(a||y) + KL(a||y + x)} uniform matching

= −2 log
[
(1− y)

1
2 (1− y − x)

1
2 + y

1
2 (y + x)

1
2

]
(26)

= − log
[
(1− y)(1− y − x) + y(y + x) + 2 [(1− y)(1− y − x)y(y + x)]1/2

]
≤ − log(1− x)

Where line (26) follows from line (22).
By the proof of Lemma 3.1, the optimal levels equalize the rates between each level. Then,

when g is non-decreasing, gM−2 ≥ g`,∀` ∈ {1 . . .M − 3}. Then, at the same level differences, the
rate corresponding to the last level is no smaller. Thus, to equalize the rates, the last width must
be no larger than any other width. Thus, tM−2 ≥ 1− 1

L .

Lemma C.7. With uniform matching (gi = 1), r2
N+1−1 ≥ 1

5r
2N .
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Proof. Let K = 2N ,K ′ = 2N+1 − 1. Note that tKK−1 ≥
1
2 by Lemma C.6.

rK − rK′ = − log tKK−2 + log tK
′

K′−2

= − log tKK−2 + log

[
1

2
+

1

2

√
tKK−2

]
Lemma C.5

= log

1

2

1

tKK−2
+

1

2

1√
tKK−2


≤ log

(
tKK−2

)− 4
5

1

2

(
tKK−2

)−1
+

1

2

(
tKK−2

)− 1
2 ≤

(
tKK−2

)− 4
5 when tKK−2 ∈

[
1

2
, 1

]
=⇒ rK

′ ≥ 1

5
rK

Lemma C.8. With uniform matching (gi = 1), ∃C > 0 s.t. ∀M, tM1 ≥ CM−3.

Proof. By Lemma C.7, ∃C2 > 0 s.t. rM ≥ C25
−dlog2Me. Then

− log(1− tM1 ) = rM

≥ C25
−dlog2Me

=⇒ tM1 ≥ 1− exp
[
−C25

−dlog2Me
]

≥ 1− exp
[
−C3M

− 1
log5 2

]
≥ e− 1

e
C3M

− 1
log5 2 e−x ≤ 1− e− 1

e
x for x ∈ [0, 1]

=⇒ ∃C > 0 s.t. tM1 ≥ CM−3

Corollary C.3. With monotonically non-decreasing g, ∃C > 0 s.t. ∀M, tM1 ≥ CM−3.

Proof. The result follows from noting that tM1 with uniform matching lower bounds the first value
with any other monotonically non-decreasing g, which is a direct application of Lemma B.1 – scale
g such that g1 = 1. Then, gj ≥ 1, j > 1 and g0 ≤ 1. Then, the condition of the lemma holds.

Lemma C.9. The run-time of NestedBisection is O(M log2 1
δ ), where δ is the bisection grid width

and M is the number of intervals.

Proof. The outer bisection, in main, runs at most log2
2
δ + 1 iterations. Each outer iteration calls

BisectNextLevel M −3 times, and the inner bisection in each call runs for at most log2
2
δ iterations.

Thus the run-time of algorithm is O(M log2 1
δ ).

C.6 Proof for Theorem 3.2

Finally, we are ready to prove Theorem 3.2. It follows from formalizing the relationship between δ,
the bisection grid width, and ε, the additive approximation error in the rate function.
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Proof. Recall M is the number of intervals (levels) in β. We use j, t, t∗ to denote the levels in a
certain iteration, the returned levels, and the optimal levels, respectively. We use r(·) to denote the
individual rates between returned levels, i.e. r(1) = −g1 log(1− t1), r(m) = {gm−1KL(am||tm−1) +
gmKL(am||tm)},m ∈ {2 . . .M −2}, r(M −1) = −gM−2 log(tM−2), and use r∗ to denote the optimal
rate.

By Lemma C.6, t∗M−2 ≥ 1− 1
M−1 . By assumption, t∗M−2 < 1−δ. Thus, t∗M−2 ∈ [1− 1

M−1 , 1−δ],
the starting interval for the outer bisection.

First, suppose the outer bisection terminates such that tM−2 ≤ t∗M−2 + δ. We prove that this
case always occurs below.

In this case, r∗−r(M−1) is at most−gM−2 log(t∗M−2)+gM−2 log(t∗M−2+δ) = gM−2 log
(
t∗M−2+δ

t∗M−2

)
.

For all m ∈ {M − 2 . . . 2}, in the final CalculateOtherLevels call the algorithm will use bisection
to match the corresponding rate with this last rate, r(M − 1) = −gM−2 log(tM−2), setting tm−2 to
the smallest value such that r(m) ≤ r(M − 1) (i.e. the right end of the final interval is chosen).

Then, ∀m ∈ {M − 2 . . . 2}, r(m) ∈ [r(M − 1) − ε(δ), r(M − 1)], where ε(δ) is an upper bound
on the change in the rate functions with a shift of δ in one of the parameters.

For now, assume r(1) = −g1 log(t1) ≥ r(M − 1). We prove that this occurs below. Then,

r(m) ≥ r(M − 1)− ε(δ) ∀m ∈ {1 . . .M}
≥ −gM−2 log

(
t∗M−2 + δ

)
− ε(δ)

Now we characterize ε(δ) in the region [t∗1 + δ, t∗M−2 + δ]. In particular, we want to bound the

rate loss from the other levels r(m),m > 1 after the gM−2 log
(
t∗M−2+δ

t∗M−2

)
loss in in r(M − 1). Note

that the only source of error is a level shifting right by δ. rj(·) denotes individual rates between
levels j in an intermediary iteration. Let a′i be the minimum point inside the rate infimum after
the shift by δ.

ε(δ) = sup
ti−1,ti

[
gi−1KL(ai||ti−1) + giKL(ai||ti)− gi−1KL(a′i||ti−1 + δ)− giKL(a′i||ti)

]
≤ sup

ti−1,ti

[
gi−1KL(a′i||ti−1) + giKL(a′i||ti)− gi−1KL(a′i||ti−1 + δ) + giKL(a′i||ti)

]
ai is inf point

= sup
ti−1,ti

gi−1

[
a′i log

ti−1 + δ

ti−1
+ (1− a′i) log

1− ti−1 − δ
1− ti−1

]
≤ sup

ti−1,ti

gi−1

[
a′i log

ti−1 + δ

ti−1

]
2nd term negative

≤ gM−2
[
log

t∗1 + δ

t∗1

]
tj ≥ t∗1, gj ≤ gM−2

=⇒ r(m) ≥ r∗ − gM−2 log

(
t∗M−2 + δ

t∗M−2

)
− gM−2

[
log

t∗1 + δ

t∗1

]
≥ r∗ − gM−2

δ

t∗M−2
− gM−2

δ

t∗1
log(1 + x) ≤ x

≥ r∗ − δgM−2
[
M − 1

M − 2
+

1

t∗1

]
t∗M−2 ≥ 1− 1

M − 1

By Corollary C.3, ∃C > 0 s.t. t∗1 ≥ CM−3 =⇒ r(m) ≥ r∗ − δgM−2
[
M−1
M−2 + CM3

]
. Then, let

δ = ε
gM−2[M−1

M−2
+CM3]

. Supposing the algorithm terminates in such an iteration, it finds an ε-optimal
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β in time O

(
M log2

gM−2[M−1
M−2

+CM3]
ε

)
= O

(
M log2 Mε

)
.

Next, we show that the algorithm only terminates the outer bisection when u ≤ t∗M−2 + δ. The
claim follows from ` ≤ t∗M−2 being an algorithm invariant. The initial ` = 1 − 1

M−1 ≤ t∗M−2
by Lemma C.6. ` can only be set to be > t∗M−2 if in the current iteration, jM−2 > t∗M−2 and
rj(1) < rj(M − 1). However, if jM−2 ≥ t∗M−2, then rj(1) ≥ rj(M − 1) (jm ≥ t∗m∀m), following
from a shifting argument like that given in Lemma 3.1 and that the inner bisection is such that
rj(m) ≤ rj(M − 1),m ∈ {2 . . .M − 2}, i.e. all the values tm > t∗m. Thus, ` ≤ t∗M−2 is an algorithm
invariant and u > t∗M−2 + δ =⇒ u− ` > δ.

Finally, we show that r(1) ≥ r(M − 1) at the returned {ti}. By assumption, in the initial it-
eration, u ≥ t∗M−2, and recall that the returned {ti} such that tM−2 = u from the final iteration.
As shown in the previous paragraph, jM−2 ≥ t∗M−2 =⇒ rj(1) ≥ rj(M − 1). Thus, if the algorithm
terminates in the first iteration, then r(1) ≥ r(M − 1). In any subsequent iteration, u is changed
only if rj(1) ≥ rj(M − 1) at its new value. Thus, rj(1) ≥ rj(M − 1) is an algorithm invariant, and
r(1) ≥ r(M − 1).

The algorithm terminates in finite time. Thus, it terminates when tM−2 = u ≤ t∗M−2 + δ and

finds a (ε,M, g)-optimal β in time O
(
M log2 Mε

)
.

In Theorem 3.2, there is an guarantee of an additive error away from the optimal rate. To
instead have a multiplicative error bound for uniform matching, one can use the lower bound on
the optimal rate from Lemma C.7, ∃C > 0 s.t. r∗ ≥ CM−3. Then, for uniform matching, the
algorithm returns a (1− ε) multiplicative approximation in time O

(
M log2 Mε

)
.

C.7 Proof of Theorem B.1

Let βwM denote the optimal β with M intervals for weight function w, with intervals swM and levels
twM . Let qwM (θ) = i/M when θ ∈ [swMi , swMi+1 ), i.e. the quantile of interval item of type θ is in.
Then we have the following convergence result for βM .

Theorem B.1. Let g be uniform. Suppose w such that qwM converges uniformly. Then, ∀C ∈
N,∃βw s.t. βw

C2N+1
→ βw uniformly as N →∞.

Proof. Note that the condition on q implies that ∃M s.t. ∀M > M, ∀θ,∃xθ such that θ ∈[
sMbxθMc, s

M
dxθMe

)
.

Let M ′ = 2M − 1,M ′′ = 4M − 3,M q = 2qM − 2q + 1. θ ∈
[
sMbxθMc, s

M
dxθMe

)
=⇒ βM (θ) =

tMbxθMc ∈
[
tMbxθMc−1, t

M
bxθMc+1

]
. Then,

βM ′(θ) = tM
′

bxθM ′c

= tM
′

bxθ(2M−1)c

∈
[
tM
′

2bxθMc−2, t
M ′

2bxθMc+2

]
⊂
[
tMbxθMc−1, t

M
bxθMc+1

]
Lemma C.5
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And, for general q,

βMq(θ) = tM
q

bxθ(2qM−2q+1)c

∈
[
tM

q

bxθ2qMc−2q , t
Mq

bxθ(2qM)c+1

]
⊂
[
tM

q

2qbxθMc−2q , t
Mq

2qbxθMc+1

]
⊂
[
tMbxθMc−1, t

M
bxθMc+1

]
Lemma C.5

Then, ∀N ′ > 1, θ: β2N′M−2N′+1(θ) ∈
[
tMbxθMc−1, t

M
bxθMc+1

]
and

|β2N′M−2N′+1(θ)− βM (θ)| ≤ tMbxθMc+1 − t
M
bxθMc−1

By Corollary C.2, ∀δ > 0,∃K s.t. ∀K ′ > K, tK
′

bxθK′c+1 − t
K′

bxθK′c−1 < 2δ.
By the Cauchy criterion, ∃β s.t. β(C−1)2N+1 → β uniformly.
By change of variables, ∃β s.t. βC2N+1 → β uniformly.

Corollary C.4. For Kendall’s tau and Spearman’s rho correlation measures, ∃β s.t. β2N → β
uniformly as N →∞.

Proof. For Kendall’s tau and Spearman’s rho, {si} is spaced such that ∀i, j, si − si−1 = sj − sj−1.
Thus, xθ = θ meets the criterion.

C.8 Kendall’s tau and Spearman’s rho related proofs

Definition C.1 (see e.g. Embrechts et al. (2003); Nelsen (2007)). The population version of
Kendall-tau correlation between item true quality and rating scores is proportional to

W τ
k , 2

∫
θ1>θ2

Pk(θ1, θ2)dθ1dθ2

Similarly, given items with qualities θ1, θ2, θ3, the population version of Spearman’s rho correlation
between item true quality and rating scores is

W ρ
k , 6

∫
θ1>θ2,θ3

Pk(θ1, θ3)dθ1dθ2dθ3

Lemma C.10. Spearman’s ρ can also be written as being proportional to
∫
θ1>θ2

(θ1−θ2)Pk(θ1, θ2)dθ1dθ2,
i.e. with w(θ1, θ2) = (θ1 − θ2).

Proof. Recall Pk(θ1, θ3) =
Pr((θ1 − θ2)(xk1 − xk3) > 0)

=

∫
θ1>θ2,θ3

Pr(xk1 − xk3 > 0)dθ1dθ2dθ3 +

∫
θ1<θ2,θ3

Pr(xk1 − xk3 < 0)dθ1dθ2dθ3

=

∫
θ1,θ3

Pr(xk1 − xk3 > 0)

[∫ θ1

θ2=0
dθ2

]
dθ1dθ3 +

∫
θ1,θ3

Pr(xk1 − xk3 < 0)

[∫ 1

θ2=θ1

dθ2

]
dθ1dθ3

=

∫
θ1,θ3

[
Pr(xk1 − xk3 > 0)θ1] + Pr(xk1 − xk3 < 0)(1− θ1)

]
dθ1dθ3

=

∫
θ1,θ3

[
Pr(xk1 − xk3 < 0) + θ1

[
Pr(xk1 − xk3 > 0)− Pr(xk1 − xk3 < 0)

]]
dθ1dθ3
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Similarly,
Pr((θ1 − θ2)(xk1 − xk3) < 0) =

=

∫
θ1,θ3

[
Pr(xk1 − xk3 > 0) + θ1

[
Pr(xk1 − xk3 < 0)− Pr(xk1 − xk3 > 0)

]]
dθ1dθ3

=

∫
θ1,θ3

[
Pr(xk3 − xk1 > 0) + θ3

[
Pr(xk3 − xk1 < 0)− Pr(xk3 − xk1 > 0)

]]
dθ1dθ3

Where the second equality follows from θ1, θ3 interchangeable. Then

W ρ
k = 3

∫
θ1,θ2

(θ1 − θ2)Pk(θ1, θ2)dθ1dθ2

=

∫
θ1>θ2

6(θ1 − θ2)Pk(θ1, θ2)dθ1dθ2

Note that Spearman’s ρ is similar to Kendall’s τ with an additional weighting for how far apart
the two values that are flipped are.

Lemma C.11. When w is constant, i.e. for Kendall’s τ rank correlation, the intervals s that
maximize (20), ∑

0≤i<j<M

∫
θ2∈Si,θ1∈Sj

w(θ1, θ2)d(θ1, θ2) =
∑

0≤i<j<M
(si+1 − si)(sj+1 − sj) (27)

, are {si = i
M }

M
i=0.

Lemma C.12. When w is (θ1 − θ2), i.e. for Spearman’s ρ rank correlation, the intervals s that
maximize (20), ∑

0≤i<j<M

∫
θ2∈Si,θ1∈Sj

w(θ1, θ2)d(θ1, θ2) (28)

are {si = i
M }

M
i=0, i.e. the same as those for Kendall’s τ .

Proof.∑
0≤i<j<M

∫
θ2∈Si,θ1∈Sj

w(θ1, θ2)d(θ1, θ2) =
∑

0≤i<j<M

∫
θ2∈Si,θ1∈Sj

(θ1 − θ2)d(θ1, θ2)

=
∑

0<i<j≤M

(
sj + sj−1

2
− si + si−1

2

)
(si − si−1)(sj − sj−1)

Finding an asymptotically optimal {si} then is a constrained third order polynomial maximization
problem with M variables. The maximum is achieved at {si = i

M }
i=M
i=0 , as for Kendall’s tau

correlation.
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