
Gasthaus, Benidis, Wang, Rangapuram, Salinas, Flunkert, Januschowski

electricity traffic wiki dominick

# time series 370 963 9013 100014
time granularity hourly hourly daily weekly
domain R+ [0, 1] N (�100, 100)
encoder length 96 96 60 16
decoder length 24 24 60 12
batch size 256 256 256 256
learning rate 5e-3 5e-3 5e-3 5e-3
learning rate decay factor 0.4 0.4 0.4 0.4
# learning rate max decays 4 4 4 4
early stopping patience 20 20 20 20
# LSTM layers 2 2 2 2
# LSTM nodes 80 80 80 80

Table 3: Dataset details and RNN parameters.

A Details on Accuracy Scores

The summations of all the metrics are over all time series, i.e., i = 1, . . . N , and over the whole prediction range,
i.e., t = T � t0+1, . . . , T , unless the range is explicitly provided. The value m in the MASE and MSIS metrics is
the seasonal frequency which is set to 1 for yearly , weekly and daily data, 4 for quarterly data, 12 for monthly
data, and 24 for hourly data, following the M4 competition definitions. Finally, ⇢ defines the prediction interval,
i.e., ⇢ = 0.05 for a 95% interval, and û, l̂ are the 1� ⇢/2, ⇢/2 quantiles of the predictive distribution.
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t

|
1

(T�m)

P

T

t=m+1 |zi,t � z
i,t�m

|
, (23)

MSIS =
1

N(T � t0)

X

i

P

t

û
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B Details on Data sets and Hyperparameters

All the hyperparameters (shown in Table 3) were selected by performing a grid search only on the electricity
dataset, and were used as default values on all the other datasets, i.e., traffic, wiki, dominick, as well as the
dataset of the M4 competition.



Probabilistic Forecasting with Spline Quantile Function RNNs

Evaluating the CRPS Integral for Linear Splines

In Section 3.3 we gave an analytic expression for the CRPS integral when the quantile function is a linear spline.
Here we will provide the basic steps of the solution. Consider a value ã such that q(ã) = z. Then, the CRPS
integral can be written as follows:
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Z 1
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2(↵� 1)(z � q(↵)), (26)

since q(↵) is non-decreasing.

The value of ã can be found by solving the equation q(ã) = z:
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where the index l0 of the summation, with 0  l0  L and d0 = 0, is such that d
l0  ã  d

l0+1, since the terms
for l = l0 + 1, . . . , L become zero due to the (·)+ function.

The index l0 is straightforward to compute: we know that q(d
l0)  q(ã)  q(d

l0+1), therefore we can sequentially
evaluate the spline at the knot points d

l

, 8l and find the largest knot d
l

such that q(d
l

)  q(ã). The index of
this knot is the index l0 and it can be found in O(L) time.
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