
Conditional Sparse `p-norm Regression With Optimal Probability

A `p sparsification

Our approach is based on techniques for extracting
low-dimensional sketches of small subspaces in high
dimensions. The usual `2 norm uses much simpler
underlying techniques, and we describe it first. The
extension to `p norms for p 6= 2 is obtained via Lewis

weights [Lewis, 1978].

A.1 Euclidean sparsifiers

The kind of sketches we need originate in the work of
Batson et al. [2012]. Specifically, it will be convenient
to start from the following variant due to Boutsidis
et al. [2014]:

Lemma 10 (BSS weights [Boutsidis et al., 2014])

Let [u] 2 Rd⇥t
(t < d) be the matrix with rows

~u1, . . . , ~ud such that
Pd

i=1 uiu
>
i = It. Then given an

integer r 2 (t, d], there exist s1, . . . , sd � 0 such that at

most r of the si are nonzero and for the d⇥ r matrix

[s] with ith column
p
si~ei,

�t([u]
>[s][s]>[u]) � (1�

p
t/r)2 and

�1([u]
>[s][s]>[u])  (1 +

p
t/r)2

where �j denotes the jth largest eigenvalue.

In particular, taking r = t/�
2 for some � 2 (0, 1),

we obtain that for the [s] guaranteed to exist by
Lemma 10, k[s]>[u]~vk22 = ([s]>[u]~v)>([s]>[u]~v) for any
~v, and hence by Lemma 10, (1� �)k~vk2  k[s][u]~vk2 
(1+�)k~vk2. Furthermore, we can bound the magnitude
of the entries of [s] for orthonormal [u] as follows:

Lemma 11 Suppose the rows of [u] are orthonormal.

Then the matrix [s] obtained by Lemma 10 has entries

of magnitude at most (1 +
p
t/r)
p
d.

Proof: Observe that since the each ith row of [u]
has unit norm, it must have an entry ui,j⇤ that is at
least 1/

p
d in magnitude. By the above argument,

k[s]>[u]~ej⇤k22  (1 +
p

t/r)2k~ej⇤k22 = (1 +
p
t/r)2

where notice in particular, the ith row of [s]> con-
tributes at least (

p
siui,j⇤)2 � si/d to the norm. Thus,

si  (1 +
p
t/r)2d.

A.2 Sparsifiers for non-Euclidean norms

It is possible to obtain an analogue of the BSS weights
for p 6= 2 using techniques based on Lewis weights

[Lewis, 1978]. Lewis weights are a general way to
reduce problems involving `p norms to analogous `2

computations. Cohen and Peng [2015] applied this to
sparsification to obtain the following family of sparsi-
fiers:

Theorem 12 (`p weights [Cohen and Peng, 2015])

Given a d⇥ t matrix [u] there exists a set of r(p, t, �)
weights s1, . . . , sr such that for the d ⇥ r matrix [s]
which has as its ith column si~ei,

(1� �)k[u]~vkp  k[s]>[u]~vkp  (1 + �)k[u]~vkp

where r(p, t, �) is asymptotically bounded as in Table 4.

Table 4: Dimension required for (1± �)-approximate
`p sparsification of t-dimensional subspaces. p = 2 uses
BSS weights. (Table 1)

p Required dimension r

p = 1 t log t
�2

1 < p < 2 1
�2 t log(t/�) log

2 log(t/�)
p = 2 t/�

2

p > 2 log 1/�
�5 t

p/2 log t

Cohen and Peng also show how to construct the spar-
sifiers for a given matrix efficiently, but we won’t be
able to make use of this, since we will be searching for
the sparsifier for an unknown subset of the rows.

We furthermore obtain an analogue of Lemma 11 for
the `p weights, using essentially the same argument:

Lemma 13 Suppose the rows of [u] are orthonormal.

Then the matrix [s] obtained by Theorem 12 has entries

of magnitude at most (1 + �)
p
d.

B Analysis of the algorithms

We now give the full analysis of our weighting algo-
rithms. For convenience, we will recall the entire al-
gorithm and the statements of the theorems. In the
following, let ⇧d1,...,ds denote the projection to coordi-
nates d1, d2, . . . , ds.

In our analysis of this algorithm, we will find it conve-
nient to use the Rademacher generalization bounds for
linear predictors (note that x 7! |x|p is pbp�1-Lipschitz
on [�b, b]):

Theorem 14 (Bartlett et al. 2002, Kakade et al. 2009)

For b > 0, p � 1, random variables (~Y , Z) distributed

over {~y 2 Rd : kyk2  b} ⇥ [b, b], and any � 2 (0, 1),
let Lp(~a) denote E[|h~a, ~Y i � Z|p], and for an an

i.i.d. sample of size m let L̂p(~a) be the empirical loss
1
m

Pm
j=1 |h~a, ~y(j)i � z

(j)|p. We then have that with

probability 1� � for all ~a with kak2  b,

|Lp(~a)� L̂p(~a)| 
2pbp+1

p
m

+ b
p

r
2 ln(4/�)

m
.
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Note that although this bound is stated in terms of the
`2 norm of the attribute and parameter vectors ~y and
~a, we can obtain a bound in terms of the dimension
s of the sparse rule if we are given a bound B on the
magnitude of the entries: b 

p
sB.

input :Examples
(~x(1)

, ~y
(1)

, z
(1)), . . . , (~x(m)

, ~y
(m)

, z
(m)),

target loss bound ✏ and fraction µ.
output :A k-DNF over x1, . . . , xn and linear

predictor over y1, . . . , yd, or
INFEASIBLE if none exist.

subroutines :WtCond takes as inputs examples
(~x(1)

, . . . , ~x
(m)), nonnegative weights

(w(1)
, . . . , w

(m)), and a bound µ, and
returns a k-DNF ĉ over x1, . . . , xn

solving the weighted conditional
distribution search task.

begin

Let m0 = d 1µ (
b2p

�2p✏2p (2pb+
p
2 ln(12/�))2 + ln 3

� )e,
r is as given in Table 4.

forall (d1, . . . , ds) 2
�[d]

s

�
, (q1, . . . , qr) 2

{�d 1� (ln r �
1
p ln �)e, . . . , 0, . . . , dln(s+ 1)/2�e}

and (j1, . . . , jr) 2
�[m0]

r

�
do

Let ~a be a solution to the following convex
optimization problem: minimizePr

`=1((1 + �)q`(h~a,⇧d1,...,ds~y
(j`)i � z

(j`))p

subject to k~akp  b.
Put c the output of WtCond on
(~x(1)

, . . . , ~x
(m)) with the weights

w
(i) = |h~a,⇧d1,...,ds~y

(i)i � z
(i)|p and bound µ.

if WtCond did not return INFEASIBLE and

Ê[(h~a,⇧d1,...,ds
~Y i � Z)p|c( ~X)]1/p  ↵✏ then

return ~a and c.

end

return INFEASIBLE.

end

Algorithm 3: Weighted Sparse Regression (Algorithm
1)

Theorem 15 (Theorem 6) For any con-

stant s and � > 0, r as given in Ta-

ble 4 for t = (s + 1), and m = m0 +

⇥
⇣

((1+�)b)3

µ✏⌘2 (nk + s log d+ r log m0 log(�1/ps/r)
� + log 1

� )
⌘

examples, Algorithm 3 runs in polynomial time and

solves the conditional s-sparse `p regression task with

↵ = Õ((1 + �)
p
nk(log b+ log 1

⌘ + log log 1
� )✏).

Proof: Given that we are directly checking the
empirical `p loss before returning ~a and c, for the
quoted number of examples m it is immediate by a
union bound over the iterations that any ~a and c we
return are satisfactory with probability 1� �. All that
needs to be shown is that the algorithm will find a pair
that passes this final check.

By Theorem 14, we note that it suffices to have
b2p

�2p✏2p (2pb +
p
2 ln(12/�))2 examples from the distri-

bution conditioned on the unknown k-DNF event c
⇤

to obtain that the `p loss of each candidate for ~a is
estimated to within an additive �✏ with probability
1� �/3. By Hoeffding’s inequality, therefore when we
draw m0 examples, there is a sufficiently large subset
satisfying c

⇤ with probability 1� �/3.

We let [u] be an orthonormal basis for
span{(⇧d1,...,ds~y

(j)
, z

(j)) : c
⇤(~x(j)) = 1, j  m0}

and invoke Lemma 10 for `2 or Theorem 12 for p 6= 2.
In either case, there is some set of weights s1, . . . , sr0

for a subset of r0 coordinates j1, . . . , jr0 such that for
any ~v in the column span of [u], [s]>[u]~v has `p norm
that is a 1 ± �-approximation to the `p norm of [u]~v.
In particular, for any ~a, observing ~v = [y]~a � ~z is in
the column span of [u] by construction, we obtain

(1��)k[y]~a�~zkp  k[s]>([y]~a�~z)kp  (1+�)k[y]~a�~zkp.

Now, we observe that we can discard weights (and
dimensions) from s1, . . . , sr0 of magnitude smaller than
�/r

1/p
0 , since for any unit vector ~v, the contribution of

such entries to k[s]>[u]~vkpp (recalling there are at most
r0 nonzero entries) is at most �

p. So we may assume
the r  r0 remaining weights all have magnitude at
least �/r

1/p. Furthermore, if we round each weight
to the nearest power of (1 + �), this only changes
k[s]>[u]~v|pp by an additional (1± �) factor. Finally, we
note that since (⇧d1,...,ds~y

(j)
, z

(j)) has dimension s+ 1,
Lemmas 11 and 13 guarantee that the magnitude is also
at most (1 + �)

p
s+ 1. Thus it indeed suffices to find

the powers (q1, . . . , qr) for our r examples j1, . . . , jr

such that (1 + �)q` is within (1 + �) of s`, and the
resulting set of weights will approximate the `p-norm
of every ~v in the column span to within a 1+ 3�-factor.

Now, when the loop in Algorithm 3 considers (i) the
dimensions d⇤1, . . . , d⇤s contained in the optimal s-sparse
regression rule ~a⇤ (ii) the set of examples j⇤1 , . . . , j⇤r used
for the sparse approximation for these coordinates and
(iii) the appropriate weights (1 + �)q

⇤
1 , . . . , (1 + �)q

⇤
r ,

the algorithm will obtain a vector ~a that achieves a
(1 + 3�)-approximation to the empirical `p-loss of ~a⇤
on the same s coordinates.

It then follows from Theorem 3 that with probability at
least 1� �/3 over the data, WtCond will in turn return
to us a k-DNF c with probability (1�⌘)µ that selects a
subset of the data on which ~a achieves an ↵✏ = Õ((1 +
�)
p
nk(log b+log 1/⌘+log log 1/�)✏) approximation to

the empirical `p loss of ~a⇤ on c
⇤. This choice of ~a and

c passes the final check and is thus sufficient.

The extension to reference class `p-norm regression
proceeds by replacing the weighted condition search
algorithm with a variant of the tolerant elimination
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algorithm from Juba [2016], given in Algorithm 4.

input :Examples (~x(1)
, w

(1)), . . . , (~x(m)
, w

(m)),
query point ~x⇤, minimum fraction µ0,
minimum loss target ✏0, approximation
parameter ⌘.

output :A k-DNF over x1, . . . , xn.
begin

Initialize µ 1, ĉ ?, ✏̂ maxj w(j)

while µ � µ0 do

Initialize ✏ ✏̂

while ✏ � ✏0/(1 + ⌘) do

Initialize c to be the empty disjunction
forall Terms T of at most k literals do

if
P

j:T (~x(j))=1 w
(j)  ✏µm then Add

T to c.
end

Put ✏ ✏/(1 + ⌘)
end

if c(~x⇤) = 1,
Pm

j=1 c(~x
(j)) � µm, and ✏ < ✏̂

then Put ĉ c, ✏̂ ✏

Put µ µ/(1 + ⌘)
end

return ĉ

end

Algorithm 4: Reference Class Search (Algorithm 2)

Lemma 16 (Lemma 8) If m �
⌦( b3

⌘2(✏0+✏⇤)µ0
(k log n+ log 1

⌘� + log log 1
µ0

+ log log b
✏0
))

where W 2 [0, b], then Algorithm 4 returns

a k-DNF ĉ such that with probability 1 � �,

1. ĉ(~x⇤) = 1 2. Pr[ĉ( ~X)] � µ0/(1 + ⌘)
3. E[W |ĉ( ~X)]  O((1 + ⌘)4nk(✏0 + ✏

⇤)) where ✏
⇤

is the minimum E[W |c⇤( ~X)] over k-DNF c
⇤

such that

c
⇤(~x⇤) = 1 and Pr[c⇤( ~X)] � (1 + ⌘)µ0.

Proof: For convenience, let N  (1+log1+⌘ b/✏0)(1+
log1+⌘ 1/µ0) denote the total number of iterations.
Consider first what happens when the loop considers
the largest µ  Pr[c⇤( ~X)]/(1+⌘) and the smallest ✏ that
is at least (1 + ⌘)2✏⇤. On this iteration, for each term
T of c⇤, we observe that E[W · T ( ~X)]  ✏

⇤ Pr[c⇤( ~X)]—
indeed,

E[W · T ( ~X)]  E[W · c⇤( ~X)]  ✏
⇤ Pr[c⇤( ~X)].

So, since W is bounded by b, by a Chernoff bound,
1
m

P
j:T (x(j))=1 w

(j)  (1 + ⌘)✏⇤ Pr[c⇤( ~X)] with proba-
bility 1� �

2( n
k)N

. Since this is in turn at most ✏µ, T
will be included in c on this iteration. But similarly,
for T not in c with E[W · T ( ~X)] > (1 + ⌘)µ✏, the Cher-
noff bound also yields that

P
j:T (x(j))=1 w

(j) � ✏µm

with probability 1 � �/2
� n
k

�
N . By a union bound

over all T 2 c
⇤ and T not in c

⇤ with such large error,

we see that with probability at least 1� �/2N , all of
the terms of c⇤ are included in c and only terms with
E[W · T ( ~X)]  (1 + ⌘)µ✏ are included in c. So,

E[W · c( ~X)] 
X

T in c

E[W · T ( ~X)]

 O((1 + ⌘)nk
µ✏).

Furthermore, by yet another application of a Cher-
noff bound, c⇤ is true of at least µm examples with
probability at least 1� �/2N . Thus, with probability
1 � �/N , after this iteration ĉ is set to some k-DNF
and ✏̂  (1 + ⌘)2 max{✏⇤, ✏0}.

Now, furthermore, on every iteration, we see more
generally that with probability 1��/N , only terms with
E[W ·T ( ~X)]  (1+⌘)µ✏ are included in c, and ĉ is only
updated if c(~x⇤) = 1 and Pr[c( ~X)] � µ/(1 + ⌘), where
µ � µ0. Thus, for the ĉ we return, since E[W · c( ~X)] 
O((1+⌘)nk

µ✏) and E[W |c( ~X)] = E[W ·c( ~X)]/Pr[c( ~X)],
E[W |ĉ( ~X)]  O((1 + ⌘)2nk

✏̂). Thus, with probability
1 � � overall, since we found above that ✏̂  (1 +
⌘)2 max{✏⇤, ✏0}, we return a k-DNF ĉ as claimed.

Now, as noted above, our algorithm for reference class
regression is obtained essentially by substituting Al-
gorithm 4 for the subroutine WtCond in Algorithm 3;
the analysis, similarly, substitutes the guarantee of
Lemma 8 for Theorem 3. In summary, we find

Theorem 17 For any constant s and � > 0, r as

given in Table 4 for t = (s+ 1), and

m � m0+⌦

✓
(1 + �)3b3

⌘2(✏0 + ✏⇤)µ0

✓
r log

m0 log(�1/p
s/r)

�

+ log

✓
n
k
d
s

⌘�
log

1

µ0
log

(1 + �)b

✏0

◆◆◆

examples, our modified algorithm runs in polynomial

time and solves the reference class s-sparse `p regression

task with ↵ = O((1 + �)(1 + ⌘)4nk).


