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Abstract

This abstract contains simulation results
that were unable to fit in the main doc-
ument as well as a comparison on a variety
of smaller empirical data sets.

1 Additional Simulation Study

This simulation study is identical to the one in
the main text, but is at a smaller sample size of
n = 10, 000, so that it can include two additional
methods, the standard MCMC BART model, and
random forests, implemented by R packages dbarts
and ranger (Wright and Ziegler, 2015) respectively.

This simulation was computed on an Ubuntu 18.04.1
LTS with Intel i7-8700K Hexa-core 3.7GHz 12MB
Cache-64-bit processing, 4.3GHz overclocking speed,
as were the simulations from the main paper. The
simulation results in Tables 1 and 2 should be
fairly self-explanatory, but the overall narrative that
emerges is that BART and XBART look quite simi-
lar and that on this collection of functions they per-
form better than the alternatives in terms of function
estimation. Further, random forests works well in
high noise settings and neural networks work best in
low noise settings and in particular on the linear data
generating process. In both high noise and low noise
case, XBART and BART do similar in terms of root
mean squared error (RMSE), but XBART is about
10 times faster than dbarts. Further, XBART per-
forms better than XGBoost with cross validation.

Proceedings of the 22nd International Conference on Ar-
tificial Intelligence and Statistics (AISTATS) 2019, Naha,
Okinawa, Japan. PMLR: Volume 89. Copyright 2019 by
the author(s).

Table 1: Low noise case, κ = 1 and n = 10K
Function Method RMSE Seconds

Linear XBART 1.74 20
Linear XGBoost Tuned 2.63 64
Linear XGBoost Untuned 3.23 < 1
Linear Random Forest 3.56 6
Linear BART 1.50 117
Linear Neural Network 1.39 26

Trig + Poly XBART 1.31 17
Trig + Poly XGBoost Tuned 2.08 61
Trig + Poly XGBoost Untuned 2.70 < 1
Trig + Poly Random Forest 3.04 6
Trig + Poly BART 1.30 115
Trig + Poly Neural Network 3.96 26

Max XBART 0.39 16
Max XGBoost Tuned 0.42 62
Max XGBoost Untuned 0.79 < 1
Max Random Forest 0.41 6
Max BART 0.44 114
Max Neural Network 0.40 30

Single Index XBART 2.27 17
Single Index XGBoost Tuned 2.65 61
Single Index XGBoost Untuned 3.65 < 1
Single Index Random Forest 3.45 6
Single Index BART 2.03 116
Single Index Neural Network 2.76 28

Table 2: High noise case, κ = 10 and n = 10K
Function Method RMSE Seconds

Linear XBART 5.07 16
Linear XGBoost Tuned 8.04 61
Linear XGBoost Untuned 21.25 < 1
Linear Random Forest 6.52 6
Linear BART 6.64 111
Linear Neural Network 7.39 12

Trig + Poly XBART 4.94 16
Trig + Poly XGBoost Tuned 7.16 61
Trig + Poly XGBoost Untuned 17.97 < 1
Trig + Poly Random Forest 6.34 7
Trig + Poly BART 6.15 110
Trig + Poly Neural Network 8.20 13

Max XBART 1.94 16
Max XGBoost Tuned 2.76 60
Max XGBoost Untuned 7.18 < 1
Max Random Forest 2.30 6
Max BART 2.46 111
Max Neural Network 2.98 15

Single Index XBART 7.13 16
Single Index XGBoost Tuned 10.61 61
Single Index XGBoost Untuned 28.68 < 1
Single Index Random Forest 8.99 6
Single Index BART 8.69 111
Single Index Neural Network 9.43 14



2 Real Data Experiments

To compare the performance on real data we recre-
ated the data experiment used in the original BART
paper (Chipman et al., 2010). We used 40 datasets
of varying sizes. For each dataset, 20 random train
test splits were made, yielding a total of 800 exper-
iments. In each experiment we fit XBART, BART,
Random Forest, XGBoost with default features, and
a tuned XGBoost model with the same tuning pa-
rameters choices as in the main. Following (Chip-
man et al., 2010), we compare the methods using
relative RMSE (RRMSE) defined as the RMSE di-
vided by the minimum RMSE achieved, across meth-
ods, in each train/test split. Because the smaller
data sets permitted more iterations, we set K = 800
and I = 200, rather than K = 40 and I = 15 for the
larger sample sizes.

The results are reported in Table 3. For reference,
the dataset names and dimensions are given in Ta-
ble 4; see Kim et al. (2007) for more details. Our
appraisal is that this collection of datasets is not
especially informative, especially in light of our sim-
ulation studies where the truth is known. In particu-
lar, for most of the 40 data sets there was essentially
a three-way tie between random forests, gradient
boosting, and XBART. From the simulation study
above, this suggests that the data have quite weak
signal, as that is the regime where random forests is
competitive with the other two methods. BART fit
by the standard random walk MCMC does appear
to do somewhat better on average, although at three
times the computation time. It will be interesting to
see if implementing the proper Metropolis-Hastings
adjustment brings XBART and BART into closer
agreement on these high-noise, low sample size data
sets.

Table 3: Results
BART XBART XGB CV RF XGB

Avg. RRMSE 1.067 1.128 1.137 1.139 1.170
Avg. Time 16.930 5.680 6.207 0.385 0.117
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Table 4: Data Sets

Name n Name n

Abalone 4177 Fat 252
Ais 202 Fishery 6806
Alcohol 2462 Hatco 100
Amenity 3044 Insur 2182
Attend 838 Labor 2953
Baseball 263 Laheart 200
Baskball 96 Medical 4406
Boston 506 Mpg 392
Budget 1729 Mumps 1523
Cane 3775 Mussels 201
Cardio 375 Ozone 330
College 694 Price 159
Cps 534 Rate 144
Cpu 209 Rice 171
Deer 654 Scenic 113
Diabetes 375 Servo 167
Diamond 308 Smsa 141
Edu 1400 Strike 625
Enroll 258 Tecator 215
Fame 1318 Tree 100
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