
Accelerated Decentralized Optimization with Local Updates for
Smooth and Strongly Convex Objectives

Hadrien Hendrikx Francis Bach Laurent Massoulié
INRIA

École Normale Supérieure
MSR-INRIA Joint Centre

INRIA
École Normale Supérieure

INRIA
École Normale Supérieure
MSR-INRIA Joint Centre

Abstract

In this paper, we study the problem of min-
imizing a sum of smooth and strongly con-
vex functions split over the nodes of a net-
work in a decentralized fashion. We pro-
pose the algorithm ESDACD, a decentral-
ized accelerated algorithm that only requires
local synchrony. Its rate depends on the
condition number κ of the local functions
as well as the network topology and de-
lays. Under mild assumptions on the topol-
ogy of the graph, ESDACD takes a time
O((τmax + ∆max)

√
κ/γ ln(ε−1)) to reach a

precision ε where γ is the spectral gap of
the graph, τmax the maximum communica-
tion delay and ∆max the maximum compu-
tation time. Therefore, it matches the rate
of SSDA (Scaman et al., 2017), which is op-
timal when τmax = Ω (∆max). Applying ES-
DACD to quadratic local functions leads to
an accelerated randomized gossip algorithm
of rate O(

√
θgossip/n) where θgossip is the

rate of the standard randomized gossip (Boyd
et al., 2006). To the best of our knowledge,
it is the first asynchronous gossip algorithm
with a provably improved rate of convergence
of the second moment of the error. We illus-
trate these results with experiments in ideal-
ized settings.

1 Introduction

Many modern machine learning applications require to
process more data than one computer can handle, thus

Proceedings of the 22nd International Conference on Ar-
tificial Intelligence and Statistics (AISTATS) 2019, Naha,
Okinawa, Japan. PMLR: Volume 89. Copyright 2019 by
the author(s).

forcing to distribute work among computers linked by
a network. In the typical machine learning setup, the
function to optimize can be represented as a sum of lo-
cal functions f(x) =

∑n
i=1 fi(x), where each fi repre-

sents the objective over the data stored at node i. This
problem is usually solved incrementally by alternating
rounds of gradient computations and rounds of com-
munications (Nedic and Ozdaglar, 2009; Boyd et al.,
2011; Duchi et al., 2012; Shi et al., 2015; Mokhtari and
Ribeiro, 2016; Scaman et al., 2017; Nedic et al., 2017).

Most approaches assume a centralized network with
a master-slave architecture in which workers compute
gradients and send it back to a master node that ag-
gregates them. There are two main different flavors of
algorithms in this case, whether the algorithm is based
on stochastic gradient descent (Zinkevich et al., 2010;
Recht et al., 2011) or randomized coordinate descent
(Nesterov, 2012; Liu and Wright, 2015; Liu et al., 2015;
Fercoq and Richtárik, 2015; Hannah et al., 2018). Al-
though this approach usually works best for small net-
works, the central node represents a bottleneck both in
terms of communications and computations. Besides,
such architectures are not very robust since the fail-
ure of the master node makes the whole system fail.
In this work, we focus on decentralized architectures
in which nodes only perform local computations and
communications. These algorithms are generally more
scalable and more robust than their centralized coun-
terparts (Lian et al., 2017a). This setting can be used
to handle a wide variety of tasks (Colin et al., 2016),
but it has been particularly studied for stochastic gra-
dient descent, with the D-PSGD algorithm (Nedic and
Ozdaglar, 2009; Ram et al., 2009, 2010) and its exten-
sions (Lian et al., 2017b; Tang et al., 2018).

A popular way to make first order optimization faster
is to use Nesterov acceleration (Nesterov, 2013). Ac-
celerated gradient descent in a dual formulation yields
optimal synchronous algorithms in the decentralized
setting (Scaman et al., 2017; Ghadimi et al., 2013).
Variants of accelerated gradient descent include the

Accelerated Decentralized Optimization with Local Updates for Smooth and Strongly Convex Objectives

acceleration of the coordinate descent algorithm (Nes-
terov, 2012; Allen-Zhu et al., 2016; Nesterov and Stich,
2017), that we use in this paper to solve the problem in
Scaman et al. (2017). This approach yields different
algorithms in which updates only involve two neigh-
boring nodes instead of the full graph. Our algorithm
can be interpreted as an accelerated version of Gower
and Richtárik (2015); Necoara et al. (2017). Updates
consist in gossiping gradients along edges that are se-
quentially picked from the same distribution indepen-
dently from each other.

Using coordinate descent methods on the dual allows
to have local gradient updates. Yet, the algorithm also
needs to perform a global contraction step involving all
nodes. In this paper, we introduce Edge Synchronous
Dual Accelerated Coordinate Descent (ESDACD), an
algorithm that takes advantage of the acceleration
speedup in a decentralized setting while requiring only
local synchrony. This weak form of synchrony consists
in assuming that a given node can only perform one
update at a time, and that for a given node, updates
have to be performed in the order they are sampled.
It is called the randomized or asynchronous setting in
the gossip literature (Boyd et al., 2006), as opposed to
the synchronous setting in which all nodes perform one
update at each iteration. Following this convention, we
may call ESDACD an asynchronous algorithm. The
locality of the algorithm allows parameters to be fine-
tuned for each edge, thus giving it a lot of flexibility to
handle settings in which the nodes have very different
characteristics.

Synchronous algorithms force all nodes to be updated
the same number of times, which can be a real prob-
lem when some nodes, often called stragglers are much
slower than the rest. Yet, we show that we match (up
to a constant factor) the speed rates of optimal syn-
chronous algorithms such as SSDA (Scaman et al.,
2017) even in idealized homogeneous settings in which
nodes never wait when performing synchronous algo-
rithms. In terms of efficiency, we match the oracle
complexity of SSDA with lower communication cost.
This extends a result that is well-known in the case
of averaging, i.e., that randomized gossip algorithms
match the rate of synchronous ones (Boyd et al., 2006).
We also exhibit a clear experimental speedup when
the distributions of nodes computing power and local
smoothnesses have a high variance.

Choosing quadratic fi functions leads to solving the
distributed average consensus problem, in which each
node has a variable ci and for which the goal is to
find the mean of all variables c̄ = 1

n

∑n
i=1 ci. It is

a historical problem (DeGroot, 1974; Chatterjee and
Seneta, 1977) that still attracts attention (Cao et al.,
2006; Boyd et al., 2006; Loizou and Richtárik, 2018)

with many applications for averaging measurements in
sensor networks (Xiao et al., 2005) or load balancing
(Diekmann et al., 1999). Fast synchronous algorithms
to solve this problem exist (Oreshkin et al., 2010) but
no asynchronous algorithms match their rates. We
show that ESDACD is faster at solving distributed
average consensus than standard asynchronous ap-
proaches (Boyd et al., 2006; Cao et al., 2006) as well
as more recent ones (Loizou and Richtárik, 2018) that
do not show improved convergence rates for the sec-
ond moment of the error. The complexity of gos-
sip algorithms generally depends on the smallest non-
zero eigenvalue of the gossip matrix W , a symmetric
semi-definite positive matrix of size n × n ruling how
nodes aggregate the values of their neighbors such that
Ker(W) = Vec(1) where 1 is the constant vector. We

improve the rate from λ+min(W) to O
(

1√
n

√
λ+min(W)

)
where λ+min(W) ≤ 1

n−1 is the smallest non-zero eigen-
value of the gossip matrix, thus gaining several orders
of magnitude in terms of scaling for sparse graphs. In
particular, in well-studied graphs such as the grid, we
match (up to logarithmic factors that we do not con-
sider) the O(n3/2) iterations complexity of advanced
gossip algorithms presented by Dimakis et al. (2010).

2 Model

The communication network is represented by a graph
G = (V,E). When clear from the context, E will also
be used to designate the number of edges. Each node i
has a local function fi on Rd and a local parameter
xi ∈ Rd. The global cost function is the sum of the
functions at all nodes: F (x) =

∑n
i=1 fi(xi) Each fi

is assumed to be Li-smooth and σi-strongly convex,
which means that for all x, y ∈ Rd:

fi(x)− fi(y) ≤ ∇fi(y)T (x− y) +
Li
2
‖x− y‖2 (1)

fi(x)− fi(y) ≥ ∇fi(y)T (x− y) +
σi
2
‖x− y‖2. (2)

Note that the fenchel conjugate f∗i of fi (defined in
Equation (8)) is (L−1i)-strongly convex and (σ−1i)-
smooth, as shown in Kakade et al. (2009). We de-
note Lmax = maxi Li and σmin = mini σi. Then, we
denote κl = Lmax

σmin
. κl is an upper bound of the condi-

tion number of all fi as well as an upper bound of the
global condition number. Adding the constraint that
all nodes should eventually agree on the final solution,
so the optimization problem can be cast as:

min
x∈Rn×d: xi=xj ∀i,j∈{1,...,n}

F (x). (3)

We assume that a communication between nodes i, j ∈
V takes a time τij . If (i, j) /∈ E, the communication
is impossible so τij = ∞. Node i takes time ∆i to
compute its local gradient.

Hadrien Hendrikx, Francis Bach, Laurent Massoulié

3 Algorithm

In this section, we specify the Edge Synchronous
Decentralized Accelerated Coordinate Descent (ES-
DACD) algorithm. We first give a formal version in
Algorithm 1 and prove its convergence rate. Then, we
present the modifications needed to obtain the imple-
mentable version given by Algorithm 2.

3.1 Problem derivation

In order to obtain the algorithm, we consider a matrix
A ∈ Rn×E such that Ker(AT) = Vec(1) where 1 =∑n
i=1 ei and ei ∈ Rn×1 is the unit vector of size n

representing node i. Similarly, we will denote eij ∈
RE×1 the unit vector of size E representing coordinate
(i, j). Then, the constraint in Equation (3) can be
expressed as ATx = 0 because if x ∈ Ker(AT) then all
its coordinates are equal and the problem writes:

min
x∈Rn×d: AT x=0

F (x). (4)

This problem is equivalent to the following one:

min
x∈Rn×d

max
λ∈RE×d

F (x)− 〈λ,ATx〉, (5)

where the scalar product is the usual scalar product
over matrices 〈x, y〉 = Tr

(
xT y

)
because the value of

the solution is infinite whenever the constraint is not
met. This problem can be rewritten:

max
λ∈RE×d

min
x∈Rn×d

F (x)− 〈Aλ, x〉 (6)

because F is convex and AT1 = 0. Then, we obtain
the dual formulation of this problem, which writes:

max
λ∈RE×d

−F ∗(Aλ), (7)

where F ∗ is the Fenchel conjugate of F which is ob-
tained by the following formula:

F ∗(y) = max
x∈Rn×d

〈x, y〉 − F (x). (8)

F ∗ is well-defined and finite for all y ∈ RE×d because F
is strongly convex. We solve this problem by applying
a coordinate descent method. If we denote F ∗A : λ →
F ∗(Aλ) then the gradient of F ∗A in the direction (i, j) is
equal to ∇ijF ∗A = eTijA

T∇F ∗. Therefore, the sparsity
pattern of Aeij will determine how many nodes are
involved in a single update. Since we would like to
have local updates that only involve the nodes at the
end of a single edge, we choose A such that, for any
µij ∈ R:

Aeij = µij(ei − ej). (9)

This choice of A satisfies eTijAT1 = 0 for all (i, j) ∈ E
and Ker(AT) ⊂ Vec(1) as long as (V,E+) is connex

where E+ = {(i, j) ∈ E,µij > 0}. Such A happens to
be canonical since it is a square root of the Laplacian
matrix if all µij are chosen to be equal to 1. When not
explicitly stated, all µij are assumed to be constant so
that A only reflects the graph topology. Other choices
of A involving more than two nodes per row are possi-
ble and would change the trade-off between the com-
munication cost and computation cost but they are
beyond the scope of this paper.

3.2 Formal algorithm

The algorithm can then be obtained by applying
ACDM (Nesterov and Stich, 2017) on the dual formu-
lation. We need to define several quantities. Namely,
we denote pij ∈ R the probability of selecting edge
(i, j) and σA ∈ R the strong convexity of F ∗A. A

+ ∈
RE×n is the pseudo-inverse of A and ‖x‖2A+A =
xTA+Ax for x ∈ RE×1. Variable S ∈ R is such that
for all (i, j) ∈ E,

eTijA
+Aeijµ

2
ijp
−2
ij (σ−1i + σ−1j) ≤ S2.

We define δ = θ 1−θ
1+θ ∈ R with

θ2 = min
ij

p2ij
µ2
ije

T
ijA

+Aeij

σA

σ−1i + σ−1j
≥ σA
S2
. (10)

Finally, ηij = 1
1+θ

(
µ−2ij (σ−1i +σ−1j)−1+(pijS

2)−1
)
∈ R

and
gij(yt) = eije

T
ijA

T∇F ∗(Ayt) ∈ RE×d. (11)

Algorithm 1 Asynchronous Decentralized Acceler-
ated Coordinate Descent
y0 = 0, v0 = 0, t = 0
while t < T do

Sample (i, j) with probability pij
yt+1 = (1− δ)yt + δvt − ηijgij(yt)
vt+1 = (1− θ)vt + θyt − θ

σApij
gij(yt)

end while

Theorem 1. Let yt and vt be the sequences generated
by Algorithm 1. Then:

2 (E[F ∗A(xt)]− F ∗A(x∗)) + σAE[r2t] ≤ C(1− θ)t, (12)

with xt = (1 + θ)yt − θvt, x∗ ∈ arg minx F
∗
A(x), r2t =

‖vt − x∗‖2A+A and C = r20 + 2 (F ∗A(x0)− F ∗A(x∗)).

Theorem 1 shows that Algorithm 1 converges with
rate θ. Lemma 4, in Appendix C shows that

σA ≥
λ+min(ATA)

Lmax
, (13)

where λ+min(ATA) ∈ R is the smallest eigenvalue of
ATA. The condition number of the problem then

Accelerated Decentralized Optimization with Local Updates for Smooth and Strongly Convex Objectives

appears in the Lmax

(
σ−1i + σ−1j

)
term whereas the

other terms are strictly related to the topology of the
graph. Parameter θ is invariant to the scale of µ be-
cause rescaling µ would also multiply λ+min(ATA) by
the same constant. The p2ij/(σ

−1
i + σ−1j) term indi-

cates that non-smooth edges should be sampled more
often, and the square root dependency is consistent
with known results for accelerated coordinate descent
methods (Allen-Zhu et al., 2016; Nesterov and Stich,
2017). If both sampling probabilities and smooth-
nesses are fixed, the µij terms can be used to make
the dual coordinate (which corresponds to the edge)
smoother so that larger step sizes can be used to com-
pensate for the fact that they are only rarely updated.
Yet, this may decrease the spectral gap of the graph
and slow convergence down.

Proof. The proof consists in evaluating ‖vt+1−x∗‖2A+A
and follows the same scheme as by Nesterov and Stich
(2017). However, F ∗A is not strongly convex because
matrix ATA is generally not full rank. Yet, F ∗A is
strongly convex for the pseudo-norm A+A and the
value of F ∗A(x) only depends on the value of x on
Ker(A)⊥. Gower et al. (2018) develop a similar proof
in the quadratic case but without assuming any spe-
cific structure on A. The detailed proof can be found
in Appendix C.

3.3 Practical algorithm

Algorithm 1 is written in a form that is convenient
for analysis but it is not practical at all. Its logi-
cally equivalent implementation is described in Algo-
rithm 2. All nodes run the same procedure with a
different rank r and their own local functions fr and
variables θr, vt(r) and yt(r). For convenience, we de-

fine B =

(
1− θ θ
δ 1− δ

)
and sij =

(
θµ2

ij

pijσA
µ2
ijηij

)T
.

Note that each update only involves two nodes, thus
allowing for many updates to be run in parallel. Al-
gorithm 2 is obtained by multiplying the updates of
Algorithm 1 by A on the left. This has the benefit of
switching from edge variables (of size E × d) to node
variables (of size n × d). Then, if yt corresponds to
the variable of Algorithm 1, yt(i) = eTi Ayt represents
the local yt variable of node i and is used to com-
pute the gradient of f∗i . We obtain vt(i) in the same
way. The updates can be expressed as a matrix mul-
tiplication (contraction step, making yt and vt closer),
plus a gradient term which is equal to 0 if the node
is not at one end of the sampled edge. The multipli-
cation by Bt−tr corresponds to catching up the global
contraction steps for updates in which node r did not
take part. The form of sij comes from the fact that
Aeije

T
ijA

T = µ2
ij(ei − ej)(ei − ej)T .

Algorithm 2 Asynchronous Decentralized Acceler-
ated Coordinate Descent
1: r {Id of the node}
2: seed {The common seed}
3: zr = 0, y0(r) = 0, v0(r) = 0, t = 0
4: Initialize random generator with seed
5: while t < T do
6: Sample e from P
7: if ∃j / e ∈ {(r, j), (j, r)} then

8:
(
vt(r)

T

yt(r)
T

)
r

= Bt−tr
(
vtr (r)T

ytr (r)T

)
9: zr = ∇f∗r (yt(r))

10: send_gradient(xr, j) {non blocking}
11: zdist = receive_gradient(j) {blocking}
12: gt(r) = se (zr − zdist)

13:
(
vt+1(r)T

yt+1(r)T

)
r

= B

(
vt(r)

T

yt(r)
T

)
− gt(r)T

14: tr = t+ 1
15: end if
16: t = t + 1
17: end while
18: return zr

3.4 Communication schedule

Even though updates are actually local, nodes need to
keep track of the total number of updates performed
(variable t) in order to properly execute Algorithm 2.

This problem can be handled by generating in ad-
vance the sequence of all communications and then
simply unrolling this sequence as the algorithm pro-
gresses. All nodes perform the neighbors selection pro-
tocol starting with the same seed and only consider the
communications they are involved in. Therefore, they
can count the number of iterations completed.

This way of selecting neighbours can cause some nodes
to wait for the gradient of a busy node before they can
actually perform their update. Since the communica-
tion schedule is defined in advance, they cannot choose
a free neighbor and exchange with him instead. How-
ever, any way of making edges sampled independent
from the previous ones would be equivalent to gener-
ating the sequence in advance. Indeed, choosing free
neighbors over busy ones would introduce correlations
with the current state and therefore with the edges
sampled in the past.

4 Performances

4.1 Homogeneous decentralized networks

In this section, we introduce two network-related
assumptions under which the performances of ES-
DACD are provably comparable to the performances

Hadrien Hendrikx, Francis Bach, Laurent Massoulié

of randomized gossip averaging or SSDA. We denote
pmax = maxij pij and pmin = minij pij . We also note
p̄(G) = maxi pi and p(G) = mini pi the maximum and
minimum probabilities of nodes of a graph G where
pi =

∑n
i=1 pij . We note dmax and dmin the maximum

and minimum degrees in the graph. The dependence
on G will be omitted when clear from the context.
Assumption 1. We say that a family of graph G with
edge weights p is quasi-regular if there exists a constant
c such that for n ∈ N, pmax ≤ cpmin and dmax ≤ cdmin.

Assumption 1 is satisfied for many standard graphs
and probability distribution over edges. In particular,
it is satisfied by the uniform distribution for regular
degree graphs.
Assumption 2. The family of graphs G is such
that there exists a constant c such that for n ∈ N,
maxij e

T
ijA

+Aeij ≤ c nE where A is of the form of Equa-
tion (9) with µij = 1 and uniquely defines G(n).

This second assumption essentially means that remov-
ing one edge or another should have a similar im-
pact on the connectivity of the graph. It is veri-
fied with c = 1 if the graph is completely symmetric
(ring or complete graph). Since A+A is a projector,
eTijA

+Aeij ≤ 1 so Assumption 2 holds true any time
the ratio n

E is bounded below. In particular, the grid,
the hypercube, or any random graph with bounded
degree respect Assumption 2.

4.2 Average time per iteration

ESDACD updates are much cheaper than the up-
dates of any global synchronous algorithm such as
SSDA. However, the partial synchrony discussed in
Section 3.4 may drastically slow the algorithm down,
making it inefficient to use cheaper iterations. The-
orem 2 shows that this does not happen for regular
graphs with homogeneous probabilities. We note τmax

the maximum delay of all edges.
Theorem 2. If we denote Tmax(k) the time taken by
ESDACD to perform k iterations when edges are sam-
pled according to the distribution p:

τ̄ = E
[

1

k
Tmax(k)

]
≤ cp̄τmax (14)

with a constant c < 14.

The proof of Theorem 2 is in Appendix A. Note that
the constant can be improved in some settings, for
example if all nodes have the same degrees and all
edges have the same weight then a tighter bound c < 4
holds.
Corollary 1. If G satisfies Assumption 1 then there
exists c > 0 such that for any n ∈ N, the expected

average time per iteration taken by ESDACD in G(n)
when edges are sampled uniformly verifies:

E [Tmax(k)] ≤ cτmax

n
k + o(k). (15)

Corollary 1 shows that when all nodes have compara-
ble activation frequencies then the expected time re-
quired to complete one ESDACD iteration scales as
the inverse of the number of nodes in the network.
This result essentially means that the synchronization
cost of locking edges does not grow with the size of
the network and so iterations will not be longer on a
bigger network. At any given time, a constant fraction
of the nodes is actively performing an update (rather
than waiting for a message) and this fraction does not
shrink as the network grows. The time per iteration
can be as high as τmax for some graph topologies that
break Assumption 1, e.g., star networks. These topolo-
gies are more suited to centralized algorithms because
some nodes take part in almost all updates.

4.3 Distributed average consensus

Algorithm 2 solves the problem of distributed gossip
averaging if we set fi(θ) = 1

2‖θ− ci‖
2. In this setting,

f∗i (x) = 1
2‖x+ ci‖2 − 1

2‖ci‖
2 and so ∇f∗i (x) = x+ ci.

Local smoothness and strong convexity parameters are
all equal to 1.

At each round, an edge is chosen and nodes exchange
their current estimate of the mean (which is equal to
eTi yt+ci for node i). Yet, they do not update it directly
but they keep two sequences yt and vt that are updated
according to a linear system. One step simply consists
in doing a convex combination of these values at the
previous step, plus a mixing of the current value with
the value of the chosen neighbor.

The standard randomized gossip iteration consists in
choosing an edge (i, j) and replacing the current values
of nodes i and j by their average. If we denote E2(t)
the second moment of the error at time t:

E2(t) ≤ (1− θgossip)2tE2(0), (16)

where θgossip = λ+min(W̄), with W̄ = 1
EL if L is the

Laplacian matrix of the graph (Boyd et al., 2006).
Corollary 2. If G satisfies Assumption 2 then there
exists c > 0 such that for any n ∈ N, if θESDACD
is the rate ESDACD in G(n) and θgossip the rate of
randomized gossip averaging when edges are sampled
uniformly then they verify:

θESDACD ≥
c√
n

√
θgossip. (17)

We can use tools from Mohar (1997) to estimate the
eigenvalues of usual graphs. In the case of the com-
plete graph, θgossip ≈ n−1 and so θESDACD ≈ θgossip.

Accelerated Decentralized Optimization with Local Updates for Smooth and Strongly Convex Objectives

Actually, we can show that in this case, ESDACD it-
erations are exactly the same as randomized gossip
iterations. In the case of the ring graph, θgossip ≈ n−3
and so θESDACD ≈ n−2 which is significantly better
for n large. For the grid graph, a similar analysis yields
θESDACD = O(n−3/2). Achieving this message com-
plexity on a grid is an active research area and is of-
ten achieved with complex algorithms like geographic
gossip (Dimakis et al., 2006), relying on overlay net-
works, or LADA (Li et al., 2007), using lifted Markov
chains (Diaconis et al., 2000). Although synchronous
gossip algorithms achieved this rate (Oreshkin et al.,
2010), finding an asynchronous algorithm that could
match the rates of geographic gossip was still, to the
best of our knowledge, an open area of research (Di-
makis et al., 2010).

Therefore, ESDACD shows improved rate compared
with standard gossip when the eigengap of the gossip
matrix is small. To our knowledge, this is the first
time that better convergence rates of the second mo-
ment of the error are proven. Indeed, though they both
show improved rates in expectation, the shift-register
approach (Cao et al., 2006; Liu et al., 2013) has no
proven rates for the second moment and the rates for
the second moment of heavy ball gossip (Loizou and
Richtárik, 2018) do not improve over standard ran-
domized gossip averaging. Surprisingly, our results
show that gossip averaging is best analyzed as a special
case of a more general optimization algorithm that is
not even restricted to quadratic objectives. Standard
acceleration techniques shed a new light on the prob-
lem and allows for a better understanding of it.

We acknowledge that the improved rates of conver-
gence do not come for free. The accelerated gossip al-
gorithm requires some global knowledge on the graph
(eigenvalues of the gossip matrix and probability of
activating each edge). Even though these quantities
can be approximated relatively well for simple graphs
with a known structure, evaluating them can be more
challenging for more complex graphs (and can be even
harder than or of equivalent difficulty to the problem of
average consensus). Yet, we believe that ESDACD as
a gossip algorithm can still be practical in many cases,
in particular when values need to be averaged over the
same network multiple times or when computing re-
sources are available at some time but not at the time
of averaging. Such use cases can typically be encoun-
tered in sensor networks, in which the computation
of such hyperparameters can be anticipated before de-
ployment. In any case, the analysis shows that stan-
dard optimization tools are useful to analyze random-
ized gossip algorithms.

4.4 Comparison to SSDA

The results described in Theorem 1 are rather precise
and allow for a fine tuning of the edges probabilities
depending on the topology of the graph and of the
local smoothnesses. However, the rate cannot always
be expressed in a way that makes it simple to compare
with SSDA.

Corollary 3. Let G be a family of graph verifying As-
sumptions 1 and 2. There exists c > 0 such that:

θESDACD
τ̄ESDACD

≥ c 1

τmax

√
γ

κ
= c

θSSDA
τ̄SSDA

, (18)

where θESDACD is the rate of ESDACD when edges are
sampled uniformly and θSSDA the rate of SSDA when
both algorithms use matrix A as defined in Equa-
tion (9).

The proof is in Appendix B. Actually, sampling does
not need to be uniform but a ratio

√
pmin/pmax would

appear in the constant otherwise. The result of Corol-
lary 3 means that asynchrony comes almost for free for
decentralized gradient descent in these cases. Indeed,
both algorithms scale similarly in the network and op-
timization parameters. Note that in this case, we com-
pare ESDACD and SSDA (and not MSDA) meaning
that we implicitly assume that communication times
are greater than computing times. This is because ES-
DACD is very efficient in terms of communication but
not necessarily in terms of gradients.

Corollary 3 states that the rates per unit of time are
similar. Figure 1 compares the two algorithms in
terms of network and computational resources usage.
SSDA iterations require all nodes to send messages
to all their neighbors, resulting in a very high com-
munication cost. ESDACD avoids this cost by only
performing local updates. SSDA uses n/2 times more
gradients per iterations so both algorithms have a com-
parable cost in terms of gradients.

At each SSDA iteration, nodes need to wait for the
slowest node in the system whereas many nodes can
be updated in parallel with ESDACD. ESDACD can
thus be tuned not to sample slow edges too much, or
on the opposite to sample quick edges but with highly
non-smooth nodes at both ends more often.

Edge updates yield a strong correlation between the
probabilities of sampling edges and the final rate. In
heterogeneous cases (in terms of functions to optimize
as well as network characteristics), the greater flexibil-
ity of ESDACD allows for a better fine-tuning of the
parameters (step-size) and thus for better rates.

Hadrien Hendrikx, Francis Bach, Laurent Massoulié

Algorithm Improvement Communications Gradients computed Speed
SSDA

√
γ
κl

2E n 1

ESDACD O
(

1
n

√
γ
κl

)
2 2 O

(
1
n

)
Figure 1: Per iteration costs of SSDA and ESDACD for quasi-regular graphs.

Figure 2: ESDACD, pairwise gossip and heavy ball
gossip on the 10× 10 grid.

5 Experiments

5.1 ESDACD vs. gossip averaging

The goal of this part is to illustrate the rate difference
depending on the topology of the graph. We study
graphs of n nodes where 10% of the nodes have value 1
and the rest have value 0. Similar results are obtained
with values drawn from Gaussian distributions.

Figures 2 and 3 show that ESDACD consistently
beats standard and heavy ball gossip (Loizou and
Richtárik, 2018). The clear rates difference for the
ring graph shown in Figure 3 illustrates the fact that
ESDACD scales far better for graphs with low connec-
tivity. We chose the best performing parameters from
the original paper (ω = 1 and β = 0.5) for heavy ball
gossip. ESDACD is slightly slower at the beginning
because we chose constant and simple learning rates.
Choosing B0 and A0 from Appendix C as in Nesterov
and Stich (2017) would lead to a more complex algo-
rithm with better initial performances.

5.2 ESDACD vs. SSDA

In order to assess the performances of the algorithm
in a fully controlled setting, we perform experiments
on two synthetic datasets, similar to the one used by
Scaman et al. (2017):

Figure 3: ESDACD, pairwise gossip and heavy ball
gossip on the ring graph of size 100.

• Regression: Each node i has a vector of N ob-
servations, noted Xi ∈ Rd×N with d = 50 drawn
from a centered Gaussian with variance 1. The
targets yi,j are obtained by applying function
g : x→ x̄i,j + cos(x̄j) + ε where x̄j = d−11TXiej
and ε is a centered Gaussian noise with vari-
ance 0.25. At each node, the loss function is
fi(θi) = 1

2‖X
T
i θ − yi‖2 + ci‖θ‖2 with ci = 1.

• Classification: Each node i has a vector of N
observations, noted Xi ∈ Rd×N with d = 50.
Observations are drawn from a Gaussian of vari-
ance 1 centered at −1 for the first class and
1 for the second class. Classes are balanced.
At each node, the loss function is fi(θi) =∑N
j=1 ln

(
1 + exp−yi,jX

T
i,jθ
)

+ ci‖θ‖2 with ci = 1.

Our main focus is on the speed of execution. Recall
that edge (i, j) takes time τij to transmit a message
and so if node i starts its kith update at time ti(ki)
then ti(ki + 1) = maxl=i,j tl(kl) + τij and the same
for j. This gives a simple recursion to compute the
time needed to execute the algorithm in an idealized
setting, that we use as the x-axis for the plots.

To perform the experiments, the gossip matrix chosen
for SSDA is the Laplacian matrix and µ2

ij = p2ij(σ
−1
i +

σ−1j)−1 is chosen for ESDACD. The error plotted is
the maximum suboptimality maxi F (θi)−minx F (x).

Accelerated Decentralized Optimization with Local Updates for Smooth and Strongly Convex Objectives

Figure 4: Homogeneous regression problem

Figure 5: Heterogeneous regression problem.

Experiments are conducted on the 10 × 10 grid net-
work. We perform n/4 times more iteration for ES-
DACD than for SSDA. Therefore, in our experiments,
an execution of SSDA uses roughly 2 times more gra-
dients and 8 times more messages (for the grid graph)
than an execution of ESDACD. This also allows us to
compare the resources used by the 2 algorithms.

Homogeneous setting: In this setting, we choose
uniform constant delays and N = 150 for each node.
We notice on Figure 4 that SSDAis roughly two
times faster than ESDACD, meaning that n/8 ES-
DACD iterations are completed in parallel by the time
SSDA completes one iteration. This means that in av-
erage, a quarter of the nodes are actually waiting to
complete the schedule, since 2 nodes engage in each
iteration.

Heterogeneous setting: In this setting, N is uni-
formly sampled between 50 (problem dimension) and
300, thus leading to very different values for the local
condition numbers. Delays are all exponentially dis-
tributed with parameter 1. Figure 5 shows that ES-
DACD is computationally more efficient than SSDA on

Figure 6: Heterogeneous classification problem.

the regression problem because it has a far lower fi-
nal error although it uses 2 times less gradients. This
can be explained by larger step sizes along regular
edges and suggests that ESDACD adapts more easily
to changes in local regularity, even with uniform sam-
pling probabilities. ESDACD is also much faster since
in average, each node performs 2 iterations in half the
time needed for one SSDA iteration. For the classifica-
tion problem, strong convexity is more homogeneous
because it only comes from regularization. Therefore,
ESDACD does not take full advantage of the local
structure of the problem and show performances that
are similar to those of SSDA.

6 Conclusion

In this paper, we introduced the Edge Synchronous
Dual Accelerated Coordinate Descent (ESDACD), a
randomized gossip algorithm for the optimization of
sums of smooth and strongly convex functions. We
showed that it matches the performances of SSDA, its
synchronous counterpart. Empirically, ESDACD even
outperforms SSDA in heterogeneous settings. Ap-
plying ESDACD to the distributed average consensus
problem yields the first asynchronous gossip algorithm
that provably achieves better rates in variance than
the standard randomized gossip algorithm, for exam-
ple matching the rate of geographic gossip (Dimakis
et al., 2006) on a grid.

Promising lines of work include a communication
accelerated version that would match the speed of
MSDA (Scaman et al., 2017) when computations are
more expensive than communications, a fully asyn-
chronous extension that could handle late gradients as
well as a stochastic version of the algorithm that would
only use stochastic gradients of the local functions.

Hadrien Hendrikx, Francis Bach, Laurent Massoulié

Acknowledgement

We acknowledge support from the European Research
Council (grant SEQUOIA 724063).

References
Zeyuan Allen-Zhu, Zheng Qu, Peter Richtárik, and
Yang Yuan. Even faster accelerated coordinate de-
scent using non-uniform sampling. In International
Conference on Machine Learning, pages 1110–1119,
2016.

Richard Arratia and Louis Gordon. Tutorial on large
deviations for the binomial distribution. Bulletin of
mathematical biology, 51(1):125–131, 1989.

François Baccelli, Guy Cohen, Geert Jan Olsder, and
Jean-Pierre Quadrat. Synchronization and linearity:
an algebra for discrete event systems. John Wiley &
Sons Ltd, 1992.

Stephen Boyd, Arpita Ghosh, Balaji Prabhakar, and
Devavrat Shah. Randomized gossip algorithms.
IEEE transactions on information theory, 52(6):
2508–2530, 2006.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato,
Jonathan Eckstein, et al. Distributed optimization
and statistical learning via the alternating direction
method of multipliers. Foundations and Trends R© in
Machine learning, 3(1):1–122, 2011.

Ming Cao, Daniel A Spielman, and Edmund M Yeh.
Accelerated gossip algorithms for distributed com-
putation. In Proc. of the 44th Annual Allerton Con-
ference on Communication, Control, and Computa-
tion, pages 952–959. Citeseer, 2006.

Samprit Chatterjee and Eugene Seneta. Towards con-
sensus: Some convergence theorems on repeated av-
eraging. Journal of Applied Probability, 14(1):89–97,
1977.

Igor Colin, Aurélien Bellet, Joseph Salmon, and
Stéphan Clémençon. Gossip dual averaging for de-
centralized optimization of pairwise functions. arXiv
preprint arXiv:1606.02421, 2016.

Morris H DeGroot. Reaching a consensus. Journal of
the American Statistical Association, 69(345):118–
121, 1974.

Persi Diaconis, Susan Holmes, and Radford M Neal.
Analysis of a nonreversible markov chain sampler.
Annals of Applied Probability, pages 726–752, 2000.

Ralf Diekmann, Andreas Frommer, and Burkhard
Monien. Efficient schemes for nearest neighbor load
balancing. Parallel computing, 25(7):789–812, 1999.

Alexandros G Dimakis, Anand D Sarwate, and Mar-
tin J Wainwright. Geographic gossip: efficient ag-
gregation for sensor networks. In Proceedings of the

5th international conference on Information process-
ing in sensor networks, pages 69–76. ACM, 2006.

Alexandros G Dimakis, Soummya Kar, José MF
Moura, Michael G Rabbat, and Anna Scaglione.
Gossip algorithms for distributed signal processing.
Proceedings of the IEEE, 98(11):1847–1864, 2010.

John C Duchi, Alekh Agarwal, and Martin J Wain-
wright. Dual averaging for distributed optimization:
Convergence analysis and network scaling. IEEE
Transactions on Automatic control, 57(3):592–606,
2012.

Olivier Fercoq and Peter Richtárik. Accelerated, paral-
lel, and proximal coordinate descent. SIAM Journal
on Optimization, 25(4):1997–2023, 2015.

Euhanna Ghadimi, Iman Shames, and Mikael Johans-
son. Multi-step gradient methods for networked op-
timization. IEEE Trans. Signal Processing, 61(21):
5417–5429, 2013.

Robert M Gower, Filip Hanzely, Peter Richtárik, and
Sebastian Stich. Accelerated stochastic matrix in-
version: general theory and speeding up bfgs rules
for faster second-order optimization. arXiv preprint
arXiv:1802.04079, 2018.

Robert Mansel Gower and Peter Richtárik. Stochastic
dual ascent for solving linear systems. arXiv preprint
arXiv:1512.06890, 2015.

Robert Hannah, Fei Feng, and Wotao Yin. A2BCD: An
asynchronous accelerated block coordinate descent
algorithm with optimal complexity. arXiv preprint
arXiv:1803.05578, 2018.

Sham Kakade, Shai Shalev-Shwartz, and Am-
buj Tewari. On the duality of strong con-
vexity and strong smoothness: Learning ap-
plications and matrix regularization. Un-
published Manuscript, http://ttic. uchicago.
edu/shai/papers/KakadeShalevTewari09. pdf, 2:1,
2009.

Wenjun Li, Huaiyu Dai, and Y Zhang. Location-aided
fast distributed consensus. IEEE Transactions on
Information Theory, 2007.

Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh,
Wei Zhang, and Ji Liu. Can decentralized algo-
rithms outperform centralized algorithms? a case
study for decentralized parallel stochastic gradient
descent. In Advances in Neural Information Pro-
cessing Systems, pages 5330–5340, 2017a.

Xiangru Lian, Wei Zhang, Ce Zhang, and Ji Liu. Asyn-
chronous decentralized parallel stochastic gradient
descent. arXiv preprint arXiv:1710.06952, 2017b.

Ji Liu and Stephen J Wright. Asynchronous stochas-
tic coordinate descent: Parallelism and convergence

Accelerated Decentralized Optimization with Local Updates for Smooth and Strongly Convex Objectives

properties. SIAM Journal on Optimization, 25(1):
351–376, 2015.

Ji Liu, Brian DO Anderson, Ming Cao, and A Stephen
Morse. Analysis of accelerated gossip algorithms.
Automatica, 49(4):873–883, 2013.

Ji Liu, Stephen J Wright, Christopher Ré, Victor Bit-
torf, and Srikrishna Sridhar. An asynchronous par-
allel stochastic coordinate descent algorithm. The
Journal of Machine Learning Research, 16(1):285–
322, 2015.

Nicolas Loizou and Peter Richtárik. Accelerated gossip
via stochastic heavy ball method. In Allerton, 2018.

Bojan Mohar. Some applications of laplace eigenval-
ues of graphs. In Graph symmetry, pages 225–275.
Springer, 1997.

Aryan Mokhtari and Alejandro Ribeiro. Dsa: Decen-
tralized double stochastic averaging gradient algo-
rithm. The Journal of Machine Learning Research,
17(1):2165–2199, 2016.

Ion Necoara, Yurii Nesterov, and François Glineur.
Random block coordinate descent methods for lin-
early constrained optimization over networks. Jour-
nal of Optimization Theory and Applications, 173
(1):227–254, 2017.

Angelia Nedic and Asuman Ozdaglar. Distributed
subgradient methods for multi-agent optimization.
IEEE Transactions on Automatic Control, 54(1):48–
61, 2009.

Angelia Nedic, Alex Olshevsky, and Wei Shi. Achiev-
ing geometric convergence for distributed optimiza-
tion over time-varying graphs. SIAM Journal on
Optimization, 27(4):2597–2633, 2017.

Yurii Nesterov. Efficiency of coordinate descent meth-
ods on huge-scale optimization problems. SIAM
Journal on Optimization, 22(2):341–362, 2012.

Yurii Nesterov. Introductory lectures on convex opti-
mization: A basic course, volume 87. Springer Sci-
ence & Business Media, 2013.

Yurii Nesterov and Sebastian U Stich. Efficiency of
the accelerated coordinate descent method on struc-
tured optimization problems. SIAM Journal on Op-
timization, 27(1):110–123, 2017.

Boris N Oreshkin, Mark J Coates, and Michael G Rab-
bat. Optimization and analysis of distributed aver-
aging with short node memory. IEEE Transactions
on Signal Processing, 58(5):2850–2865, 2010.

S Sundhar Ram, A Nedić, and Venugopal V Veer-
avalli. Asynchronous gossip algorithms for stochas-
tic optimization. In Decision and Control, 2009 held
jointly with the 2009 28th Chinese Control Con-
ference. CDC/CCC 2009. Proceedings of the 48th
IEEE Conference on, pages 3581–3586. IEEE, 2009.

S Sundhar Ram, Angelia Nedić, and Venugopal V
Veeravalli. Distributed stochastic subgradient pro-
jection algorithms for convex optimization. Journal
of optimization theory and applications, 147(3):516–
545, 2010.

Benjamin Recht, Christopher Re, Stephen Wright, and
Feng Niu. Hogwild: A lock-free approach to paral-
lelizing stochastic gradient descent. In Advances in
neural information processing systems, pages 693–
701, 2011.

Peter Richtárik and Martin Takáč. Parallel coordinate
descent methods for big data optimization. Mathe-
matical Programming, 156(1-2):433–484, 2016.

Kevin Scaman, Francis Bach, Sébastien Bubeck,
Yin Tat Lee, and Laurent Massoulié. Optimal algo-
rithms for smooth and strongly convex distributed
optimization in networks. In International Confer-
ence on Machine Learning, pages 3027–3036, 2017.

Wei Shi, Qing Ling, Gang Wu, and Wotao Yin. Extra:
An exact first-order algorithm for decentralized con-
sensus optimization. SIAM Journal on Optimiza-
tion, 25(2):944–966, 2015.

Hanlin Tang, Xiangru Lian, Ming Yan, Ce Zhang, and
Ji Liu. d2: Decentralized training over decentralized
data. arXiv preprint arXiv:1803.07068, 2018.

Lin Xiao, Stephen Boyd, and Sanjay Lall. A scheme
for robust distributed sensor fusion based on aver-
age consensus. In Information Processing in Sensor
Networks, 2005. IPSN 2005. Fourth International
Symposium on, pages 63–70. IEEE, 2005.

Martin Zinkevich, Markus Weimer, Lihong Li, and
Alex J Smola. Parallelized stochastic gradient de-
scent. In Advances in neural information processing
systems, pages 2595–2603, 2010.

Hadrien Hendrikx, Francis Bach, Laurent Massoulié

A Detailed average time per iteration proof

The goal of this section is to prove Theorem 2. The proof develops an argument similar to the one of Theorem 8.33
(Baccelli et al., 1992). Yet, the theorem cannot be used directly and we need to specialize the argument for our
problem in order to get a tighter bound. We note t the number of iterations that the algorithm performs, and
we introduce the random variable Xt(i, w) such that if edge (i, j) is activated at time t + 1 (with probability
pij), then for all w ∈ N∗:

Xt+1(i, w) = Xt(i, w − 1) +Xt(j, w − 1).

and Xt+1(k,w− 1) = Xt(k,w− 1) otherwise. We start with the initial conditions X0(i, 0) = 1 and X0(i, w) = 0
for any w > 0. The following lemma establishes a relationship between the time taken by the algorithm to
complete t iterations and variables Xt.
Lemma 1. If we note Tmax(t) the time at which the last node of the system finishes iteration t then for all θ > 0:

E [Tmax(t)] ≤ θt+
∑
w≥θt

n∑
i=1

E
[
Xt(i, w)

]
.

Proof. We first prove by induction on t that if we denote Ti(t) the time at which node i finishes iteration t, then
for any i ∈ {1, .., n}:

Ti(t) = max
w∈N,Xt(i,w)>0

w. (19)

To ease notations, we write wmax(i, t) = maxw∈N,Xt(i,w)>0 w. The property is true for t = 0 because Ti(0) = 0
for all i.

We now assume that it is true for some fixed t > 0 and we assume that edge (k, l) has been activated at time
t. For all i /∈ {k, l}, Ti(t + 1) = Ti(t) and for all w ∈ N∗, Xt+1(i, w − 1) = Xt(i, w − 1) so the property is true.
Besides,

wmax(k, t+ 1) = max
w∈N∗,Xt(k,w−1)+Xt(l,w−1)>0

w

= max
w∈N,Xt(i,w)+Xt(i,w)>0

w + 1

= 1 + max (wmax(k, t), wmax(l, t))

= 1 + max (Tk(t), Tl(t)) = Tk(t+ 1).

We finish the proof of Equation (19) by observing that k and l are completely equivalent.

The form of the recurrence guarantees that for any fixed t ∈ N and w > 1, if there exists i such that Xt(i, w) > 0
then for any w′ < w, there exists j such that Xt(j, w′) > 0. Therefore,

Tmax(t) = max
i

max
w∈N,Xt(i,w)>0

w = max
w∈N,

∑
iX

t(i,w)>0
w =

∑
w∈N

1

(
n∑
i=1

Xt(i, w) ≥ 1

)
, (20)

because having Xt(i, w) > 0 is equivalent to having Xt(i, w) ≥ 1 since Xt(i, w) is integer valued. Therefore, for
any θ ∈ [0, 1]

Tmax(t) ≤ θt+
∑
w≥θt

1

(
n∑
i=1

Xt(i, w) ≥ 1

)
,

and the proof results from taking the expectation of the previous inequality and using Markov inequality on the
second term.

Accelerated Decentralized Optimization with Local Updates for Smooth and Strongly Convex Objectives

Although there is still a maximum in the expression of Ti(t), the recursion for variable X has a much simpler
form. In particular, we will crucially exploit its linearity. We write pi =

∑
j pij and introduce p = mini pi and

p̄ = maxi pi. We now prove the following Lemma:

Lemma 2. For all i, if δ1 = p, δ2 = p̄ and δ = 2δ2−δ1
1−2δ2 then for all θ > 0

∑
p≥θt

E
[
Xt(i, p)

]
≤ (1 + δ)

t P [Binom(2δ2, t) ≥ θt] . (21)

Proof. Taking the expectation over the edges that can be activated gives:

E
[
Xt+1(i, w)

]
= (1− pi)E

[
Xt(i, w)

]
+
∑
j

pijE
[
Xt(j, w − 1)

]
+ piE

[
Xt(i, w − 1)

]
. (22)

In particular, for all i, E
[
Xt+1(i, w)

]
≤ X̄t(w) where X̄0(w) = 1 if w = 0 and 0 otherwise, and:

X̄t+1(w) = (1− p) X̄t(w) + 2p̄X̄t(w − 1). (23)

We now introduce φt(z) =
∑
w∈N z

wX̄t(w). A direct recursion leads to:

φt(z) = (1− p + 2p̄z)
t
. (24)

Then, using the fact that δ > 0:

φt(z) ≤ (1 + δ)t
(

1− 2δ2 +
2δ2

1 + δ
z

)t
≤ (1 + δ)t (1− 2δ2 + 2δ2z)

t
= (1 + δ)tφbin(2δ2, t)(z), (25)

where φbin(2δ2, t) is the generating function of the Binomial law of parameters 2δ2 and t. The inequalities above
on the integral series φt and (1 + δ)tφbin(2δ2, t) actually hold coefficient by coefficient. Therefore, E [Xt(i, p)] ≤
(1 + δ)tP (Binom(2δ2, t) = p)

We conclude the proof of the theorem with this last lemma:

Lemma 3. If θ = 6δ2 + δ then:

lim
t∈N

∑
w≥θt

E
[
Xt(i, w)

]
= 0 (26)

Proof. We use tail bounds for the Binomial distribution (Arratia and Gordon, 1989) in order to get for θ ≥ 2δ2:

lnP [Binom(2δ2, t) ≥ θt] ≤ −tD(θ||2δ2), (27)

where D(p||q) = p ln p
q + (1− p) ln 1−p

1−q so applying Lemma 2 yields:

∑
w≥θt

E
[
Xt(i, w)

]
≤ e−t[D(θ||2δ2)−ln(1+δ)]. (28)

Therefore, we are left to prove that D(θ||2δ2)− ln(1 + δ) > 0. However,

D(θ||2δ2) = 2δ2 ln(
2δ2
θ

) + (1− 2δ2) ln
1− 2δ2
1− θ

≥ 2δ2 ln(
2δ2
θ

)− 2δ2 + θ (29)

by using that x
1+x ≤ ln(1 + x) ≤ x. Since θ = 6δ2 + δ and δ ≤ 2δ2

1−2δ2 , assuming that δ2 ≤ 3
8 yields:

Hadrien Hendrikx, Francis Bach, Laurent Massoulié

D(θ||2δ2) ≥ 2δ2

[
2− ln(3 +

δ

2δ2
)

]
+ δ > δ ≥ ln(1 + δ). (30)

If δ2 ≥ 3
8 , then θ > 1 so the result is obvious because Xt(i, w) = 0 for w > t.

B Execution speed comparisons

B.1 Comparison with gossip

In this section, we prove Corollary 2.

Proof. We consider a matrix A such that Aeij = µij(ei− ej) and µ2
ij = 1

2 for all (i, j) ∈ E. Then multiplying by
Wij = Aeije

T
ijA

T corresponds to averaging the values of nodes i and j and so the rate of uniform randomized
gossip averaging depends on W̄ = E[Wij].

In this case, applying ESDACD with matrix A yields a rate of

θESDACD = min
ij

pij

µij

√
σ−1i + σ−1j

√
λ+min(ATA)√
eijA+Aeij

≥

√
λ+min(AAT)

cnE
(31)

where c is a constant independent of the size of the graph coming from Assumption 2.

Since W̄ = 1
EAA

T then θgossip = 1
Eλ

+
min(AAT) and so:

θESDACD ≥
c′√
n

√
θgossip (32)

with c′ = c−
1
2 .

B.2 Comparison with SSDA

In this section, we prove Corollary 3. SSDA is based on an arbitrary gossip matrix whereas the rate of ESDACD is
based on a specific matrix ATA where Aeij = µij(ei − ej). Yet, W = AAT is a perfectly valid gossip matrix.
Indeed, Ker(W) = Ker(A) = V ec (1) and AAT is an n×n symmetric positive matrix defined on the graph G(n).
Besides, λ+min(ATA) = λ+min(AAT), which enables us to compare the rates of SSDA and ESDACD.

Proof. For arbitrary µ, the rate of ESDACD writes:

θESDACD ≥ min
ij

pij

µij

√
Lmax(σ−1i + σ−1j)eTijA

+Aeij

√
λ+min(ATA). (33)

Here, we choose µ2
ij = 1

2 , which yields the bound:

θESDACD ≥ pmin

√
λmax(AAT)

maxij eTijA
+Aeij

√
γ

κ
. (34)

Therefore, combining this with Theorem 2 and Assumption 2 gives:

θESDACD
τ̄ESDACD

≥ pmin

√
E

cp̄τmax

√
λmax(AAT)

n

√
γ

κ
≥ c′

τmax

pmin

pmax

√
dmin

dmax

√
E

ndmax

√
γ

κ
(35)

Accelerated Decentralized Optimization with Local Updates for Smooth and Strongly Convex Objectives

where we have used that λmax ≥ 1
nTr(AA

T) ≥ dmin and p̄ ≤ pmaxdmax. We then use Assumption 1 to get that
there exists c′′ such that:

θESDACD
τ̄ESDACD

≥ c′′

τmax

√
γ

κ
= c′′

θSSDA
τ̄SSDA

(36)

In the proof above, it appears that having probabilities that are too unbalanced harms the convergence rate of
ESDACD. However, if these probabilities are carefully selected to match the square root of the smoothness along
the edge, and if delays are such that this does not cause very slow edges to be sampled too often then unbalanced
probabilities can greatly boost the convergence rate.

C Detailed rate proof

The proof of Theorem 1 is detailed in this section. Recall that we note A+ the pseudo-inverse of A and we
define the scalar product 〈x, y〉A+A = xTA+Ay. The associated norm is a semi-norm because A+A is positive
semi-definite. Since A+A is a projector on the orthogonal of Ker(A), it is a norm on the orthogonal of Ker(A).

Our proof follows the key steps of Nesterov and Stich (2017). However, we study the problem in the norm defined
by A+A because our problem is strongly convex only on the orthogonal of Ker(A). Matrix A can be tuned so
that F ∗A has the same smoothness in all directions, thus leading to optimal rates. We start by two small lemmas
to introduce the strong convexity and smoothness inequalities for the A+A semi-norm. We note Uij = eije

T
ij .

Lemma 4 (Strong convexity of F ∗A). For all x, y ∈ RE,

F ∗A(x)− F ∗A(y) ≥ ∇F ∗A(y)T (x− y) +
σA
2
‖x− y‖2A+A (37)

with σA =
λ+
min(A

TA)

Lmax

Proof. Inequality (37) is obtained by writing the strong convexity inequality for each f∗i and then summing them.
Then, we remark that Li ≤ Lmax for all i and that ‖Aw‖2 = ‖Aw‖2A+A ≥ λ+min(ATA)‖w‖2A+A for w = x − y.
More specifically:

F ∗A(x)− F ∗A(y) =

n∑
i=1

(
f∗i
(
eTi Ax

)
− f∗i

(
eTi Ay

))
≥

n∑
i=1

∇f∗i
(
eTi Ay

)T
eTi (Ax−Ay) +

1

2
(Ax−Ay)T

(
n∑
i=1

L−1i eie
T
i

)
(Ax−Ay)

≥ ∇F ∗A(y)T (x− y) +
1

2Lmax
(x− y)TATA(x− y)

≥ ∇F ∗A(y)T (x− y) +
λmin(ATA)

2Lmax
‖x− y‖2A+A

Lemma 5 (Smoothness of F ∗A). We note xt+1 = yt−hklUkl∇F ∗A(yt) where h−1kl = µ2
kl(σ

−1
k +σ−1l). If edge (k, l)

is sampled at time t,

F ∗A(xt+1)− F ∗A(yt) ≤ −
1

2µ2
kl

(
σ−1k + σ−1l

)‖Ukl∇F ∗A(yt)‖2. (38)

Equation (38) can be seen as an ESO inequality (Richtárik and Takáč, 2016) applied to the directional update
hklUkl∇F ∗A(yt).

Hadrien Hendrikx, Francis Bach, Laurent Massoulié

Proof. Assuming that edge (k, l) is drawn at time t, we use that each f∗i is (σ−1i)-smooth to write:

f∗i
(
eTi Axt+1

)
− f∗i

(
eTi Ayt

)
≤ −hkl∇f∗i

(
eTi Ayt

)T
eTi AUkl∇F ∗A(yt) +

1

2σi
‖hkleTi AUkl∇F ∗A(yt)‖2.

Summing it over all values of i gives:

F ∗A(xt+1)− F ∗A(yt) ≤ ∇F ∗A(yt)
T

[
−hklUkl +

1

2
h2klUklA

T
n∑
i=1

σ−1i eie
T
i AUkl

]
∇F ∗A(yt).

Then, we decompose by using that Aeij = µij(ei − ej) and Ukl = ekle
T
kl to get that

F ∗A(xt+1)− F ∗A(yt) ≤ ∇F ∗A(yt)
TUkl

[
−hkl +

1

2
h2klµ

2
kl(σ

−1
k + σ−1l)

]
∇F ∗A(yt).

We conclude the proof by using the fact that hkl = 1
µ2
kl(σ

−1
k +σ−1

l)
.

We can now start the proof of Theorem 1. We first prove the convergence of a different algorithm which is
essentially the one by Nesterov and Stich (2017) and show that Algorithm 1 is obtained for a specific choice of
initial conditions.

Proof. More specifically, we choose A0, B0 ∈ R and recursively define the following coefficients:

a2t+1S
2 = At+1Bt+1 (39)

Bt+1 = Bt + σAat+1 (40)
At+1 = At + at+1 (41)

αt =
at+1

At+1
(42)

βt =
σAat+1

Bt+1
. (43)

Then, we take arbitrary x0, y0, v0 ∈ RE×d and recursively define:

yt =
(1− αt)xt + αt(1− βt)vt

1− αtβt
(44)

vt+1 = (1− βt)vt + βtyt −
at+1

Bt+1pij
Uij∇F ∗A(yt) (45)

xt+1 = yt −
1

µ2
ij(σ

−1
i + σ−1j)

Uij∇F ∗A(yt). (46)

For convenience, we write wt = (1 − βt)vt + βtyt. Then, we study the quantity r2t = ‖vt − x∗‖2A+A where x∗ is
the minimizer of F ∗A. Recall that gij(yt) = at+1

Bt+1pij
Uij∇F ∗A(yt).

‖vt+1 − x∗‖2A+A = ‖wt − x∗‖2A+A + ‖ at+1

Bt+1pij
Uij∇F ∗A(yt)‖2A+A − 2

at+1

Bt+1pij
∇F ∗A(yt)

TUijA
+A(wt − x∗). (47)

Then,
Eij [

at+1

Bt+1pij
∇F ∗A(yt)

TUij] =
∑
ij

pij
at+1

Bt+1pij
∇F ∗A(yt)

TUij =
at+1

Bt+1
∇F ∗A(yt)

T . (48)

Therefore, Equation (47) can be rewritten:

Accelerated Decentralized Optimization with Local Updates for Smooth and Strongly Convex Objectives

E
[
r2t+1

]
≤ E

[
‖wt − x∗‖2A+A

]
+ E

[
eTijA

+Aeija
2
t+1

B2
t+1p

2
ij

‖Uij∇F ∗A(yt)‖2
]
− 2

at+1

Bt+1
∇F ∗A(yt)

T (wt − x∗). (49)

Now, the goal is to write a smoothness equation to control the middle term and make F ∗A(xt+1) appear. This
control is provided by Equation (38) in Lemma 5.

Therefore, if we choose S such that for all (i, j),
eTijA

+Aeij(σ
−1
i +σ−1

j)µ2
ij

p2ij
≤ S2 then the equation becomes:

‖vt+1 − x∗‖2A+A ≤ ‖wt − x
∗‖2A+A +

2S2a2t+1

B2
t+1

[F ∗A(yt)− E [F ∗A(xt+1)]]− 2
at+1

Bt+1
∇F ∗A(yt)

T (wt − x∗). (50)

We use the convexity of the squared norm to get that ‖wt− x∗‖2A+A ≤ (1− βt)r2t + βt‖yt− x∗‖2A+A. Then, if we
multiply both sides by Bt+1 we get:

Bt+1r
2
t+1 ≤ Btr2t + βtBt+1‖yt − x∗‖2A+A +

2S2a2t+1

Bt+1
[F ∗A(yt)− E [F ∗A(xt+1)]]− 2at+1∇F ∗A(yt)

T (wt − x∗). (51)

We can now use Equation (37) of Lemma 4 (strong convexity of F ∗A in norm A+A) to write that:

−at+1∇F ∗A(yt)
T (wt − x∗) = at+1∇F ∗A(yt)

TA+A

(
x∗ − yt +

1− αt
αt

(xt − yt)
)

≤ at+1

(
F ∗A(x∗)− F ∗A(yt)−

1

2
σA‖yt − x∗‖2A+A +

1− αt
αt

(F ∗A(xt)− F ∗A(yt))

)
≤ at+1F

∗
A(x∗)−At+1F

∗
A(yt) +AtF

∗
A(xt)−

1

2
at+1σA‖yt − x∗‖2A+A.

Then, we combine the previous inequality with Equation (51) and we use the fact that Bt+1βt = at+1σA so that:

Bt+1r
2
t+1 ≤ Btr2t + 2At+1 [F ∗A(yt)− E [F ∗A(xt+1)]]− 2 [(At+1 −At)F ∗A(x∗)−At+1F

∗
A(yt) +AtF

∗
A(xt)] , (52)

and so:

Bt+1r
2
t+1 −Btr2t ≤ 2At [F ∗A(xt)− F ∗A(x∗)]− 2At+1 [E [F ∗A(xt+1)]− F ∗A(x∗)] . (53)

By summing over all inequalities, we get that

2AtE [F ∗A(xt)− F ∗A(x∗)] +BtE[r2t] ≤ r20. (54)

Now, we need to estimate the growth of coefficients At and Bt. We prove by induction on t that if A0 = 1 and

B0 = σA then for all t ∈ N, αt = βt =
√
σA

S At =
(

1−
√
σA

S

)−t
and Bt = σAAt.

We can first combine Equation (41) and Equation (42) to obtain

at+1(α−1t − 1) = At (55)

at+1(β−1t − 1) =
Bt
σA

(56)

Hadrien Hendrikx, Francis Bach, Laurent Massoulié

For t = 0, we can combine equations (55) and (56) to obtain that α−10 − 1 = β−10 − 1 (since a1 6= 0 and so
α0 = β0. Finally,

a21S
2 = A1B1 =

a21σA
α0β0

and so α0 = β0 =
√
σA

S .

Now suppose that the property is true for a given t ≥ 0. Then, we use Equation (55) and the fact that At+1 =

at+1+At. Since 1+(α−1t −1)−1 =
α−1

t −1+1

α−1
t −1

= (1−αt)−1 then by induction assumption, At+1 =
(

1−
√
σA

S

)−t−1
.

We use Equation (56) in the same way to prove that Bt+1 = σAAt+1.

Then, we use equations (55) and (56) at time t+ 1 to get that α−1t+1 − 1 = β−1t+1 − 1 so αt+1 = βt+1. Their value
can again be retrieved by using Equation (39), which finishes the induction.

We have proven that for this choice of A0 and B0 the α and β coefficients are constant and are equal to θ =
√
σA

S .
Therefore, vt+1 = (1− θ)vt + θyt − θ

pijσA
Uij∇F ∗A(yt). With this choice of parameters, yt+1 can be expressed as:

yt+1 =
(1− θ)xt+1 + θ(1− θ)vt+1

1− θ2
=
xt+1 + θvt+1

1 + θ
.

Then, the coefficients of Algorithm 1 are recovered by replacing xt+1 and vt+1 by their expressions in Equa-
tions (46) and (45). The actual values of at+1, At+1 and Bt+1 are only used for the analysis because only
at+1

Bt+1
= σA

βt
appears in the recursion.

	Introduction
	Model
	Algorithm
	Problem derivation
	Formal algorithm
	Practical algorithm
	Communication schedule

	Performances
	Homogeneous decentralized networks
	Average time per iteration
	Distributed average consensus
	Comparison to SSDA

	Experiments
	ESDACD vs. gossip averaging
	ESDACD vs. SSDA

	Conclusion
	Detailed average time per iteration proof
	Execution speed comparisons
	Comparison with gossip
	Comparison with SSDA

	Detailed rate proof

