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1 Finite mixtures with regularized
composite transportation distance

In this section, we provide detailed analyses for obtain-
ing updates with weights and atoms in Algorithm 1
to find the local solution of the objective function in
Eq. (6), which optimizes finite mixtures with regular-
ized composite transportation distance. To ease the
presentation, we would like to remind this objective
function, which is defined as follows

min
ωK ,ΘK

inf
π∈Π( 1

n1n,ωK)
〈π,M〉 − λH (π)

where λ > 0 is a penalization term and H (π) =
−
∑
i,j πij log πij is an entropy of π ∈ Π (1n/n,ωK).

Here, Pn = 1
n

∑n
i=1 δXi an empirical measure with

respect to samples X1, . . . , Xn. Furthermore, M =
(Mij) is a cost matrix such that Mij = − log f(Xi|θj)
for 1 ≤ i ≤ n, 1 ≤ j ≤ K while Π (·, ·) is the set of
transportation plans between 1n/n and ωK .

1.1 Update weights

Our strategy for updating weights ωK in the above
objective function relies on solving the following relax-
ation of that optimization problem

inf
π∈Sn

〈π,M〉 − λH (π) (15)

where Sn =
{
π :

∑K
j=1 πij = 1/n

}
. Invoking the La-

grangian multiplier for the constraint π1K = 1
n1n, the

above objective function is equivalent to minimize the
following function

F =
n∑
i=1

K∑
j=1

πijMij + λ
n∑
i=1

K∑
j=1

πij (log πij − 1)

+
n∑
i=1

κi

 K∑
j=1

πij −
1
n

 .

By taking the derivative of F with respect to πij and
setting it to zero, the following equation holds

∂F
∂πij

= Mij + λ log πij + κi = 0.

The above equation leads to

πij = exp
(
−Mij − κi

λ

)
= (f(Xi|θj))1/λ exp

(
−κi
λ

)
.

Invoking the condition
∑
k πik = 1

n , we have

exp
(
−κi
λ

) K∑
j=1

(f(Xi|θj))1/λ

 = 1
n
,

which suggests that

exp
(
−κi
λ

)
= 1
n

1∑K
j=1 (f(Xi|θj))1/λ .

Governed by the previous equations, we find that

πij = 1
n

(f(Xi|θj))1/λ∑K
j=1 (f(Xi|θj))1/λ . (16)

Therefore, we can update the weight ωj as

ωj =
n∑
i=1

πij

for any 1 ≤ j ≤ K.

1.2 Update atoms

Given the updates for weight ωK and the formulation
of cost matrix M , to obtain the update for atoms θj
as 1 ≤ j ≤ K, we optimize the following objective
function

min
ΘK

−
n∑
i=1

K∑
j=1

πij log f(Xi|θj). (17)
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Since f(x|θ) is an exponential family distribution with
natural parameter θ, we can represent it as

f(x|θ) = h(x) exp (〈T (x) , θ〉 −A (θ)) ,

where A (θ) is the log-partition function which is con-
vex. Plugging this formulation of f(x|θ) into the ob-
jective function (17) and taking the derivative with
respect to θj , we obtain the following equation

n∑
i=1

πijT (Xi)− ωj∇A(θj) = 0. (18)

Therefore, we can update atoms θj as the solution of
the above equation for 1 ≤ j ≤ K,

1.3 Proof for local convergence of
Algorithm 1

Given the formulation of Algorithm 1, we would like
to demonstrate its convergence to local solution of ob-
jective function (6) in Theorem 1.

Our proof of the theorem is straight-forward from the
updates of weights and atoms via Lagrangian multi-
pliers. In particular, we denote ω(t)

K , Θ(t)
K , and π(t)

as the update of weights, atoms, and transportation
plan in step t of Algorithm 1 for t ≥ 0. Addi-
tionally, let M (t) be the cost matrix at step t, i.e.,
M

(t)
ij = − log f(Xi|θ(t)

j ) for all i, j. Furthermore, we
denote

g(ωK ,ΘK) := inf
π∈Π( 1

n1n,ωK)
〈π,M〉 − λH (π) .

Then, for any t ≥ 0, it is clear that

g(ω(t)
K ,Θ(t)

K ) = inf
π∈Π

(
1
n1n,ω(t)

K

) 〈π,M (t)
〉
− λH (π)

≥ inf
π∈Sn

〈
π,M (t)

〉
− λH (π)

≥
〈
π(t+1),M (t)

〉
− λH

(
π(t+1)

)
where Sn =

{
π :
∑K
j=1 πij = 1/n ∀1 ≤ i ≤ n

}
. Here,

the first inequality is due to the fact that
Π
(

1
n1n,ω(t)

K

)
⊂ Sn while the second inequality is due

to (16) in subsection 1.1. According to the update of
atoms in (18) in subsection 1.2, we have that〈
π(t+1),M (t)

〉
− λH

(
π(t+1)

)
≥
〈
π(t+1),M (t+1)

〉
− λH

(
π(t+1)

)
≥ inf
π∈Π

(
1
n1n,ω(t+1)

K

) 〈π,M (t+1)
〉
− λH (π)

= g(ω(t+1)
K ,Θ(t+1)

K ).

Governed by the above results, for any t ≥ 0, the fol-
lowing holds

g(ω(t)
K ,Θ(t)

K ) ≥ g(ω(t+1)
K ,Θ(t+1)

K ).

As a consequence, we achieve the conclusion of Theo-
rem 1.

2 Regularized composite
transportation barycenter

In this section, we provide a detailed algorithm for
achieving local solution to regularized composite trans-
portation barycenter in objective function in Eq. (8).
To facilitate the discussion, we will remind the formu-
lation of that objective function. In particular, the
objective function with regularized composite trans-
portation distance has the following formulation

min
wL,ΨL

J∑
j=1

aj min
πj∈Π

(
ωj
Kj
,wL

) 〈πj ,M j
〉
− λH

(
πj
)

where M j is the corresponding KL cost matrix be-
tween finite mixture probability distribution P j

ωj
Kj
,Θj

Kj

and QwL,ΨL
for 1 ≤ j ≤ J . Here, {aj}Jj=1 ∈ ∆J are

given weights associated with the finite mixture prob-

ability distributions
{
P j
ωj
Kj
,Θj

Kj

}J
j=1

.

As f(x|θ) is an exponential family, the cost matrix
M j = (M j

uv) has the following formulation

M j
uv = KL(f(x|ψv), f(x|θju))

= A(θju)−A(ψv)−
〈
∇A(ψv), (θju − ψv)

〉
for all 1 ≤ u, v ≤ K.

2.1 Update weights and atoms

Our procedure for updating weights wK for the objec-
tive function of regularized composite transportation
distance will be similar to Algorithm 1 in [1]. There-
fore, we will only focus on the updates with atoms
ΨL = (ψ1, . . . , ψL).

Given the updates of weights wK , we compute the
optimal transportation plan πj = (πjuv) between ωjKj
and wL using Algorithm 3 in [1]. Then, to obtain the
updates for ΨL, we consider the following optimization
problem

min
ΨL

J∑
j=1

aj

Kj∑
u=1

Kj∑
v=1

πjuvM
j
uv.
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By taking the derivative of the above objective func-
tion with respect to ψv and setting it to 0, we achieve
the following equation

J∑
j=1

Kj∑
u=1

πjuv
〈
∇2A(ψv), θju − ψv

〉
= 0.

One possible solution to the above equation is∑J
j=1

∑Kj
u=1 π

j
uv(θju−ψv) = 0. This previous equation

suggests that

ψv =
∑J
j=1

∑Kj
u=1 π

j
uvθ

j
u∑J

j=1
∑Kj
u=1 π

j
uv

(19)

for all 1 ≤ v ≤ L. Equipped with these updates for
weights wL and atoms ΨL, we summarize the detail of
an algorithm for determining the local solution of reg-
ularized composite transportation barycenter in Eq.
(8) in Algorithm 3.

Algorithm 3 Regularized composite transportation
barycenter
Input: Finite mixture probability distributions{

P j
ωj
Kj
,Θj

Kj

}J
j=1

, given weights {aj}Jj=1, and the

regularized hyper-parameter λ > 0.
Output: Optimal weights wL and atoms ΨL.
Initialize weights {wj}Lj=1 and atoms {ψj}Lj=1.
while not converged do
1. Update weights wL as Algorithm 1 in [1].
2. Compute transportation plans πj for 1 ≤ j ≤
J using Algorithm 3 in [1].
3. Update atoms ΨL as in Eq. (19).

end while

2.2 Local convergence of Algorithm 3

Given the formulation of Algorithm 3, the following
theorem demonstrates that this algorithm determines
the local solution of objective function (8)
Theorem 3. The Algorithm 3 monotonically de-
creases the objective function (8) of regularized com-
posite transportation barycenter until local conver-
gence.

The proof of Theorem 3 is a direct consequence of the
updates with weights and atoms in the above subsec-
tion and can be argued in the similar fashion as that
of Theorem 1; therefore, it is omitted.

3 Multilevel clustering with
composite transportation distance

In this section, we provide detailed argument for the
algorithm development to determine the local solu-

tions of regularized multilevel composite transporta-
tion (MCT). To ease the presentation later, we would
like to remind the objective function of this problem as
well as all its important relevant notations. We start
with the objective function in Eq. (12) as follows

inf
ωj
Kj
,Θj

Kj
,Q

J∑
j=1

Ŵ

(
P jnj , P

j

ωj
Kj
,Θj

Kj

)
+ ζŴ (P ,Q)

−R (π, τ ,a) ,

where R (π, τ ,a) = λl
∑J
j=1 H(πj) + ζλa[H(a) +

λg
∑J
j=1

∑C
m=1 H(τ j,m)] is a combination of all regu-

larized terms for the local and global clustering. Here,
for the simplicity of our argument, we choose ζ = 1
to derive our learning updates. In the above ob-
jective function, P = 1

J

∑J
j=1 δP j

ω
j
Kj

,Θj
Kj

and Q =∑C
m=1 bmδQmwm

L
,Ψm
L

. We summarize below the nota-
tions for our algorithm development.

Variables of local clustering structures

• Local transportation plans for group j: πj ={
πjuv
}
u,v
∈ Π( 1

nj
1nj ,ω

j
Kj

) s.t.
∑
v π

j
uv = 1

nj
, and∑

u π
j
uv = ωjv,

• Local atoms for local group Θj
Kj

=
{
θjk

}Kj
k=1

and

their local mixing weights ωj =
{
ωjk

}Kj
k=1

.

Variables of assignment group to barycenter

• Global transportation plan a = (ajm) ∈
Π( 1

J 1J , b) between P and Q.

Variables of global clustering structures

• Partial global transportation plans between local
measure Pωj

Kj
,Θj

Kj

and global measure Qmwm,Ψm
k
:

τ j,m =
{
τ j,mkl

}
k,l

where
∑
l τ
j,m
kl = ωjk and∑

l τ
j,m
kl = wml for all 1 ≤ j ≤ J and 1 ≤ m ≤ C.

• Global atoms for global measure Ψm
L = {ψml }

L
l=1.

and global mixing weights wm
L = {wml }

L
l=1where

wml =
∑
k τ

jm
kl for any j.

3.1 Local clustering updates

As being mentioned in the main text, to obtain up-
dates for local weights ωjKj and local atoms Θj

Kj
, we
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solve the following regularized composite transporta-
tion barycenter problem

inf
ω
j
Kj

,Θj
Kj

Ŵ

(
P j

nj , P
j

ω
j
Kj

,Θj
Kj

)
− λlH(πj)

+
C∑

m=1

ajmŴ (P j

ω
j
Kj

,Θj
Kj

, Qm
wm
L

,Ψm
L

) − λg

K∑
m=1

H(τ j,m).

The above objective function can be rewritten as

inf
ωj
Kj
,Θj

Kj

inf
πj∈Π( 1

nj
1nj ,ω

j
Kj

)

〈
πj ,M j

〉
− λlH(πj)

+
C∑
m=1

ajm inf
τ j,m∈Π(ωj

Kj
,wm
L

)

〈
τ j,m,γj,m

〉
− λg

K∑
m=1

H(τ j,m) (20)

where M j is the cost matrix between P jnj and
P j
ωj
Kj
,Θj

Kj

that has a formulation as

[M j ]uv = − log f(Xj,u|θjv),

for 1 ≤ u ≤ nj and 1 ≤ v ≤ Kj . Additionally, the cost
matrix γj,m has the following formulation

γj,mkl = A
(
θjk

)
−A (ψml )−

〈
∇A (ψml ) ,

(
θjk − ψ

m
l

)〉
.

Update local weights: The idea for obtaining the
local solutions of above objective function is similar to
that in Section 1.

Update local atoms: Given the updates for local
weight ωjKj , to obtain the update equation for local
atoms Θj

Kj
, we optimize the following objective func-

tion

min
Θj
Kj

−
nj∑
u=1

Kj∑
v=1

πjuv log f(Xj,u|θjv) +
C∑
m=1

ajm
∑
v,l

τ j,mvl γj,mkl .

(21)

Since f(x|θ) is an exponential family distribution with
natural parameter θ, we can represent it as

f(x|θ) = h(x) exp (〈T (x) , θ〉 −A (θ)) ,

where A (θ) is the log-partition function which is con-
vex. Given that formulation of f(x|θ), our objective
function (17) is equivalent to minimize the following

objective function

Flocal = −
nj∑
u=1

Kj∑
v=1

πjuv
(〈
T (Xj,u) , θjv

〉
−A

(
θjv
))

+
C∑
m=1

ajm
∑
v,l

τ j,mkl

[
A
(
θjv
)
−A (ψml )

−
〈
∇A (ψml ) ,

(
θjv − ψml

)〉]
.

By direct computation, Flocal has the following partial
derivative with respect to θjv

∂Flocal

∂θjv
= −

nj∑
u=1

πjuv
(
T (Xj,u)−∇A

(
θjv
))

+
C∑
m=1

ajm

L∑
l=1

τ j,mvl
[
∇A

(
θjv
)
−∇A (ψml )

]
= −

nj∑
u=1

πjuvT (Xj,u) + ωjv∇A
(
θjv
)

+
C∑

m=1
ajm

L∑
l=1

τ j,mvl
(
∇A

(
θjv
)
−∇A (ψml )

)
,

where in the last equality, we use the identity∑nj
u=1 π

j
uv = ωjv.

Given the above partial derivatives, we can update the
atoms θjv to be the solution of the following equation

∇A
(
θjv
)

=

C∑
m=1

ajm
L∑
l=1

τ j,mvl ∇A (ψml ) +
nj∑
u=1

πjuvT (Xj,u)

C∑
m=1

ajm
L∑
l=1

τ j,mvl + ωjv

(22)

3.2 Computing global transportation plan

Given the updates for local weights ωjKj and local
atoms Θj

Kj
for 1 ≤ j ≤ J , we now develop an update

on for global transportation plan a = (ajm) between
P and Q. Our strategy for the update relies on solving
the following objective function

inf
a

∑
j,m

ajmŴ

(
P j
ωj
Kj
,Θj

Kj

, Qmwm
L
,Ψm

L

)
− λaH (a) .

where a in the above infimum satisfies the constraint
a1K = 1

J 1n. By means of Lagrangian multiplier, the
above objective function can be rewritten as

Fglobal =
∑
j,m

ajmŴ

(
P j
ωj
Kj
,Θj

Kj

, Qmwm
L
,Ψm

L

)

− λaH (a) + κa

J∑
j=1

(
C∑
m=1

ajm −
1
J

)
,
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The function Fglobal has the partial derivative with
respect to ajm as follows

∂Fglobal

∂ajm
= Ŵ

(
P j
ωj
Kj
,Θj

Kj

, Qmwm
L
,Ψm

L

)
+ λa log ajm + κa

=
∑
k,l

τ j,mkl γj,mkl + λa ln ajm + κa.

Setting the above derivative to 0 and invoking the con-
straint that

∑C
m=1 ajm = 1

J , we find that

ajm = 1
J

exp
(
−
∑
k,l τ

j,m
kl γj,mkl

)1/λa

∑
m exp

(
−
∑
k,l τ

j,m
kl γj,mkl

)1/λa
(23)

for 1 ≤ j ≤ J and 1 ≤ m ≤ L.

3.3 Global clustering updates

Given the updates with local weights and atoms as well
as the global transportation plan, we are now ready to
develop an update for global weights wm

L and global
atoms Ψm

L for 1 ≤ m ≤ C. In particular, the objective
function for updating these global parameters are as
follows

min
{wm

L
},{Ψm

L
}

J∑
j=1

C∑
m=1

ajmŴ (P j
ωj
Kj
,Θj

Kj

, Qmwm
L
,Ψm
L

)

− λg
J∑
j=1

C∑
m=1

H(τ j,m)

The above objective function can be rewritten as

min
{wm

L
},{Ψm

L
}

J∑
j=1

C∑
m=1

ajm inf
τ j,m∈Π(ωj

Kj
,wm
L

)

〈
τ j,m,γj,m

〉
+ λg

∑
k,l

τ j,mkl

(
log τ j,mkl − 1

))

Given the above objective function, for each m, to up-
date the global weights wm

L and global atoms Ψm
L ,

we consider the following composite transportation
barycenter

min
wm
L
,Ψm

L

J∑
j=1

ajm inf
τ j,m∈Π(ωj

Kj
,wm
L

)

〈
τ j,m,γj,m

〉
+ λg

∑
k,l

τ j,mkl

(
log τ j,mkl − 1

))
.

Update global weights: Given the above objective
function, the idea for updating the global weights wm

L

is similar to Algorithm 1 in [1].

Update partial transportation plans: Once
global weights are obtained, we can use Algorithm
3 in [1] to update the optimal partial transportation
plans τ j,m between local measure Pωj

Kj
,Θj

Kj

and global
measure Qmwm,Ψm

k
.

Update global atoms: With the updates for the
global weight wm

L , to obtain the update equation for
global atoms Ψm

L , we minimize the following objective
function

Fp-global =
J∑
j=1

ajm
∑
k,l

τ j,mkl γj,mkl

=
J∑
j=1

ajm
∑
k,l

τ j,mkl

(
A
(
θjk

)
−A (ψml )

−
〈
∇A (ψml ) , θjk − ψ

m
l

〉)
.

Taking the derivative of Fp-global with respect to ψml
and setting it to zero, we find that

∂Fp-global

∂ψml
=

J∑
j=1

ajm
∑
k

τ j,mkl ∇
2A (ψml )

(
ψml − θ

j
k

)
= 0.

Since the log-partition function A (·) is convex,
∇2A (ψv) is a positive-semidefinite matrix. There-
fore, we can choose

∑J
j=1 ajm

∑
k τ

j,m
kl

(
ψml − θ

j
k

)
= 0,

which means that

ψml =
∑J
j=1

∑Kj
k=1 ajmτ

j,m
kl θjk∑J

j=1
∑Kj
k=1 ajmτ

j,m
kl

.

3.4 Proof for local convergence of
Algorithm 2

Equipped with the above updates with local and
global parameters of regularized MCT, we are ready
to demonstrate the convergence of Algorithm 2 to lo-
cal solution of objective function (12) of regularized
MCT in Theorem 2. To simplify the argument, we
only provide proof sketch for this theorem.

In particular, we denote ωj,(t)Kj
and Θj,(t)

Kj
as the up-

dates of local weights and local atoms in step t of
Algorithm 2 for t ≥ 0. Similarly, we denote wm,(t)

L

and Ψm,(t)
L as the updates of global weights and global

atoms at step t. Furthermore, we denote

g({ωj,(t)Kj
}, {Θj,(t)

Kj
}, {wm,(t)

L }, {Ψm,(t)
L })

:=
J∑
j=1

Ŵ

(
P jnj , P

j

ωj
Kj
,Θj

Kj

)
+ ζŴ (P ,Q)

−R (π, τ ,a) .
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Then, according to local clustering updates step, we
would have

g({ωj,(t)Kj
}, {Θj,(t)

Kj
}, {wm,(t)

L }, {Ψm,(t)
L })

≥ g({ωj,(t+1)
Kj

}, {Θj,(t+1)
Kj

}, {wm,(t)
L }, {Ψm,(t)

L }).

On the other hand, invoking the global clustering up-
dates step, we achieve

g({ωj,(t+1)
Kj

}, {Θj,(t+1)
Kj

}, {wm,(t)
L }, {Ψm,(t)

L })

≥ g({ωj,(t+1)
Kj

}, {Θj,(t+1)
Kj

}, {wm,(t+1)
L }, {Ψm,(t+1)

L })

Governed by the above results, for any t ≥ 0, the fol-
lowing holds

g({ωj,(t)Kj
}, {Θj,(t)

Kj
}, {wm,(t)

L }, {Ψm,(t)
L })

≥ g({ωj,(t+1)
Kj

}, {Θj,(t+1)
Kj

}, {wm,(t+1)
L }, {Ψm,(t+1)

L }).

As a consequence, we achieve the conclusion of Theo-
rem 2.
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