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A Technical appendix

A.1 Preliminaries

Here we put together few standard technical results that are utilized in the main proofs.

Lemma 1. Let f : Rd → R be continuously differentiable, convex, and l-smooth. Then, we
have

f(u)− f(v) ≤ l

2‖u− v‖2 + 〈f ′(v),u− v〉 (1)

‖f ′(u)− f ′(v)‖2 ≤ 2l
(
f(u)− f(v)− 〈f ′(v),u− v〉

)
. (2)

Proof. Given in chapter 2 of Nesterov [8].

Lemma 2. The surrogate risk Rϕ(h) defined in (7, main text), for h(x) = 〈w,x〉, w ∈ Rd, is
l-smooth with coefficient l = E ‖x‖2 = vX .

Proof. Assuming the order of integration and differentiation can be reversed, one can write R′ϕ
as

R′ϕ(w) = −s E ρ′
(
γ − y〈w,x〉

s

)
yx.

It follows that for arbitrary w1,w2 ∈ Rd we have

‖R′ϕ(w1)−R′ϕ(w2)‖ ≤ s E ‖x‖
∣∣∣∣ρ′ (γ − y〈w1,x〉

s

)
− ρ′

(
γ − y〈w2,x〉

s

)∣∣∣∣
≤ s E ‖x‖

∣∣∣∣〈w2 −w1,x〉
s

∣∣∣∣
≤ ‖w2 −w1‖E ‖x‖2

where we utilized the property that ρ′ is 1-Lipschitz. This implies that

‖R′ϕ(w1)−R′ϕ(w2)‖ ≤ l‖w1 −w2‖, w1,w2 ∈ Rd (3)

with coefficient l = E ‖x‖2, namely Rϕ is E ‖x‖2-smooth.

Lemma 3 (Confidence interval for sample mean of sub-Gaussian random vector). Let x be a
random vector taking values in Rd, with the sub-Gaussian property

E exp(a〈u,x−E x〉) ≤ exp(ca2〈u,ΣXu〉), a ≥ 0
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for some constant c > 0 and ΣX
..= E(x−E x)(x−E x)T . Given n independent copies of x,

denoted x1, . . . ,xn, write x ..= n−1∑n
i=1 xi. Then with probability no less than 1− δ, we have

‖x−E x‖ ≤ 2

√
c‖ΣX‖ log(δ−1)

n
.

Proof. We use the Chernoff extension of Markov’s inequality to establish exponential tails for
the deviation of the sample mean from its expectation, a standard technique [2]. For real-
valued random variable z ≥ 0, taking any b > 0 we have b I{z ≥ b} ≤ z I{z ≥ b} almost surely.
Integrating both sides implies b P{z ≥ b} ≤ E zI{z ≥ b} ≤ E z, using the non-negativity
of z for the latter inequality. Thus P{z ≥ b} ≤ E z/b, the classic Markov inequality. For
non-decreasing function f(z) ≥ 0, this naturally extends via P{z ≥ b} ≤ P{f(z) ≥ f(b)} to
P{z ≥ b} ≤ E f(z)/f(b), now for any real-valued random variable z. When E z = 0, setting
f(z) = z2 yields the special case of Chebyshev’s inequality. Chernoff’s inequality follows from
the special case of f(z) = exp(az), for a > 0, with the form

P{z ≥ b} ≤ e−ab E exp(az).

If the moment generating function of z is not finite, then of course these bounds are vacuous,
but in the sub-Gaussian case we have easily manipulated upper bounds. In our setup we have
z = 〈u,x−E x〉, and by our hypothesis we have for any ‖u‖ = 1 that

P{〈u,x−E x〉 ≥ b} ≤ e−ab exp(ca2〈u,ΣXu〉)

≤ exp
(
ca2‖ΣX‖ − ab

)
where ‖ΣX‖ denotes the `2-induced matrix norm, equivalent to the spectral norm, i.e., the
largest singular value of ΣX [6]. Since this holds for any a > 0, this upper bound can be made
as tight as possible when we set a = b/(2c‖ΣX‖), resulting in

P{〈u,x−E x〉 ≥ b} ≤ exp
(
− b2

4c‖ΣX‖

)
.

For the special case of u = (x−E x)/‖x−E x‖, we have 〈u,x−E x〉 = ‖x−E x‖, yielding
the same bound for P{‖x−E x‖ ≥ b} as a special case.

Finally, for the sample mean, we note that

〈u,x−E x〉 = 1
n

n∑
i=1
〈u, (xi −E x)〉 .

Plugging this in to our Chernoff equality,

P{〈u,x−E x〉 ≥ b} ≤ e−anb
n∏
i=1

exp(ca2〈u,ΣXu〉)

≤ exp
(
nca2‖ΣX‖ − anb

)
.

Once again optimizing with respect to a, and setting u = (x−E x)/‖x−E x‖ as noted above,
we have

P{‖x−E x‖ ≥ b} ≤ exp
(
− nb2

4c‖ΣX‖

)

which implies the desired result.
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A.2 Proofs of results in the main text

Derivation of (3, main text). Considering the definition of ψ, for the case of |u| ≤
√

2, we have
an indefinite integral ∫

ψ(u) du = u2

2 −
u4

24 + C1,

and since we would like a loss function taking a value of zero at u = 0, we set C1 = 0. For the
case of u >

√
2, we have ∫

ψ(u) du = 2
√

2
3 u+ C2.

Since we would like this integral to be continuous on R, we must have

u2

2 −
u4

24 = 2
√

2
3 u+ C2

when u =
√

2. Setting C2 = −1/2 achieves this.

Proof of Remark 1 (main text). For simplicity, consider instance space X = R. As an intuitive
model, consider Hray, the set of all classifiers defined by rays in the “left” direction. That is,
each h ∈ Hray takes the form

h(x;α) = I{x ≤ α} − I{x > α}

for some α ∈ R. Upon the underlying distribution, break up the input space into three
segments, (−∞, α∗l ]. (α∗l , α∗u), [α∗l ,∞), with probabilities

P{x <= α∗l } = P{x >= α∗u} = 1/3.

It follows that P{x ∈ (α∗l , α∗u)} = 1/3 as well. Furthermore, assume that the labeling of pair
(x, y) is done as

x 7→ y =
{

1, x /∈ (α∗l , α∗u)
−1, x ∈ (α∗l , α∗u)

.

In this situation, given the probabilities, it is evident that in terms of minimizing the classifi-
cation error E I{y 6= h(x)}, the optimal choice is to select h(·;α∗l ), in which case

E I{y 6= h(x;α∗l )} = P{x >= α∗l } = 1/3.

This gives us a lower bound on performance, namely

E I{y 6= h(x)} ≥ 1/3, ∀h ∈ Hray.

Now, in the limiting case of ρ(u) = u2, say we have

h∗ ∈ arg min
h∈Hray

E (γ − y h(x))2
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for a pre-fixed value of γ > 1/3, something we are free to do. Note that as P{y h(x) <= 0} =
P{y 6= h(x)} ≥ 1/3, we have

E y h∗(x) = P{y h∗(x) > 0} −P{y h∗(x) <= 0}

≤ 2
3 −

1
3

= 1
3

< γ.

Since we know that

E y h∗(x) = arg min
γ

E (γ − y h∗(x))2 ,

it follows that the margin level γ need not provide a reliable measure of the location of the
distribution of y h∗(x) over a random draw from the underlying data distribution.

Proof of Proposition 2 (main text). We begin with a sufficient condition for γ to equal γ̂(h),
n∑
i=1

ρ′ (γ − yi h(xi)) = 0.

This function is bounded on R by ±B, where B ..= ρ′(
√

2). For clarity, write ai ..= yi h(xi) for
i ∈ [n]. Assume without loss of generality that n > 1 is odd and ai ≤ ai+1 for i ∈ [n − 1].
Writing m ..= (n+ 1)/2, the median value is am. Obviously, taking any scale such that

0 < s <
|am − ai|√

2
, i 6= m

it follows immediately that
n∑
i=1

ρ′ (am − ai) = 0

since the mth summand is zero, the first (n− 1)/2 summands equal
√

2, and the last (n− 1)/2
summands equal −

√
2, canceling each other out. Thus for any s small enough, the median is

a valid solution. Extending this to the case of n even is straightforward. Writing m ..= n/2
now, since ρ′(u) = −ρ′(−u), it follows that ρ′s(γ − am) + ρ′s(γ − am+1) = 0 when we set
γ = (am+am+1)/2. Looking at the sum over {ρ′(γ−ai)}i∈[n] There are (n−2)/2 terms no less
than these two middle terms, and (n−2)/2 terms no greater than them. Just as before, taking
s > 0 small enough, the former will equal

√
2 and the latter −

√
2, once again canceling each

other out and leaving the median as a valid solution. This proves part 1 of the hypothesis.
As for the empirical mean case (part 2), we use a more general result, taken from Holland

and Ikeda [5]:

Lemma 4. Let x be an arbitrary random variable with distribution ν. Assuming Eν |x|3 <∞,
it follows that defining

θ∗ ..= arg min
θ∈R

Eν ρs(θ − x)

the deviation can be controlled as

|θ∗ −Eν x| ≤ cs−2, s > 0

for constant c > 0.
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Substituting underlying data distribution for ν, and y h(x) for x, and considering the analogous

γ∗(h) ..= arg min
γ∈R

E ρs(γ − y h(x))

it immediately follows that

|γ∗(h)−E y h(x)| = O

( 1
s2

)
for any valid distribution (i.e., where the third moment condition holds). This holds for the
case of the empirical distribution Pn(A) ..= n−1∑n

i=1 I{yi h(xi) ∈ A}, and plugging in Pn for
ν we have that γ∗(h) = γ̂(h), and obtain part 2.

Proof of Proposition 4 (main text). This stability property follows from basic properties of the
function ρ, as follows. Since h ∈ H is pre-fixed, we suppress it in the notation. Write {qi}ni=1
and {q′i}ni=1 for the margins y h(x) evaluated on the two data sets of interest (original and
modified). By definition, on the pre-modification data set, we have

n∑
i=1

ρ′
(
γ̂ − qi
s

)
= 0.

Assume that the jth index is the one where zj 6= z′j , and thus where qj 6= q′j . Without loss of
generality, assume qj > q′j . In the optimistic case, where γ̂ − qj ≥

√
2, this does not impact

the estimator at all, and γ̂ = γ̂′. On the pessimistic side, the largest impact possible would be
n∑
i=1

ρ′
(
γ̂ − q′i
s

)
= ρ′

(
γ̂ − q′j
s

)
− ρ′

(
γ̂ − qj
s

)
≥ ρ′(

√
2)− ρ′(−

√
2)

= 2ρ′(
√

2)
= 4
√

2/3.

Thus, in order to satisfy the first order condition
n∑
i=1

ρ′
(
γ̂′ − q′i
s

)
= 0,

a shift from γ̂ to γ̂′ must in the worst case make up 4
√

2/3, by sufficiently decreasing γ̂′. Define
an index

I ..=
{
i ∈ [n] : |γ̂ − qi|

s
≤
√

2
2

}
.

The value
√

2/2 in the definition of I is arbitrary; any value less than
√

2 would work fine, but
this allows for a straightforward argument. The points with i ∈ I give us a worst-case value for
how far we must shift from γ̂ to γ̂′, as follows. Write m ..= |I|, and note that if m ≥ 3, a jump
of width

√
(2/m) from the edge of our “good range” of [−

√
2/2,
√

2/2] in the slowest-changing
direction (say positive side, without loss of generality) yields a slope of

ρ′′
(√

2
2 +

√
2
m

)
= 1

2 −
2(
√
m+ 1)
m

.
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By symmetry, the slope on the negative side is the same. It follows that

ρ′
(
−
√

2
2

)
− ρ′

(
−
√

2
2 −

√
2
m

)
≥ D ..=

√
2
m

(
1
2 −

2(
√
m+ 1)
m

)
.

Shifting γ̂ such that

γ̂′ − q′i
s
− γ̂ − q′i

s
= −

√
2
m
,

which is to say setting γ̂′ = γ̂−s
√

(2/m), we know that at the very least, each i ∈ I contributes
−D to the sum in the first-order optimality condition. That is to say, we have

n∑
i=1

ρ′
(
γ̂ − q′i
s

)
−

n∑
i=1

ρ′
(
γ̂′ − q′i
s

)
≥ mD.

All that is left is to ensure mD ≥ 4
√

2/3. Some basic arithmetic shows that m ≥ 24 implies
mD ≥ 4

√
2/3. Thus, we conclude that with s such that m = |I| ≥ 24, the true γ̂′ for the

modified set can in the worst case be no farther from γ̂ than s
√

(2/m), concluding the proof.
Assuming |I| ≥ n/2 ≥ 24 yields the desired result as a special case.

Proof of Lemma 6 (main text). Extending the results of Catoni [3], as long as ρ satisfies

− log(1− u+ Cu2) ≤ ρ′(u) ≤ log(1 + u+ Cu2), u ∈ R (4)

then exponential tails on the empirical estimator’s deviation can be obtained; there is nothing
particularly special about ρ defined in (3, main text), except the computational convenience
and ease of analysis. Given this inequality, Lemma 1 of Holland and Ikeda [5] implies that

P
{
|γ̂(h)−E y h(x)|

2 ≤ C var y h(x)
s

+ s log(2δ−1)
n

}
≥ 1− δ.

For our setting, ρ defined in (3, main text) indeed satisfies (4), with C = 1/2, which follows
from Catoni and Giulini [4, Lemma 1], where this function is studied in the context of robust
vector mean estimates. Optimizing the upper bound with respect to s > 0 and plugging in
C = 1/2 yields the desired result.

Proof of Lemma 8 (main text). We follow along with the now-standard framework set out by
Bartlett et al. [1]. For simplicity, we start with the special case of s = 1, where the loss function
becomes ϕ(u) = ρ(γ − u).

Next we put together the analytical machinery that will be used. First, the conditional
expected ϕ-risk takes the form

E (ϕ(y h(x))|x) = ηϕ(y h(x)) + (1− η)ϕ(y h(x))

where η denotes η = P{y = 1}. A generalization of this quantity for arbitrary η ∈ [0, 1] is
constructed as

Cη(u) ..= ηϕ(u) + (1− η)ϕ(−u), u ∈ R.

The optimal value that this takes is denoted by

H(η) ..= inf
u∈R

Cη(u).
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Denote any optimal value using u∗, namely any

u∗ ∈ arg min
u∈R

Cη(u).

If this value is indeed unique, then it makes sense to map η 7→ u∗(η). In relating R and Rϕ, our
intuitive concern is the degree to which, on average, ϕ(y h(x)) can be small while I{h(x) 6= y}
remains non-zero. This notion is captured formally by the following nice quantity:

H−(η) ..= inf {Cη(u) : u(2η − 1) ≤ 0} .

Using the “best (generalized) conditional ϕ-risk that can be achieved despite having different
signs from (2η − 1).” Of course, the word “despite” becomes appropriate when we replace η
with the conditional probability η(x) = P{y = 1|x}, in which sign(2η(x) − 1) is the Bayes
decision rule for this classification task. For ϕ to be a good surrogate, we would expect that
H− should tend to be larger than H. If this was not the case, a small ϕ-risk could be achieved
despite having mis-labeled some instances, which would immediately imply a small Rϕ but
larger R. To ensure that this cannot happen, the condition put forward by Bartlett et al. [1]
is very lucid: call ϕ classification-calibrated if

H−(η) > H(η), ∀ η 6= 1/2.

The size of this gap is defined as

Ψ̃(a) ..= H−
(1 + a

2

)
−H

(1 + a

2

)
,

and the Fenchel-Legendre bi-conjugate of Ψ̃ is denoted by Ψ. It is this function that has the
desirable properties that interest us. For one, via their Theorem 1, for any non-negative ϕ,
any distribution on X × {−1, 1} and measurable function h, we have

Ψ (R(h)−R∗) ≤ Rϕ(h)−R∗ϕ.

It is easy to characterize this classification-calibration in the convex case. If ϕ is convex, then
via their Theorem 2(1),

ϕ is classification calibrated ⇐⇒ ϕ is differentiable at zero with ϕ′(0) < 0.

Since our function is (d/du)ϕ(u) = ρ(γ − u)(−1), for γ > 0 we have ρ(γ) > 0 and thus
(d/du)ϕ(0) < 0 as desired. Thus our ϕ, being a convex function on R, is classification cali-
brated. Furthermore, via Theorem 2(2), the Ψ function takes a particularly simple form:

Ψ1,γ(a) = ϕ(0)−H1,γ

(1 + a

2

)
, −1 ≤ a ≤ 1

where ϕ(0) = ρ(γ) gives us the expression from the hypothesis in the case of s = 1. All that
remains in order to obtain Ψ1,γ then is to compute H1,γ explicitly, which we carry out below.

Now, since both ϕ(u) and ϕ(−u) are convex functions of u, and Cη(u) is a convex combina-
tion of these two, it follows that Cη(u) is also convex. Furthermore, noting that both u→∞
and u→ −∞ imply Cη(u)→∞. Thus a minimum clearly exists, and can be characterized by
a first-order condition as follows. Taking the first derivative of Cη(·), we have

d

du
Cη(u) = ηρ′(γ − u)(−1) + (1− η)ρ′(γ + u) = 0
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which using ρ′(−u) = (−1)ρ′(u), can be equivalently stated as

ρ′(u− γ)
ρ′(u+ γ) = η − 1

η
. (5)

That is to say, for η ∈ (0, 1), any u∗ satisfying (5) will be a minimizer in that Cη(u∗) ≤ Cη(u)
for all u.

It should be clear that the value of γ plays an important role in finding the solution. Note
that

√
2 is an important threshold here, since

u ≥
√

2 =⇒ ρ′(u) = ρ′(
√

2) = 2
√

2
3 .

On the “left” side as well, u ≤ −
√

2 implies ρ′(u) = −ρ′(
√

2).
For the case of η = 0, we have u∗ = −γ, and when η = 1 we have u∗ = γ. This implies that

H1,γ(0) = H1,γ(1) = 0. More generally, an obvious but important fact is that for any η ∈ (0, 1),
any solution u∗ must fall on the open interval (−γ, γ). This is because the right-hand side of
(5) is always negative, but the left-hand side is negative if and only if u − γ < 0 < u + γ,
equivalently u ∈ (−γ, γ). Also, for the case of η = 1/2, we have that (5) is always satisfied by
setting u = 0, for which case we have

H1,γ(1/2) = 1
2ρ(γ − 0) + 1

2ρ(γ + 0) = ρ(γ).

This value, and thus the height of the peak of H1,γ(·), changes as a function of γ. Let’s proceed
and look at evaluating H1,γ(η) for η ∈ (0, 1) when η 6= 1/2. We shall consider the following
distinct settings:

1. 0 < γ ≤
√

2/2

2.
√

2/2 ≤ γ <
√

2

3.
√

2 ≤ γ

Doing these one at a time, first consider 0 < γ ≤
√

2/2. This case is simple, since for any
solution u∗ ∈ (−γ, γ) we have that u∗±γ ∈ [−

√
2,
√

2] and thus we can set ρ′(u) = u−u3/6, re-
arrange equality (5), and solve for roots of the resulting cubic polynomial. The computations
are quick, and writing

P (u; a, b, c, d) ..= au3 + bu2 + cu+ d

and α ..= (η − 1)/η, the new condition is

a = 1− α
b = −3γ(1 + α)
c = 3(1− α)(γ2 − 2)
d = (1 + α)(6γ − γ3)

P (u; a, b, c, d) = 0. (6)

Call this (6) the double-cube condition (see Figure 1). The discriminant of an arbitrary cubic
polynomial is defined

∆ ..= 18abcd− 4b3d+ b2c2 − 4ac3 − 27a2d2, (7)
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Graph of double-cube function

Figure 1: Graph of the third-degree polynomial used in the double-cube condition (6). Vertical blue lines
denote ±γ (here γ =

√
2/2), and the vertical pink line denotes the root computed analytically.

and as long as ∆ < 0, the function P (u) has only one real root, which can be computed
analytically (see Appendix). Writing u∗(η) for the real value satisfying P (u∗(η)) = 0 here, by
plugging this into the original objective we get H1,γ(η) = Cη(u∗(η)).

Next consider the case of
√

2/2 < γ <
√

2. This is the most complicated case. Writing
δ ..= |

√
2 − γ|, if a solution exists on the interval [−δ, δ], then it will naturally satisfy the

double-cube condition given above. If there is no solution on this interval, then depending on
whether η > 1/2 or η < 1/2, the appropriate condition will respectively be

ρ′(u− γ)− ρ′(
√

2)η − 1
η

= 0

or

ρ′(u+ γ) + η

η − 1ρ
′(
√

2) = 0.

Call these the minus and plus single-cube conditions. Re-arranged into more explicit terms,
we have respectively

a = 1
b = −3γ
c = 3γ2 − 6

d = −6
(
γ + ρ′(

√
2)

α
− γ3

6

)
P (u; a, b, c, d) = 0 (8)
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Figure 2: Graph of the third-degree polynomials used in the single-cube conditions. The left figure corresponds
to condition (8), and the right figure corresponds to condition (9). The vertical blue lines are again ±γ (with
γ = 2

√
2 + 1/2 here), and the vertical green lines are ±δ.

and

a = 1
b = 3γ
c = 3γ2 − 6

d = 6
(
γ + αρ′(

√
2)− γ3

6

)
P (u; a, b, c, d) = 0 (9)

Graphs of these polynomials are plotted in Figure 2. Computationally determining which
to use is straightforward. By the monotonicity of ρ′, we can simply check the edge case
u = sign(η− 1/2)δ. In the case of η > 1/2, noting that both the LHS and RHS are negative, if

ρ′(δ − γ)
ρ′(δ + γ) <

η − 1
η

, (10)

then the solution must be larger than δ, and thus the minus single-cube condition will be
sufficient. Else, the double-cube condition will provide a solution. On the other hand, when
η < 1/2, if

ρ′(−δ − γ)
ρ′(−δ + γ) >

η − 1
η

, or more cleanly, ρ
′(δ − γ)
ρ′(δ + γ) <

η

η − 1 , (11)

then the solution must be below −δ, and thus the plus single-cube condition will be sufficient.
Else, the double-cube condition will provide a solution. This gives us a simple procedure for
the current range of γ values being considered1, as follows:

1While there may be more than one real root of the cubic polynomials used in these conditions, there will
not be more than one root in the range of (δ, γ) (η > 1/2 case) or (−γ,−δ) (η < 1/2 case).
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• When η > 1/2:

– If (10), then solve (8), take root falling in (δ, γ).
– Else, solve (6).

• When η < 1/2:

– If (11), then solve (9), take root falling in (−γ,−δ).
– Else, solve (6).

Finally, consider the case of
√

2 ≤ γ. This situation is simple: if η > 1/2, find solutions to
the minus single-cube condition, and if η < 1/2, find solutions to the plus single-cube condition.

With all these conditions in place, it follows that for any γ > 0 and any η ∈ [0, 1], we can
find a solution u∗ such that Cη(u∗) = H1,γ(η). It follows then that following the procedures
outlined above, we can also compute Ψ1,γ(a) = ϕ(0)−H1,γ((1+a)/2) for arbitrary a ∈ [−1, 1].

The consistency part of the lemma statement follows immediately from the calibration of
ϕ, using Bartlett et al. [1, Theorem 1(3)]. Invertibility of Ψ1,γ follows from convexity of ϕ and
Lemma 2 of Bartlett et al. [1].

It remains only to extend these results to the case of arbitrary s > 0, namely the general
loss function ϕ(u) = s2 ρ((γ − u)/s). That ϕ(u) is convex and that ϕ′(0) < 0 under arbitrary
s > 0 is immediate. Furthermore, the first-order optimality condition becomes

η − 1
η

= ρ′((u− γ)/s)
ρ′((u+ γ)/s) = ρ′((u/s)− (γ/s))

ρ′((u/s) + (γ/s)) . (12)

Writing γ̃ = γ/s, note that using the exact same procedures outlined above, we can always
find a u′ such that

η − 1
η

= ρ′(u′ − γ̃)
ρ′(u′ + γ̃) ,

which means that writing u∗ = su′, we have that u∗ is a solution of (12). This means that for
any γ > 0, s > 0, and η ∈ [0, 1], we can find a solution u∗ such that Cη(u∗) = Hs,γ(η), which
yields the general Ψs,γ as

Ψs,γ(u) = s2 ρ

(
γ

s

)
−Hs,γ

(1 + u

2

)
,

concluding the proof.

Proof of Theorem 11, main text. To keep notation clean, throughout this proof we denote the
risk gradient by g∗(w) ..= R′(w), the surrogate risk gradient by g(w) ..= R′ϕ(w), and the new
loss gradient by ĝ(w) ..= L′(w; γ). By Lemma 8 (main text), we have that for any choice of
w ∈ W,

Ψs,γ (R(w)−R∗) ≤ Rϕ(w)−R∗ϕ.

To control the right-hand side, note that by strong convexity w∗ is the unique minimum of
Rϕ, and so Rϕ(w)−R∗ϕ = Rϕ(w)−Rϕ(w∗). Since Rϕ is smooth via Lemma 2 with coefficient
vX , using the basic property (1) of smooth functions, we have

Rϕ(w)−Rϕ(w∗) ≤ vX‖w −w∗‖2.

11



It remains to control ‖ŵ(t) − w∗‖, where ŵ(t) is the output of a single iteration of the for
loop in Algorithm 1 (main text). This can be broken up into computational and statistical
elements, as follows. We can readily bound this distance from above as

‖ŵ(t+1) −w∗‖ = ‖ŵ(t) − α ĝ(ŵ(t))−w∗‖
≤ ‖ŵ(t) − α g(ŵ(t))−w∗‖+ α‖ĝ(ŵ(t))− g(ŵ(t))‖.

The initial equality follows immediately by design of Algorithm 1 (main text) and the assump-
tion that α(t) = α. Using the triangle yields the upper bound, which is composed of two terms:
the first term is the difference after doing one update of the ideal gradient descent routine (to
minimize Rϕ), and the second term is a statistical error term for the empirical mean estimate
of the surrogate risk gradient vector.

For small enough step size 0 < α < 2/(κ+ vX), the update improves on the previous error
as

‖ŵ(t) − α g(ŵ(t))−w∗‖2 ≤
(

1− 2ακvX
κ+ vX

)
‖ŵ(t) −w∗‖2.

Writing β ..= 2κvX/(κ+ vX), we have that

‖ŵ(t+1) −w∗‖ ≤
√

1− αβ‖ŵ(t) −w∗‖+ α‖ĝ(ŵ(t))− g(ŵ(t))‖. (13)

This deals with the computational error part. Now for the statistical error part, namely the
accuracy of the ĝ ≈ g approximation. Writing b(w) ..= −ρ((γ−y〈w,x〉)/s) y x and multiplying
this by s, the sub-Gaussianity assumption of A3 (main text) gives us that for any w ∈ Rd and
a ≥ 0,

E exp(a〈u, s b(w)−E s b(w)〉) = E exp((as)〈u, b(w)−E b(w)〉)
≤ exp(c(as)2〈u,Σ(w)u〉)
= exp((cs2)a2〈u,Σ(w)u〉)

for all ‖u‖ = 1, where Σ(w) is the covariance matrix of b(w), and c > 0 is any constant such
that the sub-Gaussian property holds. Now, suppressing w from the notation for readability,
noting that

Σ = E(b−E b)(b−E b)T

= E bbT − (E b)(E b)T ,

and using the positive semi-definiteness of (E b)(E b)T , since for all u we have

〈u, (E bbT − Σ)u〉 = 〈u, (E b)(E b)Tu〉 ≥ 0,

for each a ≥ 0 we can then bound

E exp(a〈u, b−E b〉) ≤ exp(cs2a2〈u,Σu〉)
≤ exp(cs2a2〈u, (E bbT )u〉)
≤ exp(cs2a2‖E bbT ‖)
≤ exp(cs2a2 E ‖bbT ‖)
≤ exp(cs2a2ρ′(

√
2)2 E ‖xxT ‖)

12



With these inequalities, writing

bi(w) ..= −s ρ′
(
γ − yi〈w,xi〉

s

)
yi xi, i ∈ [n]

for any fixed w and noting that ĝ(w) = n−1∑n
i=1 bi(w), we can leverage Lemma 3 to prove

that the “bad event”

E(w) ..=

‖ĝ(w)− g(w)‖ > 2s

√
cρ′(
√

2)2 E ‖xxT ‖ log(δ−1)
n

 (14)

has probability P E(w) ≤ δ.
Next, we must deal with the fact that in running Algorithm 1 (main text), the ŵ(t) for

all t > 0 will be random and dependent on the sample. In general, there is not much choice
but to pursue uniform bounds, namely high-probability events that hold over all w ∈ W.
To do this is straightforward with an ε-cover of W. Since W is a compact subset of Rd by
assumption A0 (main text), it follows that the size of an ε-cover in the usual norm is bounded
as Nε ≤ (3∆/2ε)d [7]. Denote the centers of the ε balls covering W by {w̃1, . . . , w̃Nε}. Given
any arbitrary w ∈ W, write w̃ = w̃(w) for the center closest to w, which by definition satisfies
‖w − w̃‖ ≤ ε. The statistical error can be bounded above by

‖ĝ(w)− g(w)‖ ≤ ‖ĝ(w)− ĝ(w̃)‖+ ‖g(w)− g(w̃)‖+ ‖ĝ(w̃)− g(w̃)‖. (15)

We want to take the supremum of both sides with respect to w ∈ W. Let’s take it term by
term.

Starting with the first term, by the 1-Lipschitz property of ρ′, it follows immediately that
we can bound

‖bi(w)− bi(w̃)‖ ≤ ‖xi‖‖w − w̃‖
s

≤ ‖xi‖ε
s

.

This implies that

‖ĝ(w)− ĝ(w̃)‖ ≤
(
ε

s

)
s

n

n∑
i=1
‖xi‖2 ≤

εE ‖x‖2

δ
= εvX

δ
(16)

on an event of probability no less than 1−δ, where we have simply used Chebyshev’s inequality
to obtain tail bounds. Since regardless of what w we choose, the corresponding w̃ will be no
farther than ε, this (16) gives us a uniform bound.

For the second term, we just use the vX -smoothness of Rϕ, shown in Lemma 2. This implies

‖g(w)− g(w̃)‖ ≤ vX‖w − w̃‖ ≤ vXε (17)

again for arbitrary choice of w ∈ W.
Finally, for any fixed w̃ ∈ {w̃1, . . . , w̃Nε}, we can bound the third term using (14). Making

the dependence of w̃ on w explicit for clarity, the critical fact is that

sup
w∈W

‖ĝ(w̃(w))− g(w̃(w))‖ = max
k∈[Nε]

‖ĝ(w̃k)− g(w̃k)‖ .

The “good event” of interest here is the event in which the bad event does not occur at any of
the ε-cover centers, that is

E+ =

 ⋂
k∈[Nε]

E(w̃k)

c ,
13



where (·)c denotes the complement event. It thus follows that taking a union bound, we have
that with probability no less than 1− δ, we can uniformly bound as

‖ĝ(w̃(w))− g(w̃(w))‖ ≤ 2s

√
cρ′(
√

2)2 E ‖xxT ‖ log(Nεδ−1)
n

, ∀w ∈ W. (18)

Putting these three bounds together, and taking unions over the good events required for the
first and third terms, we have with probability no less than 1− 2δ that

sup
w∈W

‖ĝ(w)− g(w)‖ ≤ εvX
δ

+ vXε+ 2s

√
cρ′(
√

2)2 E ‖xxT ‖ log(Nεδ−1)
n

.

Setting ε = δ/
√
n, this simplifies to

sup
w∈W

‖ĝ(w)− g(w)‖ ≤ (1 + δ)vX√
n

+ ε∗√
n
.

where we have defined

ε∗ ..= 2s
√
cρ′(
√

2)2 E ‖xxT ‖(d log(3
√
n(2δ)−1) + log(δ−1)). (19)

On the good event E+, then denoting ε = (ε∗ + (1 + δ)vX)/
√
n, for all steps t we can

re-write (13) as

‖ŵ(t+1) −w∗‖ ≤
√

1− αβ‖ŵ(t) −w∗‖+ αε.

Assuming the algorithm is run for T updates, then with some straightforward algebra we can
unfold and clean up the recursion such that

‖ŵ(T ) −w∗‖ ≤ (
√

1− αβ)T ‖ŵ(0) −w∗‖+ 2ε
β
.

Let us connect all the inequalities now. We can bound the excess surrogate risk as

Rϕ(ŵ(T ))−R∗ϕ ≤
(

(1− αβ)T ‖ŵ(0) −w∗‖2 + 4
β2n

((1 + δ)vX + ε∗)2
)
vX

which via the first inequality of this proof using Ψs,γ , yields the desired result.

A.3 Explanation of root-finding function getroot

We have uploaded some demonstrative software for the root-finding sub-routine needed for
computation of Ψs,γ to a public repository.2 The core routine is captured in a function called
getroot, using a very simple strategy, which we describe below.

The cubic polynomials considered are equations of the form

au3 + bu2 + cu+ d = 0. (20)

Recall the discriminant ∆ given in (7). There are a few basic settings to consider, as below.

• If ∆ < 0, then there is only one real root (the rest are complex).

• If ∆ = 0, then all roots are real, but we have multiple roots.
2Available at: https://github.com/feedbackward/catcube.
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• If ∆ > 0, then all roots are real, and distinct.

For the case of ∆ < 0, the traditional solution approach is as follows. Defining two new
quantities

∆0 ..= b2 − 3ac
∆1 ..= 2b3 − 9abc+ 27a2d

the key value for computing roots is the following

C =

∆1 ±
√

∆2
1 − 4∆3

0

2

1/3

.

Assuming that C is known, then roots are computed as

u∗ = − 1
3a

(
b+ C + ∆0

C

)
.

Naturally, if C is real, then so is the resulting u∗. Computationally, how do we go about getting
a real version? This is extremely straightforward. Let’s take the addition case. Consider the
condition

∆1 +
√

∆2
1 − 4∆3

0 ≥ 0.

If this condition holds, then we can just compute as-is. If this condition fails to hold, then
taking the cube root in many programming languages will lead to a complex number. To get
a real number when the above condition fails, just compute

C = (−1)

 |∆1 +
√

∆2
1 − 4∆3

0|
2

1/3

.

With a real-valued C in hand, u∗ immediately follows.
Next, consider the case of ∆ = 0. This case is very simple. This scenario also sub-divides,

based on the value of ∆0. If ∆0 = 0, then the root is a “triple” root, and takes the form

u∗T = − b

3a.

If ∆0 6= 0, then we have two roots, a “double” root u∗D and a “single” root u∗S , with the forms

u∗D = 9ad− bc
2∆0

u∗S = 4abc− 9a2d− b3

a∆0
.

Finally, consider the case of ∆ > 0. For elegant computations, we make use of the trigono-
metric method pioneered by F. Viète. The starting point is a trigonometric identity, as follows:

cos 3x = 4 cos3 x− 3 cosx. (21)

To prove this is straightforward. Making use of elementary trigonometric identities, observe
first that

cos 3x = cos(2x+ x) = cos 2x cosx− sin 2x sin x.
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Looking at each of the terms individually,

cos 2x cosx = (2 cos2 x− 1) cosx
= 2 cos3 x− cosx

sin 2x sin x = 2 sin x cosx sin x
= 2 cosx sin2 x

= 2 cosx(1− cos2 x)

Taking the difference of the two new forms gives the desired identity (21). With this identity
now at our disposal, we proceed with cleaning up the cubic equation. Dividing out a, and
replacing u with v − b/(3a), note that this cleans up to

v3 + pv + q = 0 (22)

where

p = 3ac− b2

3a2

q = 2b3 − 9abc+ 27a2d

27a3 .

Note that since we are assuming ∆ > 0 for the original cubic equation (20), which implies
three distinct real roots for (20), it follows that (22) also has three distinct real roots. This
can only happen when its discriminant is positive, which is to say when

−4p3 − 27q2 > 0. (23)

Note that this implies

p3 < −27q2

4 ≤ 0.

This implies that p < 0, otherwise the cube of p would necessarily be non-negative. Moving
forward, considering the trigonometric identity (21), the desired form of our cubic equation
is 4z3 − 3z = e, where |e| ≤ 1 so that it falls in the range of the cosine function. To aid
computations, let us introduce a couple more variables and coefficients. Set k such that p =
−3k2, multiply by 4, and replace v with rz, where r is a coefficient to be defined shortly. Doing
so, we have

0 = 4(rz)3 + 4(−3k2)rz + 4q

= 4z3 − 12k3

r2 z + 4q
r3 .

Setting r = 2k, we can clean up into the following equation

4z3 − 3z = − q

2k3 , (24)

which is the desired form, as long as the right-hand side has absolute value no greater than
unity. Fortunately, this is immediately true from our assumptions. To see this, first observe(

q

2k3

)2
= −27q2

4p3 = 27q2

4|p|3
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and recall that from (23) and the fact that p < 0, it follows that

0 < −27q2 − 4p3 = −27q2 + 4|p|3

which implies

1 > 27q2

4|p|3 =
(
q

2k3

)2
.

Thus, we have that in our current case of ∆ > 0, the right-hand side of (24) indeed falls on the
interval (−1, 1). As such, this means that there exists an angle x∗ such that plugging cosx∗
into the polynomial (24), we have

4 cos3 x∗ − 3 cosx∗ = − q

2k3 .

Then using the key identity (21), it follows that

cos(3x∗) = − q

2k3 , implying x∗ = 1
3 arccos

(
− q

2k3

)
.

So, we have that cosx∗ solves (24). Note that since this function has period 2π, it holds that

cos(3x∗) = cos(2π + 3x∗) = cos(2π − 3x∗)

which after plugging in to (21), yields

cos
(

3
(2π

3 ± x
∗
))

= 4 cos3
(2π

3 ± x
∗
)
− 3 cos

(2π
3 ± x

∗
)

= − q

2k3 .

That is to say, the following values are all solutions to (24):

z∗1 = cos(x∗), z∗2 = cos
(2π

3 + x∗
)
, z∗3 = cos

(2π
3 − x

∗
)
.

With these values in hand, all that remains is to backtrack to the roots of the original cubic
polynomial of interest. For any z∗j , this is done as

y∗j = 2kz∗j

u∗j = y∗j −
b

3a

where j = 1, 2, 3. To summarize the case of finding roots when ∆ > 0, the basic computational
procedure is as below.

1. From original polynomial, (a, b, c, d) 7→ (p, q).

2. From new polynomial, (p, q) 7→ k 7→ e, where e ..= −q/(2k3).

3. From final polynomial, e 7→ x∗ 7→ (z∗1 , z∗2 , z∗3).

4. Backtrack over the roots as z∗j 7→ y∗j 7→ u∗j for j = 1, 2, 3.

5. Return (u∗1, u∗2, u∗3) as roots of (20).

This concludes our exposition of the content of getroot.
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