
Thompson Sampling for Combinatorial Multi-armed Bandit with Probabilistically Triggered Arms

A SUPPLEMENTAL DOCUMENT

A.1 Additional Numerical Results

We provide additional results for the disjunctive version of the problem that is introduced in Section 5. We
consider the class of problems BLB(R,K, p,�) described in [20], where L = 1 and the probability that user 1
finds page j attractive is given as

p1,j =

(
p if j  K

p�� otherwise.

Similar to [20], we set p = 0.2 and vary other parameters, namely R, K, and �. We run both CTS and CUCB
for 100000 rounds in all problem instances, and report their regrets averaged over 20 runs in Table 1.

Table 1: Average regret and its standard deviation for CTS and CUCB for the class of problems BLB(R,K, 0.2,�).

CTS CUCB

R K � Regret Std. Dev. Regret Std. Dev.

16 2 0.15 155.4 14.1 1284.1 52.4
16 4 0.15 103.2 9.0 998.9 33.2
16 8 0.15 52.1 9.8 549.5 16.8
32 2 0.15 321.4 18.9 2718.8 61.2
32 4 0.15 252.2 17.0 2227.0 55.4
32 8 0.15 155.4 25.7 1531.0 21.9
16 2 0.075 276.9 50.7 2057.6 79.6
16 4 0.075 205.4 25.7 1496.5 65.2
16 8 0.075 113.1 40.4 719.4 53.7

We observe that CTS outperforms CUCB in all problem instances in terms of the average regret. Next, we
compare the performance of CTS with CascadeKL-UCB proposed in [20] using the results reported in Table 1 in
[20]. We observe that CTS outperforms CascadeKL-UCB in all problem instances as well. As a final remark, we
see that for both CTS and CUCB, the regret increases as the number of pages (R) increases, decreases as the
number of recommended items (K) increases, and increases as � decreases.

A.2 Additional Facts

We introduce Fact 2 in order to bound the expression in Lemma 1 and Fact 3 in order to bound the expression in
Lemma 3.

Fact 2. (Multiplicative Cherno↵ Bound ([21] and [13])) Let X1, . . . , Xn be Bernoulli random variables taking

values in {0, 1} such that E[Xt|X1, . . . , Xt�1] � µ for all t  n, and Y = X1 + . . .+Xn. Then, for all � 2 (0, 1),

Pr[Y  (1� �)nµ]  e
� �2nµ

2 .

Fact 3. (Results from Lemma 7 in [12]) Given Z ✓ S̃
⇤
, let ⌧j be the round at which EZ,1(✓✓✓(t)) ^ ¬EZ,2(✓✓✓(t))

occurs for the jth time, and let ⌧0 = 0. If 8i 2 Z,Ni(⌧j + 1) � q and 0 < "  1/
p
e, then

E

2

4
⌧j+1X

t=⌧j+1

I{EZ,1(✓✓✓(t)), EZ,2(✓✓✓(t))}

3

5 
Y

i2Z

Bq � 1 (16)

where Bq is given as

Bq =

8
<

:
min

⇢
4

"2 , 1 + 6↵0
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� "2
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"2 otherwise
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and ↵
0
1
is a problem independent constant.

Moreover,

TX

q=0

 
Y

i2Z

Bq � 1

!
 13↵0

2

 
22|Z|+3 log |Z|

"2

"2|Z|+2

!
(17)

where ↵
0
2
is a problem independent constant.

A.3 Proof of Lemma 1

The proof is similar to the proof of Lemma 3 in [12]. However, additional steps are required to take probabilistic
triggering into account. Consider a base arm i 2 [m]. Let ⌧ iw be the round for which base arm i is in the triggering
set of the selected super arm for the wth time. Hence, we have i 2 S̃(⌧ iw) for all w > 0. Also let ⌧ i

0
= 0. Then, we

have:

E[|{t : 1  t  T, i 2 S̃(t), |µ̂i(t)� µi| > " _ Bi,2(t)}|]

= E
"

TX

t=1

I{i 2 S̃(t), |µ̂i(t)� µi| > " _ Bi,2(t)}
#

 E

2

4
TX

w=0

⌧ i
w+1X

t=⌧ i
w+1

I{i 2 S̃(t), |µ̂i(t)� µi| > " _ Bi,2(t)}

3

5

=
TX

w=0

E[I{i 2 S̃(⌧ iw+1
), |µ̂i(⌧

i
w+1

)� µi| > " _ Bi,2(⌧
i
w+1

)}]

=
TX

w=0

E[I{|µ̂i(⌧
i
w+1

)� µi| > " _ Bi,2(⌧
i
w+1

)}]

 1 +
TX

w=1

Pr[|µ̂i(⌧
i
w+1
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i
w+1
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= 1 +
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Pr[|µ̂i(⌧
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w+1
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i
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)] +
TX
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= 1 +
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 1 +
1

(1� ⇢)p⇤"2
+

2I{p⇤ < 1}
⇢2p⇤

where the second term in (18) is obtained by observing that

Pr[|µ̂i(⌧
i
w+1

)� µi| > ", Ni(⌧
i
w+1

) > (1� ⇢)wp⇤]


1X

k=d(1�⇢)wp⇤e
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)� µi| > "|Ni(⌧
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) = k]

and applying Hoe↵ding’s inequality, and the third term in (18) is obtained by using Fact 2.
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A.4 Proof of Lemma 2

The proof is similar to the proof of Lemma 1 in [12]. Let ✓0✓0✓0 := (✓0✓0✓0S̃⇤ ,✓✓✓S̃⇤c(t)) be such that

k✓0✓0✓0S̃⇤ �µµµS̃⇤k1  " . (19)

Claim 1: For all S0 such that S̃0 \ S̃
⇤ = ;, S0 6= Oracle(✓0✓0✓0).

Claim 1 holds since

r(S0
,✓

0
✓
0
✓
0) = r(S0

,✓✓✓(t)) (20)

 r(S(t),✓✓✓(t)) (21)

 r(S(t),µµµ) +B

✓
�S(t)

B
� (k̃⇤2 + 1)"

◆
(22)

= r(S(t),µµµ) +�S(t) �B(k̃⇤2 + 1)"

= r(S⇤
,µµµ)�B(k̃⇤2 + 1)" (23)

< r(S⇤
,µµµ)�Bk̃

⇤
"

 r(S⇤
,✓

0
✓
0
✓
0) (24)

where (20) follows from Assumption 3 since ✓
0✓0✓0 and ✓✓✓(t) only di↵er on arms in S̃

⇤ and S̃
0 \ S̃

⇤ = ;, (21) holds
since S(t) 2 OPT(✓✓✓(t)), (22) is by ¬D(t) and Assumption 3, (23) is by the definition of �S(t), and (24) is again
by Assumption 3.

Next, we consider two cases:

Case 1a: S̃
⇤ ✓ ˜Oracle(✓0✓0✓0) for all ✓0✓0✓0 = (✓0✓0✓0S̃⇤ ,✓✓✓S̃⇤c(t)) that satisfies (19).

Case 1b: There exists ✓
0✓0✓0 = (✓0✓0✓0S̃⇤ ,✓✓✓S̃⇤c(t)) that satisfies (19) for which S̃

⇤ 6✓ ˜Oracle(✓0✓0✓0). For this ✓
0✓0✓0, let

S1 = Oracle(✓0✓0✓0) and Z1 = S̃1 \ S̃
⇤. Together with Claim 1, for this case, we have Z1 6= S̃

⇤ and Z1 6= ;.

Note that Case 1a and Case 1b are complements of each other.

When Case 1a is true, for any given ✓
0✓0✓0, with an abuse of notation, let S0 := Oracle(✓0✓0✓0). Then, we have

r(S0,✓
0✓0✓0) � r(S⇤

,✓
0✓0✓0) � r(S⇤

,µµµ) � Bk̃
⇤
". If S0 62 OPT, then we have r(S⇤

,µµµ) = r(S0,µµµ) + �S0
. Combining

the two results above, we obtain r(S0,✓
0✓0✓0) � r(S0,µµµ) + �S0

� Bk̃
⇤
". By Assumption 3, this implies that

k✓0✓0✓0S̃0
� µµµS̃0

k1 � �S0

B � k̃
⇤
" >

�S0

B � (k̃⇤2 + 1)". Thus, from the discussion above, we conclude that either

S0 2 OPT or k✓0✓0✓0S̃0
� µµµS̃0

k1 >
�S0

B � (k̃⇤2 + 1)". This means ES̃⇤,1(✓
0✓0✓0) = ES̃⇤,1(✓✓✓(t)) holds. Hence, if Case 1a is

true, then Lemma 2 holds for Z = S̃
⇤.

In Case 1b, we also have r(S1,✓
0✓0✓0) � r(S⇤

,✓
0✓0✓0) � r(S⇤

,µµµ)�Bk̃
⇤
". Consider any ✓

00✓00✓00 = (✓00✓00✓00Z1
,✓✓✓Zc

1
(t)) such that

k✓00✓00✓00Z1
�µµµZ1

k1  ". (25)

We see that

k✓00✓00✓00S̃1
� ✓

0
✓
0
✓
0
S̃1
k1 =

X

i2S̃1\S̃⇤

|✓00i � ✓
0
i|+

X

i2S̃1\S̃⇤c

|✓00i � ✓
0
i|


X

i2Z1

(|✓00i � µi|+ |µi � ✓
0
i|)

 2(k̃⇤ � 1)"

hence r(S1,✓
00✓00✓00) � r(S1,✓

0✓0✓0)� 2B(k̃⇤ � 1)" � r(S⇤
,µµµ)�Bk̃

⇤
"� 2B(k̃⇤ � 1)" = r(S⇤

,µµµ)�B(3k̃⇤ � 2)".

Claim 2: For all S0 such that S̃0 \ Z1 = ;, S0 6= Oracle(✓00✓00✓00).

Similar to Claim 1, Claim 2 holds since

r(S0
,✓

00
✓
00
✓
00) = r(S0

,✓✓✓(t))
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 r(S(t),✓✓✓(t))

 r(S(t),µµµ) +B

✓
�S(t)

B
� (k̃⇤2 + 1)"

◆

= r(S(t),µµµ) +�S(t) �B(k̃⇤2 + 1)"

= r(S⇤
,µµµ)�B(k̃⇤2 + 1)"

< r(S⇤
,µµµ)�B(3k̃⇤ � 2)"

 r(S1,✓
00
✓
00
✓
00).

Claim 2 implies that when Case 1b holds, we have ˜Oracle(✓00✓00✓00) \ Z1 6= ;. Hence, we consider two cases again for
Oracle(✓00✓00✓00):

Case 2a: Z1 ✓ ˜Oracle(✓00✓00✓00) for all ✓00✓00✓00 = (✓00✓00✓00Z1
,✓✓✓Zc

1
(t)) that satisfies (25).

Case 2b: There exists ✓
00✓00✓00 = (✓00✓00✓00Z1

,✓✓✓Zc
1
(t)) that satisfies (25) for which Z1 6✓ ˜Oracle(✓00✓00✓00). For this ✓

00✓00✓00 let

S2 = Oracle(✓00✓00✓00) and Z2 = S̃2 \ Z1. Together with Claim 2, for this case, we have Z2 6= Z1 and Z2 6= ;.

Similar to Case 1a, when Case 2a is true, then Lemma 2 holds for Z = Z1. Thus, we can keep repeating the
same arguments iteratively, and the size of Zi will decrease by at least 1 at each iteration. After at most k̃⇤ � 1
iterations, Case (·)b will not be possible. In order to see this, suppose that we come to a point where |Zi| = 1.
As in all iterations, either Case(i+1)a or Case(i+1)b must hold. However, when Case(i+1)b holds, Claim i+1,
which follows from Case(i)b, implies that there exists a Zi+1 ✓ Zi such that Zi+1 6= ; and Zi+1 6= Zi, which is
not possible when |Zi| = 1. Therefore, we conclude that some Case (i+ 1)a must hold, where Zi ✓ S̃

⇤, Zi 6= ;,
and EZi,1(✓✓✓(t)) occurs.

Finally, we need to show that Claim i+ 1 holds for all iterations. We focus on the claim

r(S⇤
,µ)�B(k̃⇤2 + 1)" < r(S⇤

,µ)�B(k̃⇤ + 2
iX

k=1

(k̃⇤ � k))"

as repeating other arguments for all iterations is straightforward. The given inequality is true as k̃⇤+2
Pi

k=1
(k̃⇤�

k)  k̃
⇤ + 2

Pk̃⇤�1

k=1
(k̃⇤ � k) = k̃

⇤2
< k̃

⇤2 + 1. Note that, when checking Claim i + 1, we know that i previous

iterations have passed, hence k̃
⇤ must be larger than i+ 1.

A.5 Proof of Lemma 3

Given Z, we re-index the base arms in Z such that zi represents ith base arm in Z. We also introduce a counter
c(t), and let c(1) = 1. If at round t, EZ,1(✓✓✓(t)) ^ ¬EZ,2(✓✓✓(t)) occurs and a feedback for zc(t) is observed, i.e.,

zc(t) 2 S
0(t), the counter is updated with probability p

⇤
/p

S(t)
zc(t) in the following way:

c(t+ 1) =

(
c(t) + 1 if c(t) < |Z|
1 if c(t) = |Z|

If the counter is not updated at round t, c(t + 1) = c(t). Note that when EZ,1(✓✓✓(t)) ^ ¬EZ,2(✓✓✓(t)) occurs,

zc(t) 2 Z ✓ ˜Oracle(✓✓✓(t)) = S̃(t), hence we always have 0 < p
⇤
/p

S(t)
zc(t)  1. Moreover, the probability that the

counter is updated, i.e., c(t + 1) 6= c(t), given EZ,1(✓✓✓(t)) ^ ¬EZ,2(✓✓✓(t)) occurs is constant and equal to p
⇤ for

all rounds t for which EZ,1(✓✓✓(t)) ^ ¬EZ,2(✓✓✓(t)) occurs. To see this, consider a parameter vector ✓✓✓ such that
EZ,1(✓✓✓) ^ ¬EZ,2(✓✓✓) holds and let S = Oracle(✓✓✓), then Pr[c(t + 1) 6= c(t)|✓✓✓(t) = ✓✓✓] = Pr[zc(t) 2 S

0(t)|S(t) =
S] · (p⇤/pSzc(t)) = p

S
zc(t)

· (p⇤/pSzc(t)) = p
⇤.

Let ⌧j be the round at which EZ,1(✓✓✓(t))^¬EZ,2(✓✓✓(t)) occurs for the jth time, and let ⌧0 := 0. Then, the counter is
updated only at rounds ⌧j with probability p

⇤. Let ⌘q,k be the round ⌧j such that c(⌧j + 1) = k+ 1 and c(⌧j) = k

holds for the (q + 1)th time. Let ⌘0,0 = 0 and ⌘q,|Z| = ⌘q+1,0. We know that 0 = ⌘0,0 < ⌘0,1 < . . . < ⌘0,|Z| =
⌘1,0 < ⌘1,1 < . . ..

We use two important observations to continue with proof. Firstly, due to the way the counter is updated, for
t � ⌘q,0 + 1 we have Ni(t) � q, 8i 2 Z. Secondly, for non-negative integers j1 and j2, Pr[⌘q,k+1 = ⌧j1+j2+1|⌘q,k =
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⌧j1 ] = p
⇤(1 � p

⇤)j2 . This holds since for the given event to hold, the counter must not be updated at rounds
⌧j1+1, ⌧j1+2, ..., ⌧j1+j2 , each of which happens with probability 1 � p

⇤, and must be updated at round ⌧j1+j2+1

which happens with probability p
⇤.

Therefore, we have

E
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4
⌘q,k+1X

t=⌘q,k+1

I{EZ,1(✓✓✓(t)), EZ,2(✓✓✓(t))}
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5

=
1X
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Pr[⌘q,k = ⌧j1 ]
1X
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⇥
j1+j2X

j=j1

E

2

4
⌧j+1X
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1
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i2Z
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!

=
1

p⇤

 
Y

i2Z

Bq � 1

!

where (26) holds due to our observations and (16) in Fact 3.

Finally, we have

TX
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· |Z|
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22|Z|+3 log |Z|

"2
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!
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where (27) holds due to (17) in Fact 3.


