Supplementary Material: Towards Efficient Data Valuation Based on the Shapley Value

Ruoxi Jia ${ }^{1 *}$, David Dao ${ }^{2 *}$, Boxin Wang ${ }^{3}$, Frances Ann Hubis ${ }^{2}$, Nick Hynes ${ }^{1}$,
Nezihe Merve Gurel ${ }^{2}$, Bo Li ${ }^{4}$, Ce Zhang ${ }^{2}$, Dawn Song ${ }^{1}$, Costas Spanos ${ }^{1}$
${ }^{1}$ University of California at Berkeley, ${ }^{2}$ ETH, Zurich
${ }^{3}$ Zhejiang University, ${ }^{4}$ University of Illinois at Urbana-Champaign

1 Proof of Lemma 1

Lemma 1. For any $i, j \in I$ and $i \neq j$, the difference in Shapley values between i and j is

$$
s_{i}-s_{j}=\frac{1}{N-1} \sum_{S \subseteq I \backslash\{i, j\}} \frac{1}{\binom{N-2}{|S|}}[U(S \cup\{i\})-U(S \cup\{j\})]
$$

Proof.

$$
\begin{aligned}
& s_{i}-s_{j}=\sum_{S \subseteq I \backslash\{i\}} \frac{|S|!(N-|S|-1)!}{N!}[U(S \cup\{i\})-U(S)]-\sum_{S \subseteq I \backslash\{j\}} \frac{|S|!(N-|S|-1)!}{N!}[U(S \cup\{j\})-U(S)] \\
& =\sum_{S \subseteq I \backslash\{i, j\}} \frac{|S|!(N-|S|-1)!}{N!}[U(S \cup\{i\})-U(S \cup\{j\})]+\sum_{S \in\{T \mid T \subseteq I, i \notin T, j \in T\}} \frac{|S|!(N-|S|-1)!}{N!}[U(S \cup\{i\})-U(S)] \\
& -\sum_{S \in\{T \mid T \subseteq I, i \in T, j \notin T\}} \frac{|S|!(N-|S|-1)!}{N!} \cdot[U(S \cup\{j\})-U(S)] \\
& =\sum_{S \subseteq I \backslash\{i, j\}} \frac{|S|!(N-|S|-1)!}{N!}[U(S \cup\{i\})-U(S \cup\{j\})] \\
& +\sum_{S^{\prime} \subseteq I \backslash\{i, j\}} \frac{\left(\left|S^{\prime}\right|+1\right)!\left(N-\left|S^{\prime}\right|-2\right)!}{N!}\left[U\left(S^{\prime} \cup\{i\}\right)-U\left(S^{\prime} \cup\{j\}\right)\right] \\
& =\sum_{S \subseteq I \backslash\{i, j\}} \frac{\left(\frac{|S|!(N-|S|-1)!}{N!}+\frac{(|S|+1)!(N-|S|-2)!}{N!}\right) \cdot[U(S \cup\{i\})-U(S \cup\{j\})]}{=} \begin{array}{l}
1 \\
N-1
\end{array} \sum_{S \subseteq I \backslash\{i, j\}} \frac{1}{C_{N-2}^{|S|}[U(S \cup\{i\})-U(S \cup\{j\})] .}
\end{aligned}
$$

Loosely speaking, the proof distinguishes subsets S which include neither i nor j (such that the subset utility $U(S)$ of the marginal contribution directly cancels) and subsets including either i or j. In the latter case, S can be partitioned to a mock subset S^{\prime} by excluding the respective point from S such that a common sum over S^{\prime} again eliminates all terms other than $U\left(S^{\prime} \cup\{i\}\right)-U\left(S^{\prime} \cup\{j\}\right)$.

2 Proof of Lemma 2

Lemma 2. Suppose that $C_{i j}$ is an $(\epsilon /(2 \sqrt{N}), \delta /(N(N-1)))$-approximation to $s_{i}-s_{j}$. Then, the solution to the feasibility problem

$$
\begin{align*}
& \sum_{i=1}^{N} \hat{s}_{i}=U_{\text {tot }} \tag{1}\\
& \left|\left(\hat{s}_{i}-\hat{s}_{j}\right)-C_{i, j}\right| \leq \epsilon /(2 \sqrt{N}) \quad \forall i, j \in\{1, \ldots, N\} \tag{2}
\end{align*}
$$

is an (ϵ, δ)-approximation to s with respect to l_{2}-norm.
Proof. Let $\epsilon^{\prime}=\epsilon /(2 \sqrt{N})$. Assume that $\hat{s}_{i}-s_{i}>\epsilon / \sqrt{N}$. Let $\hat{s}_{i}-s_{i}=c \epsilon^{\prime}$ where $c>2$.
Since $C_{i, j}$ is an $\left(\epsilon^{\prime}, \delta /(N(N-1))\right)$-approximation to $s_{i}-s_{j}$, we have that with probability at least $1-\delta /(N(N-1))$,

$$
\begin{equation*}
\left|\left(s_{i}-s_{j}\right)-C_{i, j}\right| \leq \epsilon^{\prime} \tag{3}
\end{equation*}
$$

Moreover, the inequality (2) implies that

$$
\left|\left(\hat{s}_{i}-\hat{s}_{j}\right)-C_{i, j}\right| \leq \epsilon^{\prime}
$$

Therefore,

$$
\begin{align*}
& \left|\hat{s}_{i}-s_{i}+s_{j}-\hat{s}_{j}\right|=\left|\hat{s}_{i}-\hat{s}_{j}-C_{i, j}-\left(s_{i}-s_{j}-C_{i, j}\right)\right| \tag{4}\\
& \quad \leq\left|\hat{s}_{i}-\hat{s}_{j}-C_{i, j}\right|+\left|s_{i}-s_{j}-C_{i, j}\right| \tag{5}\\
& \quad \leq 2 \epsilon^{\prime} \tag{6}
\end{align*}
$$

with probability at least $1-\delta /(N(N-1))$. By the assumption that $\hat{s}_{i}-s_{i}=c \epsilon^{\prime}$ and $c>2$, we have

$$
\begin{equation*}
(c-2) \epsilon^{\prime} \leq \hat{s}_{j}-s_{j} \leq(c+2) \epsilon^{\prime} \tag{7}
\end{equation*}
$$

which further implies that $\hat{s}_{j}-s_{j}>0$ for some $j \neq i$. Thus, with probability $1-\delta / N$, we have $\hat{s}_{j}-s_{j}>0$ for all $j \neq i$.

Then,

$$
\begin{equation*}
\sum_{j=1}^{N}\left(\hat{s}_{j}-s_{j}\right)=\sum_{j \neq i}\left(\hat{s}_{j}-s_{j}\right)+\left(\hat{s}_{i}-s_{i}\right)>0 \tag{8}
\end{equation*}
$$

Since $\sum_{j=1}^{N} s_{j}=U_{\text {tot }}$, it follows that $\sum_{j=1}^{N} \hat{s}_{j}>U_{\text {tot }}$, which contradicts with the fact that $\hat{s}_{j}(j=1, \ldots, N)$ is a solution to the feasibility problem (1) and (22).

The contradiction can be similarly established for $s_{i}-\hat{s}_{i}=c \epsilon^{\prime}$. Therefore, we have that with probability at least $1-\delta / N,\left|s_{i}-\hat{s}_{i}\right| \leq 2 \epsilon^{\prime}$ for some i. This in turn implies that with probability at least $1-\delta,\|\hat{s}-s\|_{\infty} \leq 2 \epsilon^{\prime}=\epsilon / \sqrt{N}$. Moreover, since $\|\hat{s}-s\|_{2} \leq \sqrt{N}\|\hat{s}-s\|_{\infty}=\epsilon$, we have that $\|\hat{s}-s\|_{2} \leq \epsilon$ with probability at least $1-\delta$.

3 Proof of Theorem 3

We prove Theorem 3, which specifies a lower bound on the number of tests needed for achieving a certain approximation error. Before delving into the proof, we first present a lemma that is useful for establishing the bound in Theorem 3.
Lemma 3 (Bennett's inequality [1]). Given independent zero-mean random variables X_{1}, \cdots, X_{n} satisfying the condition $\left|X_{i}\right| \leq a$, let $\sigma^{2}=\sum_{i=1}^{n} \sigma_{i}^{2}$ be the total variance. Then for any $t \geq 0$,

$$
P\left[S_{n}>t\right] \leq \exp \left(-\frac{\sigma^{2}}{a^{2}} h\left(\frac{a t}{\sigma^{2}}\right)\right)
$$

where $h(u)=(1+u) \log (1+u)-u$.
We now restate Theorem 3 and proceed to the main proof.
Theorem 3. Algorithm 1 returns an (ϵ, δ)-approximation to the Shapley value with respect to l_{2}-norm if the number of tests T satisfies $T \geq 8 \log \frac{N(N-1)}{2 \delta} /\left(\left(1-q_{t o t}^{2}\right) h\left(\frac{\epsilon}{\operatorname{Zr} \sqrt{N}\left(1-q_{t o t}^{2}\right)}\right)\right)$, where $q_{t o t}=\frac{N-2}{N} q(1)+\sum_{k=2}^{N-1} q(k)\left[1+\frac{2 k(k-N)}{N(N-1)}\right]$, $h(u)=(1+u) \log (1+u)-u, Z=2 \sum_{k=1}^{N-1} \frac{1}{k}$, and r is the range of the utility function.

Proof. By Lemma 1, the difference in Shapley values between points i and j is given as

$$
\begin{aligned}
& s_{i}-s_{j}=\frac{1}{N-1} \sum_{S \subseteq I \backslash\{i, j\}} \frac{1}{C_{N-2}^{|S|}}[U(S \cup\{i\})-U(S \cup\{j\})] \\
& =\frac{1}{N-1} \sum_{k=0}^{N-2} \frac{1}{C_{N-2}^{k}} \sum_{S \subseteq I \backslash\{i, j\},|S|=k}[U(S \cup\{i\})-U(S \cup\{j\})] .
\end{aligned}
$$

Let $\beta_{1}, \cdots, \beta_{N}$ denote N Boolean random variables drawn with the following sampler:

1. Sample the "length of the sequence" $\sum_{i=1}^{N} \beta_{i}=k \in\{1,2, \cdots, N-1\}$, with probability $q(k)$.
2. Uniformly sample a length- k sequence from $\binom{N}{k}$ all possible length- k sequences

Then the probability of any given sequence $\beta_{1}, \cdots, \beta_{N}$ is

$$
P\left[\beta_{1}, \cdots, \beta_{N}\right]=\frac{q\left(\sum_{i=1}^{N} \beta_{i}\right)}{C_{N}^{\sum_{i=1}^{N} \beta_{i}}}
$$

Now, we consider any two data points x_{i} and x_{j} where $i, j \in I=\{1, \cdots, N\}$ and their associated Boolean variables β_{i} and β_{j}, and analyze

$$
\Delta=\beta_{i} U\left(\beta_{1}, \cdots, \beta_{N}\right)-\beta_{j} U\left(\beta_{1}, \cdots, \beta_{N}\right)
$$

Consider the expectation of Δ. Obviously, only $\beta_{i} \neq \beta_{j}$ has non-zero contributions:

$$
\begin{aligned}
& \mathbb{E}[\Delta]=\sum_{k=0}^{N-2} \frac{q(k+1)}{C_{N}^{k+1}} \sum_{S \subseteq I \backslash\{i, j\},|S|=k}\left[U\left(\beta_{1}, \cdots, \beta_{i-1}, 1, \beta_{i+1}, \cdots, \beta_{j-1}, 0, \beta_{j+1}, \cdots, \beta_{N}\right)\right. \\
& \left.\quad-U\left(\beta_{1}, \cdots, \beta_{i-1}, 0, \beta_{i+1}, \cdots, \beta_{j-1}, 1, \beta_{j+1}, \cdots, \beta_{N}\right)\right] \\
& =\sum_{k=0}^{N-2} \frac{q(k+1)}{C_{N}^{k+1}} \sum_{S \subseteq I \backslash\{i, j\},|S|=k}[U(S \cup\{i\})-U(S \cup\{j\})]
\end{aligned}
$$

We would like to have $Z \mathbb{E}[\Delta]=s_{i}-s_{j}$

$$
Z \frac{q(k+1)}{C_{N}^{k+1}}=\frac{1}{(N-1) C_{N-2}^{k}}
$$

which yields

$$
q(k+1)=\frac{N}{Z(k+1)(N-k-1)}=\frac{1}{Z}\left(\frac{1}{k+1}+\frac{1}{N-k-1}\right)
$$

for $k=0, \cdots, N-2$. Equivalently,

$$
q(k)=\frac{1}{Z}\left(\frac{1}{k}+\frac{1}{N-k}\right)
$$

for $k=1, \cdots, N-1$. The value of Z is given by

$$
Z=\sum_{k=1}^{N-1}\left(\frac{1}{k}+\frac{1}{N-k}\right)=2 \sum_{k=1}^{N-1} \frac{1}{k} \leq 2(\log (N-1)+1)
$$

Now, $\mathbb{E}[Z \Delta]=s_{i}-s_{j}$. Assume that the utility function ranges from $[0, r]$; then, we know from (??) that $Z \Delta$ is random variable ranges in $[-Z r, Z r]$.

Consider

$$
\Delta:=\beta_{i} U\left(\beta_{1}, \cdots, \beta_{N}\right)-\beta_{j} U\left(\beta_{1}, \cdots, \beta_{N}\right)
$$

Note that $\Delta=0$ when $\beta_{i}=\beta_{j}$. If $P\left[\beta_{i}=\beta_{j}\right]$ is large, then the variance of Δ will be much smaller than its range.

$$
\begin{aligned}
& P\left[\beta_{i}=\beta_{j}\right]=P\left[\beta_{i}=1, \beta_{j}=1\right]+P\left[\beta_{i}=0, \beta_{j}=0\right] \\
& =\left[\sum_{k=2}^{N-1} \frac{q(k)}{C_{N}^{k}} C_{N-2}^{k-2}\right]+\left[q(1)+\sum_{k=2}^{N-1} \frac{q(k)}{C_{N}^{k}} C_{N-2}^{k}\right]
\end{aligned}
$$

$$
=\frac{N-2}{N} q(1)+\sum_{k=2}^{N-1} q(k)\left[1+\frac{2 k(k-N)}{N(N-1)}\right] \equiv q_{t o t}
$$

Let $W=\mathbb{1}[\Delta \neq 0]$ be an indicator of whether or not $\Delta=0$. Then, $P[W=0]=q_{t o t}$ and $P[W=1]=1-q_{t o t}$.
Now, we analyze the variance of Δ. By the law of total variance,

$$
\operatorname{Var}[\Delta]=\mathbb{E}[\operatorname{Var}[\Delta \mid W]]+\operatorname{Var}[\mathbb{E}[\Delta \mid W]]
$$

Recall $\Delta \in[-r, r]$. Then, the first term can be bounded by

$$
\begin{aligned}
& \mathbb{E}[\operatorname{Var}[\Delta \mid W]]=P[W=0] \operatorname{Var}[\Delta \mid W=0]+P[W=1] \operatorname{Var}[\Delta \mid W=1] \\
& =q_{t o t} \operatorname{Var}[\Delta \mid \Delta=0]+\left(1-q_{t o t}\right) \operatorname{Var}[\Delta \mid \Delta \neq 0] \\
& =\left(1-q_{t o t}\right) \operatorname{Var}[\Delta \mid \Delta \neq 0] \\
& \leq\left(1-q_{t o t}\right) r^{2}
\end{aligned}
$$

where the last inequality follows from the fact that if a random variable is in the range $[m, M]$, then its variance is bounded by $\frac{(M-m)^{2}}{4}$.

The second term can be expressed as

$$
\begin{align*}
& \operatorname{Var}[\mathbb{E}[\Delta \mid W]]=\mathbb{E}_{W}\left[(\mathbb{E}[\Delta \mid W]-\mathbb{E}[\Delta])^{2}\right] \\
& =P[W=0](\mathbb{E}[\Delta \mid W=0]-\mathbb{E}[\Delta])^{2}+P[W=1](\mathbb{E}[\Delta \mid W=1]-\mathbb{E}[\Delta])^{2} \\
& =q_{t o t}(\mathbb{E}[\Delta \mid \Delta=0]-\mathbb{E}[\Delta])^{2}+\left(1-q_{t o t}\right)(\mathbb{E}[\Delta \mid \Delta \neq 0]-\mathbb{E}[\Delta])^{2} \\
& =q_{t o t}(\mathbb{E}[\Delta])^{2}+\left(1-q_{t o t}\right)(\mathbb{E}[\Delta \mid \Delta \neq 0]-\mathbb{E}[\Delta])^{2} \tag{9}
\end{align*}
$$

Note that

$$
\begin{align*}
\mathbb{E}[\Delta] & =P[W=0] \mathbb{E}[\Delta \mid \Delta=0]+P[W=1] \mathbb{E}[\Delta \mid \Delta \neq 0] \\
& =\left(1-q_{t o t}\right) \mathbb{E}[\Delta \mid \Delta \neq 0] \tag{10}
\end{align*}
$$

Plugging (10) into (9), we obtain

$$
\operatorname{Var}[\mathbb{E}[\Delta \mid W]]=\left(q_{t o t}\left(1-q_{t o t}\right)^{2}+q_{t o t}^{2}\left(1-q_{t o t}\right)\right)(\mathbb{E}[\Delta \mid \Delta \neq 0])^{2}
$$

Since $|\Delta| \leq r,(\mathbb{E}[\Delta \mid \Delta \neq 0])^{2} \leq r^{2}$. Therefore,

$$
\operatorname{Var}[\mathbb{E}[\Delta \mid W]] \leq q_{t o t}\left(1-q_{t o t}\right) r^{2}
$$

It follows that

$$
\operatorname{Var}[\Delta] \leq\left(1-q_{t o t}^{2}\right) r^{2}
$$

Given T samples, the application of Bennett's inequality in Lemma 3 yields

$$
P\left[\sum_{t=1}^{T}\left(Z \Delta_{t}-\mathbb{E}\left[Z \Delta_{t}\right]\right)>\epsilon^{\prime}\right] \leq \exp \left(-\frac{T\left(1-q_{t o t}^{2}\right)}{4} h\left(\frac{2 \epsilon^{\prime}}{\operatorname{TZr}\left(1-q_{t o t}^{2}\right)}\right)\right)
$$

By letting $\epsilon=\epsilon^{\prime} / T$,

$$
P[(Z \bar{\Delta}-\mathbb{E}[Z \Delta])>\epsilon] \leq \exp \left(-\frac{T\left(1-q_{t o t}^{2}\right)}{4} h\left(\frac{2 \epsilon}{Z r\left(1-q_{t o t}^{2}\right)}\right)\right)
$$

Therefore, the number of tests T we need in order to get an $(\epsilon /(2 \sqrt{N}), \delta /(N(N-1)))$-approximation to the difference of two Shapley values for a single pair of data points is

$$
T \geq \frac{4}{\left(1-q_{t o t}^{2}\right) h\left(\frac{\epsilon}{Z \sqrt{N} r\left(1-q_{t o t}^{2}\right)}\right)} \log \frac{N(N-1)}{\delta}
$$

By union bound, the number of tests T for achieving $(\epsilon / \sqrt{N}, \delta / N)$-approximation to the difference of the Shapley values for all $N(N-1) / 2$ pairs of data points is

$$
T \geq \frac{8}{\left(1-q_{t o t}^{2}\right) h\left(\frac{\epsilon}{Z \sqrt{N} r C_{\epsilon}\left(1-q_{t o t}^{2}\right)}\right)} \log \frac{N(N-1)}{2 \delta}
$$

By Lemma 2, we approximate the Shapley value up to (ϵ, δ) with $(\epsilon / \sqrt{N}, \delta /(N(N-1)))$ approximations to all $N(N-1) / 2$ pairs of data points.

4 Proof of Theorem 4

Theorem 4. There exists some constant C^{\prime} such that if $M \geq C^{\prime}(K \log (N /(2 K))+\log (2 / \delta))$ and $T \geq \frac{2 r^{2}}{\epsilon^{2}} \log \frac{4 M}{\delta}$, except for an event of probability no more than δ, the output of Algorithm ?? obeys

$$
\begin{equation*}
\|\hat{s}-s\|_{2} \leq C_{1, K} \epsilon+C_{2, K} \frac{\sigma_{K}(s)}{\sqrt{K}} \tag{11}
\end{equation*}
$$

for some constants $C_{1, K}$ and $C_{2, K}$.
Proof. Due to the super-additivity of $U(\cdot), \hat{y}_{m, t}$ can be lower bounded by $-\frac{1}{\sqrt{M}} \sum_{i=1}^{N} U\left(P_{i}^{\pi_{t}} \cup\{i\}\right)-U\left(P_{i}^{\pi_{t}}\right)=$ $-\frac{1}{\sqrt{M}} U\left(\pi_{t}\right) \geq-\frac{r}{\sqrt{M}}$; the upper bound can be similarly analyzed. Thus, the range of $\hat{y}_{m, t}$ is $[-1 / \sqrt{M} r, 1 / \sqrt{M} r]$. Since $\mathbb{E}\left[\hat{y}_{m, t}\right]=\sum_{i=1}^{N} A_{m, i} \mathbb{E}\left[U\left(P_{i}^{\pi_{t}} \cup\{i\}\right)-U\left(P_{i}^{\pi_{t}}\right)\right]=\sum_{i=1}^{N} A_{m, i} s_{i}$ for all $m=1, \ldots, M$, an application of Hoeffiding's bound gives

$$
\begin{align*}
& P\left[\|A s-\bar{y}\|_{2} \geq \epsilon\right] \leq P\left[\|A s-\bar{y}\|_{\infty} \geq \frac{\epsilon}{\sqrt{M}}\right] \tag{12}\\
& \leq \sum_{m=1}^{M} P\left[\left|A_{m} s-\bar{y}_{m}\right| \geq \frac{\epsilon}{\sqrt{M}}\right] \tag{13}\\
& \leq 2 M \exp \left(-\frac{\epsilon^{2}}{2 r^{2} T}\right) \tag{14}
\end{align*}
$$

Let $s=\Delta s+\bar{s}$. Thus, $P\left[\|A(\bar{s}+\Delta s)-\bar{y}\|_{2} \leq \epsilon\right]$ holds with probability at least $\delta / 2$ provided

$$
\begin{equation*}
T \geq \frac{2 r^{2}}{\epsilon^{2}} \log \frac{4 M}{\delta} \tag{15}
\end{equation*}
$$

By the random matrix theory, the restricted isometry constant of A satisfies $\delta_{2 K} \leq C_{\delta}=0.465$ with probability at least $1-\delta / 2$ if

$$
\begin{equation*}
M \geq C C_{\delta}^{-2}(2 K \log (N /(2 K))+\log (2 / \delta)) \tag{16}
\end{equation*}
$$

where $C>0$ is a universal constant.
Applying the Theorem 2.7 in [3], we obtain that the output of Algorithm 2 satisfies

$$
\begin{equation*}
\|\hat{s}-s\|=\left\|\Delta s^{*}-\Delta s\right\| \leq C_{1, K} \epsilon+C_{2, K} \frac{\sigma_{K}(s)}{\sqrt{K}} \tag{17}
\end{equation*}
$$

with probability at least $1-\delta$ provided that 15 holds and $M \geq C^{\prime}(K \log (N /(2 K))+\log (2 / \delta))$ for some constant C^{\prime}.

5 Proof of Theorem 5

For the proof of Theorem 5 we need the following definition of a stable utility function.

Definition 1. A utility function $U(\cdot)$ is called λ-stable if

$$
\max _{i, j \in I, S \subseteq I \backslash\{i, j\}}|U(S \cup\{i\})-U(S \cup\{j\})| \leq \frac{\lambda}{|S|+1}
$$

Then, Shapley values calculated from λ-stable utility functions have the following property.
Proposition 1. If $U(\cdot)$ is λ-stable, then for all $i, j \in I$ and $i \neq j$

$$
s_{i}-s_{j} \leq \frac{\lambda(1+\log (N-1))}{N-1}
$$

Proof. By Lemma 1, we have

$$
s_{i}-s_{j} \leq \frac{1}{N-1} \sum_{S \subseteq I \backslash\{i, j\}} \frac{1}{C_{N-2}^{|S|}} \frac{\lambda}{|S|+1}=\frac{1}{N-1} \sum_{|S|=0}^{N-2} \frac{\lambda}{|S|+1}
$$

Recall the bound on the harmonic sequences

$$
\sum_{k=1}^{N} \frac{1}{k} \leq 1+\log (N)
$$

which gives us

$$
s_{i}-s_{j} \leq \frac{\lambda(1+\log (N-1))}{N-1}
$$

Then, we can prove Theorem 5.
Theorem 5. For a learning algorithm $A(\cdot)$ with uniform stability $\beta=\frac{C_{\text {stab }}}{|S|}$, where $|S|$ is the size of the training set and $C_{\text {stab }}$ is some constant. Let the utility of D be $U(D)=M-L_{\text {test }}\left(A(D), D_{\text {test }}\right)$, where $L_{\text {test }}\left(A(D), D_{\text {test }}\right)=$ $\frac{1}{N} \sum_{i=1}^{N} l\left(A(D), z_{\text {test }, i}\right)$ and $0 \leq l(\cdot, \cdot) \leq M$. Then, $s_{i}-s_{j} \leq 2 C_{\text {stab }} \frac{1+\log (N-1)}{N-1}$ and the Shapley difference vanishes as $N \rightarrow \infty$.

Proof. For any $i, j \in I$ and $i \neq j$,

$$
\begin{aligned}
& |U(S \cup\{i\})-U(S \cup\{j\})| \\
& =\left|\frac{1}{N} \sum_{i=1}^{N}\left[l\left(A(S \cup\{i\}), z_{\mathrm{test}, i}\right)-l\left(A(S \cup\{j\}), z_{\mathrm{test}, i}\right)\right]\right| \\
& \leq \frac{1}{N} \sum_{i=1}^{N}\left|l\left(A(S \cup\{i\}), z_{\mathrm{test}, i}\right)-l\left(A(S), z_{\mathrm{test}, i}\right)\right|+\left|l\left(A(S), z_{\mathrm{test}, i}\right)-l\left(A(S \cup\{j\}), z_{\mathrm{test}, i}\right)\right| \\
& \leq \frac{1}{N} \sum_{i=1}^{N} \frac{2 C_{\text {stab }}}{|S|+1}=\frac{2 C_{\mathrm{stab}}}{|S|+1}
\end{aligned}
$$

Combining the above inequality with Proposition 1 proves the theorem.

6 Proof of Theorem 6

Theorem 6. Consider the value attribution scheme that assign the value $\hat{s}(U, i)=C_{U}[U(S \cup\{i\})-U(S)]$ to user i where $|S|=N-1$ and C_{U} is a constant such that $\sum_{i=1}^{N} \hat{s}(U, i)=U(I)$. Consider two utility functions $U(\cdot)$ and $V(\cdot)$. Then, $\hat{s}(U+V, i) \neq \hat{s}(U, i)+\hat{s}(V, i)$ unless $V(I)\left[\sum_{i=1}^{N} U(S \cup\{i\})-U(S)\right]=U(I)\left[\sum_{i=1}^{N} V(S \cup\{i\})-V(S)\right]$.

Proof. Consider two utility functions $U(\cdot)$ and $V(\cdot)$. The values attributed to user i under these two utility functions are given by

$$
\hat{s}(U, i)=C_{U}[U(S \cup\{i\})-U(S)]
$$

and

$$
\hat{s}(V, i)=C_{V}[V(S \cup\{i\})-V(S)]
$$

where C_{U} and C_{V} are constants such that $\sum_{i=1}^{N} \hat{s}(U, i)=U(I)$ and $\sum_{i=1}^{N} \hat{s}(V, i)=V(I)$. Now, we consider the value under the utility function $W(S)=U(S)+V(S)$:

$$
\hat{s}(U+V, i)=C_{W}[U(S \cup\{i\})-U(S)+V(S \cup\{i\})-V(S)]
$$

where

$$
C_{W}=\frac{U(I)+V(I)}{\sum_{i=1}^{N}[U(S \cup\{i\})-U(S)+V(S \cup\{i\})-V(S)]}
$$

Then, $\hat{s}(U+V, i)=\hat{s}(U, i)+\hat{s}(V, i)$ if and only if $C_{U}=C_{V}=C_{W}$, which is equivalent to

$$
V(I)\left[\sum_{i=1}^{N} U(S \cup\{i\})-U(S)\right]=U(I)\left[\sum_{i=1}^{N} V(S \cup\{i\})-V(S)\right]
$$

7 Theoretical Results on the Baseline Permutation Sampling

Let π_{t} be a random permutation of $D=\left\{z_{i}\right\}_{i=1}^{N}$ and each permutation has a probability of $\frac{1}{N!}$. Let $\phi_{i}^{t}=$ $U\left(P_{i}^{\pi_{t}} \cup\{i\}\right)-U\left(P_{i}^{\pi_{t}}\right)$, we consider the following estimator of s_{i} :

$$
\hat{s}_{i}=\frac{1}{T} \sum_{t=1}^{T} \phi_{i}^{t}
$$

Theorem 2. Given the range of the utility function r, an error bound ϵ, and a confidence $1-\delta$, the sample size required such that

$$
P\left[\|\hat{s}-s\|_{2} \geq \epsilon\right] \leq \delta
$$

is

$$
T \geq \frac{2 r^{2} N}{\epsilon^{2}} \log \frac{2 N}{\delta}
$$

Proof.

$$
\begin{aligned}
& P\left[\max _{i=1, \cdots, N}\left|\hat{s}_{i}-s_{i}\right| \geq \epsilon\right]=P\left[\cup_{i=1, \cdots, N}\left\{\left|\hat{s}_{i}-s_{i}\right| \geq \epsilon\right\}\right] \leq \sum_{i=1}^{N} P\left[\left|\hat{s}_{i}-s_{i}\right| \geq \epsilon\right] \\
& \leq 2 N \exp \left(-\frac{2 T \epsilon^{2}}{4 r^{2}}\right)
\end{aligned}
$$

The first inequality follows from the union bound and the second one is due to Hoeffding's inequality. Since $\|\hat{s}-s\|_{2} \leq \sqrt{N}\|\hat{s}-s\|_{\infty}$, we have

$$
P\left[\|\hat{s}-s\|_{2} \geq \epsilon \leq P\left[\|\hat{s}-s\|_{\infty} \geq \epsilon / \sqrt{N}\right] \leq 2 N \exp \left(-\frac{2 T \epsilon^{2}}{4 N r^{2}}\right)\right.
$$

Setting $2 N \exp \left(-\frac{T \epsilon^{2}}{2 N r^{2}}\right) \leq \delta$ yields

$$
T \geq \frac{2 r^{2} N}{\epsilon^{2}} \log \frac{2 N}{\delta}
$$

The permutation sampling-based method used as baseline in the experimental part of this work was adapted from Maleki et al. [2] and is presented in Algorithm 1 .

```
Algorithm 1: Baseline: Permutation Sampling-Based Approach
input : Training set \(-D=\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{N}\), utility function \(U(\cdot)\), the number of measurements \(-M\), the number of
        permutations - \(T\)
output: The Shapley value of each training point \(-\hat{s} \in \mathbb{R}^{N}\)
for \(t \leftarrow 1\) to \(T\) do
    \(\pi_{t} \leftarrow\) GenerateUniformRandomPermutation \((D)\);
    \(\phi_{i}^{t} \leftarrow U\left(P_{i}^{\pi_{t}} \cup\{i\}\right)-U\left(P_{i}^{\pi_{t}}\right)\) for \(i=1, \ldots, N ;\)
end
\(\underline{\hat{s}_{i}=\frac{1}{T} \sum_{t=1}^{T} \phi_{i}^{t} \text { for } i=1, \ldots, N ;}\)
```


References

[1] G. Bennett. Probability inequalities for the sum of independent random variables. Journal of the American Statistical Association, 57(297):33-45, 1962.
[2] S. Maleki, L. Tran-Thanh, G. Hines, T. Rahwan, and A. Rogers. Bounding the estimation error of samplingbased shapley value approximation. arXiv preprint arXiv:1306.4265, 2013.
[3] H. Rauhut. Compressive sensing and structured random matrices. Theoretical foundations and numerical methods for sparse recovery, 9:1-92, 2010.

