Supplementary Material: Towards Efficient Data Valuation Based on the Shapley Value

Ruoxi Jia1*, David Dao2*, Boxin Wang3, Frances Ann Hubis2, Nick Hynes1, Nezihe Merve Gurel2, Bo Li4, Ce Zhang2, Dawn Song1, Costas Spanos1

1University of California at Berkeley, 2ETH, Zurich
3Zhejiang University, 4University of Illinois at Urbana-Champaign
1 Proof of Lemma 1

Lemma 1. For any $i, j \in I$ and $i \neq j$, the difference in Shapley values between i and j is

$$s_i - s_j = \frac{1}{N-1} \sum_{S \subseteq I \setminus \{i,j\}} \frac{1}{\binom{|S|-2}{|S|-1}} [U(S \cup \{i\}) - U(S \cup \{j\})]$$

Proof.

$$s_i - s_j = \sum_{S \subseteq I \setminus \{i,j\}} \frac{|S|!(N-|S|-1)!}{N!} [U(S \cup \{i\}) - U(S)] - \sum_{S \subseteq I \setminus \{i,j\}} \frac{|S|!(N-|S|-1)!}{N!} [U(S \cup \{j\}) - U(S)]$$

$$= \sum_{S \subseteq I \setminus \{i,j\}} \frac{|S|!(N-|S|-1)!}{N!} [U(S \cup \{i\}) - U(S \cup \{j\})] + \sum_{S \subseteq I \setminus \{i,j\}} \frac{|S|!(N-|S|-1)!}{N!} [U(S \cup \{i\}) - U(S)]$$

$$- \sum_{S \subseteq I \setminus \{i,j\}} \frac{|S|!(N-|S|-1)!}{N!} [U(S \cup \{j\}) - U(S)]$$

$$= \sum_{S \subseteq I \setminus \{i,j\}} \frac{|S|!(N-|S|-1)!}{N!} [U(S \cup \{i\}) - U(S \cup \{j\})]$$

$$+ \sum_{S' \subseteq I \setminus \{i,j\}} \frac{(|S'| + 1)!(N-|S'|-2)!}{N!} [U(S' \cup \{i\}) - U(S' \cup \{j\})]$$

$$= \sum_{S \subseteq I \setminus \{i,j\}} \frac{|S|!(N-|S|-1)!}{N!} + \frac{(|S'| + 1)!(N-|S'|-2)!}{N!} [U(S \cup \{i\}) - U(S \cup \{j\})]$$

$$= \frac{1}{N-1} \sum_{S \subseteq I \setminus \{i,j\}} \frac{1}{C_{N-2}^{|S|}} [U(S \cup \{i\}) - U(S \cup \{j\})].$$

\[\square\]

Loosely speaking, the proof distinguishes subsets S which include neither i nor j (such that the subset utility $U(S)$ of the marginal contribution directly cancels) and subsets including either i or j. In the latter case, S can be partitioned to a mock subset S' by excluding the respective point from S such that a common sum over S' again eliminates all terms other than $U(S' \cup \{i\}) - U(S' \cup \{j\})$.

2 Proof of Lemma 2

Lemma 2. Suppose that $C_{i,j}$ is an $(\epsilon/(2\sqrt{N}), \delta/(N(N-1)))$-approximation to $s_i - s_j$. Then, the solution to the feasibility problem

$$\sum_{i=1}^{N} \hat{s}_i = U_{tot}$$

$$|(\hat{s}_i - \hat{s}_j) - C_{i,j}| \leq \epsilon/(2\sqrt{N}) \quad \forall i, j \in \{1, \ldots, N\}$$

is an (ϵ, δ)-approximation to s with respect to l_2-norm.

Proof. Let $\epsilon' = \epsilon/(2\sqrt{N})$. Assume that $\hat{s}_i - s_i > \epsilon/\sqrt{N}$. Let $\hat{s}_i - s_i = cc'$ where $c > 2$.

Since $C_{i,j}$ is an $(\epsilon', \delta/(N(N-1)))$-approximation to $s_i - s_j$, we have that with probability at least $1 - \delta/(N(N-1))$,

$$|(s_i - s_j) - C_{i,j}| \leq \epsilon'$$

Moreover, the inequality \[\square\] implies that

$$|(\hat{s}_i - \hat{s}_j) - C_{i,j}| \leq \epsilon'$$
Therefore,
\begin{align}
|\hat{s}_i - s_i + s_j - \hat{s}_j| &= |\hat{s}_i - \hat{s}_j - C_{i,j} - (s_i - s_j - C_{i,j})| \\
&\leq |\hat{s}_i - \hat{s}_j - C_{i,j}| + |s_i - s_j - C_{i,j}| \\
&\leq 2\epsilon'
\end{align}
with probability at least $1 - \delta/(N(N-1))$. By the assumption that $\hat{s}_i - s_i = c\epsilon'$ and $c > 2$, we have
\[(c - 2)\epsilon' \leq \hat{s}_j - s_j \leq (c + 2)\epsilon'
\]which further implies that $\hat{s}_j - s_j > 0$ for some $j \neq i$. Thus, with probability $1 - \delta/N$, we have $\hat{s}_j - s_j > 0$ for all $j \neq i$.

Then,
\[
\sum_{j=1}^{N} (\hat{s}_j - s_j) = \sum_{j \neq i} (\hat{s}_j - s_j) + (\hat{s}_i - s_i) > 0
\]
Since $\sum_{j=1}^{N} s_j = U_{\text{tot}}$, it follows that $\sum_{j=1}^{N} \hat{s}_j > U_{\text{tot}}$, which contradicts with the fact that \hat{s}_j $(j = 1, \ldots, N)$ is a solution to the feasibility problem $[1]$ and $[2]$.

The contradiction can be similarly established for $s_i - \hat{s}_i = c\epsilon'$. Therefore, we have that with probability at least $1 - \delta/N$, $|s_i - \hat{s}_i| \leq 2\epsilon'$ for some i. This in turn implies that with probability at least $1 - \delta$, $\|\hat{s} - s\|_{\infty} \leq 2\epsilon'$ $= \epsilon/\sqrt{N}$.

Moreover, since $\|\hat{s} - s\|_2 \leq \sqrt{N}\|\hat{s} - s\|_{\infty} = \epsilon$, we have that $\|\hat{s} - s\|_2 \leq \epsilon$ with probability at least $1 - \delta$.

\[
\square
\]

3 Proof of Theorem 3

We prove Theorem 3, which specifies a lower bound on the number of tests needed for achieving a certain approximation error. Before delving into the proof, we first present a lemma that is useful for establishing the bound in Theorem 3.

Lemma 3 (Bennett’s inequality [1]). Given independent zero-mean random variables X_1, \cdots, X_n satisfying the condition $|X_i| \leq a$, let $\sigma^2 = \sum_{i=1}^{n} \sigma_i^2$ be the total variance. Then for any $t \geq 0$,
\[
P[S_n > t] \leq \exp(-\frac{\sigma^2}{a^2} h(\frac{at}{\sigma^2}))
\]
where $h(u) = (1 + u) \log(1 + u) - u$.

We now restate Theorem 3 and proceed to the main proof.

Theorem 3. Algorithm 1 returns an (ϵ, δ)-approximation to the Shapley value with respect to l_2-norm if the number of tests T satisfies $T \geq 8 \log \frac{N(N-1)}{2\delta} / ((1 - q_{\text{tot}})^{\epsilon} (Zr\sqrt{N(1 - q_{\text{tot}})}))$, where $q_{\text{tot}} = \frac{N-2}{N} q(1) + \sum_{k=2}^{N-1} q(k)[1 + 2(k-N)]$, $h(u) = (1 + u) \log(1 + u) - u$, $Z = 2 \sum_{k=1}^{N-1} \frac{1}{k}$, and r is the range of the utility function.

Proof. By Lemma [1] the difference in Shapley values between points i and j is given as
\[
s_i - s_j = \frac{1}{N-1} \sum_{S \subseteq I \setminus \{i,j\}} \frac{1}{C_{N-2}^{|S|}} \left[U(S \cup \{i\}) - U(S \cup \{j\}) \right]
\]
\[
= \frac{1}{N-1} \sum_{k=0}^{N-2} \frac{1}{C_{N-2}^{k}} \sum_{S \subseteq I \setminus \{i,j\}, |S| = k} \left[U(S \cup \{i\}) - U(S \cup \{j\}) \right].
\]

Let β_1, \cdots, β_N denote N Boolean random variables drawn with the following sampler:

1. Sample the “length of the sequence” $\sum_{i=1}^{N} \beta_i = k \in \{1, 2, \cdots, N - 1\}$, with probability $q(k)$.
2. Uniformly sample a length-k sequence from $\binom{N}{k}$ all possible length-k sequences.

Then the probability of any given sequence β_1, \ldots, β_N is

$$P[\beta_1, \ldots, \beta_N] = \frac{q(\sum_{i=1}^{N} \beta_i)}{C_N^{k+1}}.$$

Now, we consider any two data points x_i and x_j where $i, j \in I = \{1, \ldots, N\}$ and their associated Boolean variables β_i and β_j, and analyze

$$\Delta = \beta_i U(\beta_1, \ldots, \beta_N) - \beta_j U(\beta_1, \ldots, \beta_N)$$

Consider the expectation of Δ. Obviously, only $\beta_i \neq \beta_j$ has non-zero contributions:

$$E[\Delta] = \sum_{k=0}^{N-2} \frac{q(k+1)}{C_N^{k+1}} \sum_{S \subseteq I \setminus \{i,j\}, |S| = k} [U(\beta_1, \ldots, \beta_{i-1}, 1, \beta_{i+1}, \ldots, \beta_{j-1}, 0, \beta_{j+1}, \ldots, \beta_N)
- U(\beta_1, \ldots, \beta_{i-1}, 0, \beta_{i+1}, \ldots, \beta_{j-1}, 1, \beta_{j+1}, \ldots, \beta_N)]$$

We would like to have $Z E[\Delta] = s_i - s_j$

$$Z \frac{q(k+1)}{C_N^{k+1}} = \frac{1}{(N-1)C_N^{k-2}}$$

which yields

$$q(k+1) = \frac{N}{Z(k+1)(N-k-1)} = \frac{1}{Z} \left(\frac{1}{k+1} + \frac{1}{N-k-1} \right)$$

for $k = 0, \ldots, N-2$. Equivalently,

$$q(k) = \frac{1}{Z} \left(\frac{1}{k} + \frac{1}{N-k} \right)$$

for $k = 1, \ldots, N-1$. The value of Z is given by

$$Z = \sum_{k=1}^{N-1} \left(\frac{1}{k} + \frac{1}{N-k} \right) = 2 \sum_{k=1}^{N-1} \frac{1}{k} \leq 2(\log(N-1) + 1)$$

Now, $E[Z\Delta] = s_i - s_j$. Assume that the utility function ranges from $[0, r]$; then, we know from (??) that $Z\Delta$ is random variable ranges in $[-Zr, Zr]$.

Consider

$$\Delta := \beta_i U(\beta_1, \ldots, \beta_N) - \beta_j U(\beta_1, \ldots, \beta_N)$$

Note that $\Delta = 0$ when $\beta_i = \beta_j$. If $P[\beta_i = \beta_j]$ is large, then the variance of Δ will be much smaller than its range.

$$P[\beta_i = \beta_j] = P[\beta_i = 1, \beta_j = 1] + P[\beta_i = 0, \beta_j = 0] = \sum_{k=2}^{N-1} \frac{q(k)}{C_N^{k-2}} + \frac{1}{Z} \sum_{k=2}^{N-1} \frac{q(k)}{C_N^{k-2}}$$
\[T = \frac{N - 2}{2} q(1) + \frac{N - 1}{2} \sum_{k=2}^{N-1} q(k) \left[1 + \frac{2k(k - N)}{N(N - 1)} \right] \equiv q_{tot} \]

Let \(W = 1|\Delta \neq 0 \) be an indicator of whether or not \(\Delta = 0 \). Then, \(P[W = 0] = q_{tot} \) and \(P[W = 1] = 1 - q_{tot} \).

Now, we analyze the variance of \(\Delta \). By the law of total variance,

\[\text{Var}[\Delta] = \mathbb{E}[\text{Var}[\Delta|W]] + \text{Var}[\mathbb{E}[\Delta|W]] \]

Recall \(\Delta \in [-r, r] \). Then, the first term can be bounded by

\[\mathbb{E}[\text{Var}[\Delta|W]] = P[W = 0] \text{Var}[\Delta|W = 0] + P[W = 1] \text{Var}[\Delta|W = 1] \]
\[= q_{tot} \text{Var}[\Delta|\Delta = 0] + (1 - q_{tot}) \text{Var}[\Delta|\Delta \neq 0] \]
\[= (1 - q_{tot}) \text{Var}[\Delta|\Delta \neq 0] \]
\[\leq (1 - q_{tot}) r^2 \]

where the last inequality follows from the fact that if a random variable is in the range \([m, M]\), then its variance is bounded by \(\frac{(M-m)^2}{4}\).

The second term can be expressed as

\[\text{Var}[\mathbb{E}[\Delta|W]] = \mathbb{E}_W[(\mathbb{E}[\Delta|W] - \mathbb{E}[\Delta])^2] \]
\[= P[W = 0](\mathbb{E}[\Delta|W = 0] - \mathbb{E}[\Delta])^2 + P[W = 1](\mathbb{E}[\Delta|W = 1] - \mathbb{E}[\Delta])^2 \]
\[= q_{tot}(\mathbb{E}[\Delta|\Delta = 0] - \mathbb{E}[\Delta])^2 + (1 - q_{tot})(\mathbb{E}[\Delta|\Delta \neq 0] - \mathbb{E}[\Delta])^2 \]
\[= q_{tot}(\mathbb{E}[\Delta])^2 + (1 - q_{tot})(\mathbb{E}[\Delta|\Delta \neq 0] - \mathbb{E}[\Delta])^2 \] \quad (9)

Note that

\[\mathbb{E}[\Delta] = P[W = 0] \mathbb{E}[\Delta|\Delta = 0] + P[W = 1] \mathbb{E}[\Delta|\Delta \neq 0] \]
\[= (1 - q_{tot}) \mathbb{E}[\Delta|\Delta \neq 0] \] \quad (10)

Plugging (10) into (9), we obtain

\[\text{Var}[\mathbb{E}[\Delta|W]] = (q_{tot}(1 - q_{tot})^2 + q_{tot}^2 (1 - q_{tot}))(\mathbb{E}[\Delta|\Delta \neq 0])^2 \]

Since \(|\Delta| \leq r \), \((\mathbb{E}[\Delta|\Delta \neq 0])^2 \leq r^2 \). Therefore,

\[\text{Var}[\mathbb{E}[\Delta|W]] \leq q_{tot}(1 - q_{tot}) r^2 \]

It follows that

\[\text{Var}[\Delta] \leq (1 - q_{tot}) r^2 \]

Given \(T \) samples, the application of Bennett’s inequality in Lemma 3 yields

\[P \left[\sum_{t=1}^{T} (Z\Delta_t - \mathbb{E}[Z\Delta_t]) > \epsilon' \right] \leq \exp \left(- \frac{T(1 - q_{tot})^2}{4} h \left(\frac{2\epsilon'}{T z r (1 - q_{tot}^2)} \right) \right) \]

By letting \(\epsilon = \epsilon'/T \),

\[P \left[(Z\bar{\Delta} - \mathbb{E}[Z\bar{\Delta}]) > \epsilon \right] \leq \exp \left(- \frac{T(1 - q_{tot})^2}{4} h \left(\frac{2\epsilon}{z r (1 - q_{tot}^2)} \right) \right) \]

Therefore, the number of tests \(T \) we need in order to get an \((\epsilon/(2\sqrt{N}), \delta/(N(N - 1)))\)-approximation to the difference of two Shapley values for a single pair of data points is

\[T \geq \frac{4}{(1 - q_{tot})^2 h \left(\frac{2\epsilon}{z \sqrt{N} r (1 - q_{tot}^2)} \right)} \log \frac{N(N - 1)}{\delta} \]
By union bound, the number of tests T for achieving $(\epsilon/\sqrt{N}, \delta/N)$-approximation to the difference of the Shapley values for all $N(N-1)/2$ pairs of data points is

$$T \geq \frac{8}{(1 - q_{\text{tot}}^2)h\left(\frac{\epsilon}{Z\sqrt{N}C(1-q_{\text{tot}})}\right)} \log \frac{N(N-1)}{2\delta}$$

By Lemma 2, we approximate the Shapley value up to (ϵ, δ) with $(\epsilon/\sqrt{N}, \delta/(N(N-1)))$ approximations to all $N(N-1)/2$ pairs of data points.

4 Proof of Theorem 4

Theorem 4. There exists some constant C' such that if $M \geq C'(K\log(N/(2K)) + \log(2/\delta))$ and $T \geq \frac{2r^2}{\epsilon^2} \log \frac{4M}{\delta}$, except for an event of probability no more than δ, the output of Algorithm ?? obeys

$$\|\hat{s} - s\|_2 \leq C_{1,K} \epsilon + C_{2,K} \frac{\sigma_K(s)}{\sqrt{K}}$$

for some constants $C_{1,K}$ and $C_{2,K}$.

Proof. Due to the super-additivity of $U(\cdot)$, $\hat{y}_{m,t}$ can be lower bounded by $-\frac{1}{\sqrt{M}} \sum_{i=1}^{N} U(P_i^m \cup \{i\}) - U(P_i^m) = -\frac{1}{\sqrt{M}} U(\pi_i) \geq -\frac{r}{\sqrt{M}}$; the upper bound can be similarly analyzed. Thus, the range of $\hat{y}_{m,t}$ is $[-1/\sqrt{Mr}, 1/\sqrt{Mr}]$. Since $E[\hat{y}_{m,t}] = \sum_{i=1}^{N} A_{m,i} E[U(P_i^m \cup \{i\}) - U(P_i^m)] = \sum_{i=1}^{N} A_{m,i} s_i$ for all $m = 1, \ldots, M$, an application of Hoeffding’s bound gives

$$P[\|A\hat{s} - \bar{y}\|_2 \geq \epsilon] \leq P[\|A\hat{s} - \bar{y}\|_\infty \geq \frac{\epsilon}{\sqrt{M}}]$$

$$\leq \sum_{m=1}^{M} P[\|A_{m}\hat{s} - \bar{y}_m\| \geq \frac{\epsilon}{\sqrt{M}}]$$

$$\leq 2M \exp\left(-\frac{\epsilon^2}{2r^2T}\right)$$

By the random matrix theory, the restricted isometry constant of A satisfies $\delta_{2K} \leq 0.465$ with probability at least $1 - \delta/2$ if

$$M \geq CC_{\delta}^{-2}(2K\log(N/(2K)) + \log(2/\delta))$$

where $C > 0$ is a universal constant.

Applying the Theorem 2.7 in [3], we obtain that the output of Algorithm 2 satisfies

$$\|\hat{s} - s\| = \|\Delta s^* - \Delta s\| \leq C_{1,K} \epsilon + C_{2,K} \frac{\sigma_K(s)}{\sqrt{K}}$$

with probability at least $1 - \delta$ provided that (15) holds and $M \geq C'(K\log(N/(2K)) + \log(2/\delta))$ for some constant C'.

5 Proof of Theorem 5

For the proof of Theorem 5 we need the following definition of a stable utility function.
Definition 1. A utility function $U(\cdot)$ is called λ-stable if

$$\max_{i,j \in I, S \subseteq I \setminus \{i,j\}} |U(S \cup \{i\}) - U(S \cup \{j\})| \leq \frac{\lambda}{|S|+1}$$

Then, Shapley values calculated from λ-stable utility functions have the following property.

Proposition 1. If $U(\cdot)$ is λ-stable, then for all $i, j \in I$ and $i \neq j$

$$s_i - s_j \leq \frac{\lambda(1 + \log(N - 1))}{N - 1}$$

Proof. By Lemma[1] we have

$$s_i - s_j \leq \frac{1}{N - 1} \sum_{S \subseteq I \setminus \{i,j\}} \frac{1}{C_{N-2}^{|S|}} \frac{\lambda}{|S|+1} = \frac{1}{N - 1} \sum_{|S|=0}^{N-2} \frac{\lambda}{|S|+1}$$

Recall the bound on the harmonic sequences

$$\sum_{k=1}^{N} \frac{1}{k} \leq 1 + \log(N)$$

which gives us

$$s_i - s_j \leq \frac{\lambda(1 + \log(N - 1))}{N - 1}$$

Then, we can prove Theorem 5.

Theorem 5. For a learning algorithm $A(\cdot)$ with uniform stability $\beta = \frac{C_{\text{stab}}}{|S|}$, where $|S|$ is the size of the training set and C_{stab} is some constant. Let the utility of D be $U(D) = M - L_{\text{test}}(A(D), D_{\text{test}})$, where $L_{\text{test}}(A(D), D_{\text{test}}) = \frac{1}{N} \sum_{i=1}^{N} l(A(D), z_{\text{test},i})$ and $0 \leq l(\cdot, \cdot) \leq M$. Then, $s_i - s_j \leq 2C_{\text{stab}}\frac{1 + \log(N - 1)}{N - 1}$ and the Shapley difference vanishes as $N \to \infty$.

Proof. For any $i, j \in I$ and $i \neq j$,

$$|U(S \cup \{i\}) - U(S \cup \{j\})|$$

$$= |\frac{1}{N} \sum_{i=1}^{N} [l(A(S \cup \{i\}), z_{\text{test},i}) - l(A(S \cup \{j\}), z_{\text{test},i})]|$$

$$\leq \frac{1}{N} \sum_{i=1}^{N} |l(A(S \cup \{i\}), z_{\text{test},i}) - l(A(S), z_{\text{test},i})| + |l(A(S), z_{\text{test},i}) - l(A(S \cup \{j\}), z_{\text{test},i})|$$

$$\leq \frac{1}{N} \sum_{i=1}^{N} 2C_{\text{stab}}\frac{1 + \log(N - 1)}{|S|+1} = 2C_{\text{stab}}\frac{1 + \log(N - 1)}{|S|+1}$$

Combining the above inequality with Proposition[1] proves the theorem.

6 Proof of Theorem 6

Theorem 6. Consider the value attribution scheme that assign the value $\hat{s}(U, i) = C_{U}[U(S \cup \{i\}) - U(S)]$ to user i where $|S| = N - 1$ and C_{U} is a constant such that $\sum_{i=1}^{N} \hat{s}(U, i) = U(I)$. Consider two utility functions $U(\cdot)$ and $V(\cdot)$. Then, $\hat{s}(U + V, i) \neq \hat{s}(U, i) + \hat{s}(V, i)$ unless $V(I)[\sum_{i=1}^{N} U(S \cup \{i\}) - U(S)] = U(I)[\sum_{i=1}^{N} V(S \cup \{i\}) - V(S)]$.
Proof. Consider two utility functions $U(\cdot)$ and $V(\cdot)$. The values attributed to user i under these two utility functions are given by

$$\hat{s}(U,i) = C_U[U(S \cup \{i\}) - U(S)]$$

and

$$\hat{s}(V,i) = C_V[V(S \cup \{i\}) - V(S)]$$

where C_U and C_V are constants such that $\sum_{i=1}^{N} \hat{s}(U,i) = U(I)$ and $\sum_{i=1}^{N} \hat{s}(V,i) = V(I)$. Now, we consider the value under the utility function $W(S) = U(S) + V(S)$:

$$\hat{s}(U + V,i) = C_W[U(S \cup \{i\}) - U(S) + V(S \cup \{i\}) - V(S)]$$

where

$$C_W = \frac{U(I) + V(I)}{\sum_{i=1}^{N}[U(S \cup \{i\}) - U(S) + V(S \cup \{i\}) - V(S))]$$

Then, $\hat{s}(U + V,i) = \hat{s}(U,i) + \hat{s}(V,i)$ if and only if $C_U = C_V = C_W$, which is equivalent to

$$V(I)\sum_{i=1}^{N} U(S \cup \{i\}) - U(S)] = U(I)\sum_{i=1}^{N} V(S \cup \{i\}) - V(S)]$$

\square

7 Theoretical Results on the Baseline Permutation Sampling

Let π_i be a random permutation of $D = \{z_i\}_{i=1}^{N}$ and each permutation has a probability of $\frac{1}{N!}$. Let $\phi_i^t = U(P_{i}^{\pi_t} \cup \{i\}) - U(P_{i}^{\pi_i})$, we consider the following estimator of s_i:

$$\hat{s}_i = \frac{1}{T} \sum_{t=1}^{T} \phi_i^t$$

Theorem 2. Given the range of the utility function r, an error bound ϵ, and a confidence $1 - \delta$, the sample size required such that

$$P[\|\hat{s} - s\|_2 \geq \epsilon] \leq \delta$$

is

$$T \geq \frac{2r^2N}{\epsilon^2} \log \frac{2N}{\delta}$$

Proof.

$$P[\max_{i=1,\ldots,N} |\hat{s}_i - s_i| \geq \epsilon] = P[\cup_{i=1,\ldots,N} \{|\hat{s}_i - s_i| \geq \epsilon\}] \leq \sum_{i=1}^{N} P[|\hat{s}_i - s_i| \geq \epsilon] \leq 2N \exp\left(-\frac{2T\epsilon^2}{4r^2}\right)$$

The first inequality follows from the union bound and the second one is due to Hoeffding’s inequality. Since $\|\hat{s} - s\|_2 \leq \sqrt{N}\|\hat{s} - s\|_\infty$, we have

$$P[\|\hat{s} - s\|_2 \geq \epsilon \leq P[\|\hat{s} - s\|_\infty \geq \epsilon/\sqrt{N}] \leq 2N \exp\left(-\frac{2T\epsilon^2}{4Nr^2}\right)$$

Setting $2N \exp\left(-\frac{T\epsilon^2}{2N^2}\right) \leq \delta$ yields

$$T \geq \frac{2r^2N}{\epsilon^2} \log \frac{2N}{\delta}$$

\square
The permutation sampling-based method used as baseline in the experimental part of this work was adapted from Maleki et al. [2] and is presented in Algorithm 1.

Algorithm 1: Baseline: Permutation Sampling-Based Approach

input: Training set - $D = \{(x_i, y_i)\}_{i=1}^N$, utility function $U(\cdot)$, the number of measurements - M, the number of permutations - T

output: The Shapley value of each training point - $\hat{s} \in \mathbb{R}^N$

1. for $t \leftarrow 1$ to T
2. $\pi_t \leftarrow \text{GenerateUniformRandomPermutation}(D)$;
3. $\phi_t^i \leftarrow U(P_{i}^{\pi_t} \cup \{i\}) - U(P_{i}^{\pi_t})$ for $i = 1, \ldots, N$;
4. end
5. $\hat{s}_i = \frac{1}{T} \sum_{t=1}^{T} \phi_t^i$ for $i = 1, \ldots, N$;

References

