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Abstract

We apply network Lasso to semi-supervised
regression problems involving network-
structured data. This approach lends
quite naturally to highly scalable learning
algorithms in the form of message passing
over an empirical graph which represents
the network structure of the data. By
using a simple non-parametric regression
model, which is motivated by a clustering
hypothesis, we provide an analysis of the
estimation error incurred by network Lasso.
This analysis reveals conditions on the
network structure and the available training
data which guarantee network Lasso to
be accurate. Remarkably, the accuracy of
network Lasso is related to the existence
of sufficiently large network flows over the
empirical graph. Thus, our analysis reveals
a connection between network Lasso and
maximum flow problems.

1 INTRODUCTION

The datasets arising in many applications, ranging
from image processing to cyber security carry an in-
trinsic network structure. In particular, those datasets
can be represented conveniently using an empirical
graph Chapelle et al. [2006]. The nodes of this empir-
ical graph represent individual data points, which are
connected by edges according to some domain-specific
notion of similarity.

On top of the network structure, datasets carry addi-
tional information in the form of labels for the individ-
ual data points. Since the acquisition of label informa-
tion is often expensive (requiring manual labour), we
typically have access to labels of few data points only.
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Moreover, the available label information will often be
noisy due to measurement (labeling) errors.

The available incomplete label information might still
suffice to allow for accurate machine learning by ex-
ploiting the tendency of labels to conform to the un-
derlying network structure. Indeed, many successful
learning methods rely on a clustering hypothesis which
requires well-connected data points to have similar la-
bels Bishop [2006], Chapelle et al. [2006].

Various generalisations of the least absolute shrink-
age and selection operator (Lasso) from sparse vec-
tors to network-structured data have been proposed
recently by Tibshirani et al. [2005], Sharpnack et al.
[2012]. In particular, the “network Lasso” (nLasso)
Hallac et al. [2015] provides an optimization frame-
work for a wide range of learning problems (regres-
sion and classification) involving network-structured
datasets. While efficient implementations of nLasso for
particular learning problems have been proposed (see
M.Yamada et al. [2017]), only little is known about the
statistical performance of nLasso methods for general
learning problems involving partially labelled network-
structure data.

Contribution. In this paper, we apply a generaliza-
tion of the concept of a compatibility condition, which
has been championed by Biihlmann and van de Geer
[2011], van de Geer [2007] for characterizing the perfor-
mance of Lasso methods, to learning problems involv-
ing network structured data. Various forms of such
“network compatibility conditions” have been stud-
ied recently by Jung et al. [2018], Ortelli and van de
Geer [2018], Hiitter and Rigollet [2016]. Here, we
use a particular form of a network compatibility con-
dition to characterize the performance of nLasso for
semi-supervised regression problems using squared er-
ror loss. The nLasso provides an efficient method for
non-parametric regression by leveraging the underly-
ing network structure Kovac and Smith [2012]. Our
results give a precise characterization of the statistical
performance of such methods and their dependence
on the network topology. The closest to our work is
Hiitter and Rigollet [2016], which studies the statis-
tical properties of nLasso applied to denoising a fully
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observed graph signal. In contrast, our analysis al-
lows for nLasso having access only to the signal values
of a small subset (the training set) of nodes, which
is relevant for semi-supervised learning problems (see

Chapelle et al. [2006]).

Outline. This paper is organized as follows: in Sec-
tion 2, we formalize the problem of semi-supervised
learning for network-structured data using a proba-
bilistic model for the observations, which is based on
exponential families. Based on this generic probabilis-
tic model, we then show in Section 3 how to apply
network Lasso to learn a predictor for all data points
based on knowledge of noisy labels for few data points.
Our main result is discussed in Section 4, where we
present a bound on the estimation error of nLasso.
This bound depends on the network compatibility con-
dition which, in turn, relates to the connectivity of
sampled nodes.

Notation. We use boldface upper and lower case
letters to denote matrices and vectors, respectively.
Given a matrix W we define its supremum norm as
[Wlls := max;;|W;;|. The nullspace (or kernel)
of a matrix L is denoted ker{L} := {x : Lx = 0}.
The pseudo-inverse of a diagonal matrix A is de-
noted AT and obtained by inverting the non-zero di-
agonal entries of A and leaving the zero entries. The
pseudo-inverse of an arbitrary matrix D is obtained
via its singular value decomposition D = UAVT as
DT = UATVT. Given a finite set V, we denote the
complement of a subset M C V as M.

2 Problem Formulation

We consider network-structured datasets, which are
represented by an empirical graph G=(V,E, W). The
nodes ¥V = {1,..., N} of the empirical graph repre-
sent individual data points. The undirected edges &
encode domain-specific notions of similarity between
data points. The non-negative entries W;; of the
weight matrix W & Rf *N quantify the level of sim-
ilarity between connected nodes. The weight W; ; is
non-zero only if nodes i,j € V are connected by an
edge {i,j} € £.

In what follows, without loss of generality, we assume
that the empirical graph is simple (without self loops)
and connected. Therefore, since there are no self loops,
the weight matrix is such that W; ; = 0 for every node
1eV.

2.1 Laplacian and Incidence Matrix

The structure of an empirical graph G can be charac-
terized using the graph Laplacian matrix

L=A-W, (1)

with the weight matrix W and the diagonal “degree
matrix”

A =diag{d,,...,dy} € RV*N,

The diagonal elements of A are the weighted node de-
grees di := 3 ¢ nece Wi

We denote the (ordered) non-negative eigenvalues of
the Laplacian matrix L by \; = 0< ... < Ayx. The
eigenvalues of L provide insight into the connectivity
structure of the graph G. A graph G is connected if and
only if Ay > 0 in which case the nullspace of L is a one-
dimensional subspace spanned by the constant graph
signal with value z; = 1 for every node i € V. The
spectral gap p(G) := Ay quantifies the connectivity of
the graph G. If p(G) is close to zero, the graph G can be
cut into two disconnected subgraphs without removing
too many edges Spielman [2012].

Another important matrix assigned to an empirical
graph is the incidence matrix. To this end, we (ar-
bitrarily) orient the empirical graph G = (£,V, W) by
specifying for each edge e = {i,j} one node as the
head et and the other node as the tail e=. We define
the incidence matrix D € R€*Y element-wise as

VW, if i=e™t
Dei =49 —vW, ifi=e” (2)
0 else.

We highlight that the exact choice of orientation for
the undirected edges in the empirical graph G has no
effect on our results. The use of an orientation only
serves a notational convenience provided by the inci-
dence matrix D.

The incidence matrix D is closely related to the graph
Laplacian L. Indeed, both matrices have the same
nullspace ker{D} = ker{L}. Moreover, the spectrum
of DDT coincides with the spectrum of L(9). The
columns s; of the pseudo-inverse D =(sy, ..., se|) of

D satisty
Il < V2[[Willoo/p(G). (3)

This bound can be verified using the identity D =
(DDT)"DT and well-known vector norm inequalities
(see, e.g., Horn and Johnson [1985]).

2.2 Linear Regression

In addition to the network structure, which is encoded
by the empirical graph G, datasets typically convey
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additional information. This additional information
comes in the form of labels y; associated with individ-
ual data points i € V.

We model the labels y; of data points ¢ € V as
random variables whose probability distribution is
parametrized by a graph signal x : V — R. In par-
ticular, we use the linear model

Yi = Tj + &, (4)

with some unknown underlying graph signal x. The
noise terms ¢; in (4), which are modelled as i.i.d. Gaus-
sian random variables with zero-mean and variance o2,
cover any modelling or measurement (labeling) errors.

We will use the following tail bound

P{ly—E{y}|>n}<

N
Qexp< N2772/<202Zwi2)>, (5)
i=1
for the weighted sum y = (1/N) Zf\il y;w; with arbi-
trary but fixed weights w; € R.

The graph signal x in (4) assigns a real number zZ; €R
to each node i €). We can think of a graph signal also
as a vector whose entries are indexed by the nodes
i € V. The space of all graph signals constitutes an
Euclidean space RY. It will be convenient to define,
for a subset M C V of size M := | M|, the norm

Ixllae= J(1/M) Y . (6)
ieM

Since acquiring labels is costly, we consider having ac-
cess to the (noisy) labels y; (see (4)) only for the nodes
in a (small) training set

M={iy,... ip} with M<N. (7)

2.3 Clustering Hypothesis

Our approach to learning the graph signal X in (4)
from the labels y; of the nodes in the training set M,
is based on the assumption that the graph signal X
is clustered in the sense of being constant over well-
connected subsets (clusters) of nodes. This clustering
hypothesis conforms to the finding that the labels of
data points arising in many application domains, such
as signal or image processing as well as social networks,
are similar if the data points are well-connected in the
empirical graph (see Chapelle et al. [2006]).

We measure the amount by which a graph signal x
conforms with the cluster structure of the empirical
graph G using the (weighted) total variation (TV)

Ixllrv =Y /Wi |z — il (8)

{i,7}€€

Indeed, a graph signal x has a small TV only if the
signal values x; are approximately constant over well
connected subsets (clusters) of nodes. Such a “cluster-
ing hypothesis” (or variations thereof) motivates many
methods for (semi-) supervised learning Chapelle et al.
[2006].

If we orient the empirical graph, we can represent the
TV using the incidence matrix D (see (2) and (8)) as

[x[lmv = [[Dx]]1. 9)

It will be convenient to define a shorthand for the TV
over a subset S C & of edges as

Ixlls = > VWi laj — . (10)

{i,j}€S

One of our main contributions (see Section 4) is a pre-
cise analysis of the ability of nLasso to learn clustered
graph signals. In particular, our analysis is based on
the following simple model for clustered (piece-wise
constant) graph signals (see Chen et al. [2017]):

zi=Y  aclclil. (11)
CeF

Here, a¢c € R is the signal value of cluster C and we
used the indicator signal

) 1 forieC
Zeli] = .
0 otherwise.
The model (11) involves a partitioning F =

{C1,...,C 7|} of the nodes V into disjoint subsets C;.
We assume that the subgraph induced by any cluster
C; is connected.

We emphasize that our analysis allows for an arbi-
trary partitioning 7 = {Ci,...,Cz} used to define
the model (11). However, our results are most useful
(i.e., the error bound (18) will be tighter) if the parti-
tion conforms with the “intrinsic (cluster) structure”
of the empirical graph G. In particular, we focus on
partitions F such that the cluster boundaries

OF ={{i,jle€&:ieC,jel(#C)}

> VWiik > Wiy

{i,jy€d0F {i,j}€OF

satisfy

It will be useful to define the spectral gap of a parti-

tioning F = {C1,...,Cj7} as
p(F) = glelr]{_p(cl). (12)

Here, p(C;) denotes the spectral gap of the subgraph
induced by the cluster C;.
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3 THE NETWORK LASSO

It is sensible to learn a graph signal x € RY based
on (few) labels {y;}ieam by maximizing the probabil-
ity (“evidence”) P{{y;}icm;x} of observing them un-
der the probabilistic model (4) for the labels. This is
equivalent to minimizing the empirical error:

Ex) = (1/M) Y (s — m:)*. (13)

ieM

The criterion (13) by itself is not sufficient for guid-
ing the learning of a graph signal based on few labels
{y: }iem, since it ignores the signal values z; for i € M.

In order to learn an entire graph signal X from the
incomplete information provided by the initial labels
{yi}ie M, we need to impose some structure on the true
underlying graph signal X as well as any learnt graph
signal x which should accurately resemble x. This
additional structure is provided by the empirical graph
G. In particular, we assume that any reasonable graph
signal X needs to conform with the cluster structure of
G (see Newman [2010]).

We are led quite naturally to learning a graph sig-
nal x by balancing a small empirical error (risk) E(x)
(see (13)) with a small TV ||x||rv (see (8)). Thus, we
arrive at the following regularized empirical risk min-
imization

% € arg min E(x) + A||x| v (14)
xeRY

The parameter A > 0 in (14) allows to trade off a small
TV ||X||Tv against a small empirical error. Choosing
a small value of A will result in a graph signal x with
small empirical error E(X) (see (13)), while choosing a
large value of A favours x with small TV ||x||rv (being
more clustered).

The learning problem (14) is a particular instance of
the nLasso introduced in Hallac et al. [2015] which al-
lows for efficient implementations using modern con-
vex optimization methods Parikh and Boyd [2013],
Boyd et al. [2010]. In particular, we obtain Algorithm
1 by applying the primal-dual method proposed by
Pock and Chambolle [2011] to

X € arg min E(x) + A||Dx||1
x€RV

=arg min max FE(x)+ A\’ Dx
xeRV  lufle<1

which, due to (9), is equivalent to (14).

Algorithm 1

input: D € RV, M, {y;}ieam, A

initialize: k:=0,x(0) =% =x0) =50 .=,
I/Zzl/()\M),’YZ'Z:ZjGV \/Wi,j
I:=diag{1/y;} eRV*Y

A:=diag{1/(2/W; ;)} €ERE*E,

repeat:
1: x:=2x(k) — x(k=1)
2: z:=y*) + ADx
Lot o 5
3: ge ) i= 2./ max{l,|3.|} for all ee &
4. xk+1D) .— (k) _ FDTy(k+1)
LAk 2oyt .
5. 'Ti .—WforaHZGM
6: ki=k+1
7: %) = (1-1/k)x*D 4 (1/k)x®)

until stopping criterion is satisfied
output: labels z; := 7" forallicV

i

4 STATISTICAL PROPERTIES OF
NETWORK LASSO

The accuracy of nLasso methods depends on how close
the solutions X of (14) are to the true underlying clus-
tered graph signal x € RY (see (4) and (11)).

In what follows, we derive a condition on the clus-
ter structure F and training set M, which guaran-
tee any solution x of (14) to be close to the underly-
ing graph signal X. This condition, which we refer to
as network compatibility condition (NCC) extends the
concept of compatibility conditions used for analyzing
Lasso methods for learning sparse vectors van de Geer
and Bithlmann [2009], to network-structured data. We
then show that this network compatibility condition is
related to the existence of a sufficiently large network
flow. The existence of such network flows indirectly
characterizes the connectivity of sampled nodes M in
different clusters via the cluster boundaries 0.F.

4.1 Flows over the Empirical Graph

The main conceptual contribution of this paper is the
insight that the accuracy of nLasso methods, aiming
at solving (14), depends on the topology of the under-
lying empirical graph via the existence of certain flows
with demands Kleinberg and Tardos [2006].

A flow over the empirical graph G is a mapping h :
V x V — R which assigns each directed edge (7, j) the
value h(i,j), which can be interpreted as the amount
of some quantity flowing through the edge (i,7) (see
Kleinberg and Tardos [2006]).
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A flow with demands has to satisfy the conservation
law
> h(i,§) = fi, for any i€V (15)
JEN ()
with a prescribed demand f; for each node i € V.
Moreover, we require flows to satisfy the capacity con-
straints

|h(2,j)| S V Wi,j for any (Z,])Eﬁ (16)

Note that the capacity constraint (16) applies only to
intra-cluster edges and does not involve the boundary
edges OF. The flow values h(i,j) at the boundary
edges (i,7) € OF take a special role in the following
definition of the notion of resolving training sets.

Definition 1 Consider an empirical graph G =
(V,E,W) and a partition F = {Ci,...,Cjr}. A
(training) set M = {i1,...,ip} €V resolves F with
constants K, L > 0 if, for any b; ; € {—1,1}97, there
is a flow h[-] on G (cf. (15), (16)) with h(i,j) =
bijL\/W;; for {i,j} € OF and demands (cf. (15))
|fi| <K/M forie M and f;=0 foric M.

This definition requires nodes of a resolving training
set to be sufficiently well connected with each bound-
ary edge {i,j} € OF. In particular, we could think
of injecting (absorbing) certain amounts of flow into
(from) the empirical graph at the sampled nodes. At
each sampled node i € M, we can inject (absorb) a
flow of value at most K/M. The injected (absorbed)
flow has to be routed from (to) the sampled nodes M
via the intra-cluster edges OF to (from) each bound-
ary edge {i,j} € OF such that it carries a flow value
L\ /W,;;.

Note that Definition 1 is quantitive as it involves the
numerical constants K and L. Our main result stated
below is an upper bound on the estimation error of
nLasso methods, which depends on the value of these
constants. It will turn out that resolving sampling
sets with a small values of K and large values of L are
beneficial for the ability of nLasso to recover the entire
graph signal from noisy samples {y; };cm observed on
the training set M.

4.2 Linear Regression with nLasso

For the analysis of the nLasso problem (14), we
will make use of the network compatibility condition
(NCCQC) defined as follows.

Definition 2 Consider an empirical graph G =
(V,E, W) with a particular partition F of its nodes
V. A sampling set M CV is said to satisfy NCC with
constants K, L > 1, if

Lljzllor < K|zl rm + llzllz7 (17)

for any graph signal z€RY.

The NCC guarantees nLasso (14) to accurately recover
graph signals of the form (11). Note that the NCC
involves the partition F underlying the signal model
(11). However, the partition is not required for the
implementation of nLasso (14).

It turns out that the resolving sets (see Definition 1)
satisfy the NCC.

Lemma 1 Consider an empirical graph G whose
nodes are partitioned as F = {Ci,...,C\z}. If a set
M resolves F, it satisfies NCC with the same param-
eters K, L.

The statement follows easily from [Jung et al., 2018,
Lemma 6] and the Cauchy-Schwarz inequality, which

implies Y |z| < /M Y 22
ieM ieM

Our main result is that the NCC, with suitable con-
stants L and K, implies that solutions of the nLasso
problem (14) are close to the true underlying clustered
graph signal X (cf. (11)).

Theorem 1 Consider an empirical graph G, whose
nodes have labels y; distributed according to (4) with
underlying clustered graph signal X (11). We observe
the labels on a training set M which satisfies the NCC
with parameters L>3, and K € (1, L-2) and condition
number k := X323 (see Definition 2). Based on the ob-
served noisy labels y;, we estimate the underlying graph
signal X by a solution X to the nLasso problem (14) for
the choice X := 1/(308k?) with some pre-specified er-
ror level n > 0. The probability of the nLasso error
exceeding 1 is upper bounded as

P{% — X[y >} < 2| exp [ — —JS”
S 8 - 3082K252

My
64 - 3082+ 02| D|,

+2M exp < (18)

The bound (18) indicates that, for a prescribed ac-
curacy level 7, the training set size M has to scale
according to k20 /pr. Thus, the sample size required
by Algorithm 1 scales with the square of the condi-
tion number k = K?"’g’ (see Definition 2) and inversely
with the spectral gap pr of the partitioning F. Thus,
nLasso methods (14) (such as Algorithm 1) require
less training data if the condition number & is small
and the spectral gap pr is large. This is reasonable,
since according to Lemma 1, a small condition num-
ber (NCC parameter L is large compared to K) re-
quires the edges within clusters to have larger weights
on average than the weights of the boundary edges.

Moreover, it is reasonable that nlLasso tends to be
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more accurate for a larger spectral gap pr, which re-
quires the nodes within each cluster C; to be well con-
nected. Indeed, an empirical graph G consisting of
well-connected clusters C; favours clustered graph sig-
nals, such as the true underlying graph signal x in (4),
to be solutions of the nLasso (14).

4.3 Proof of Theorem 1

By following the reasoning pattern in Bach [2010] and
Bithlmann and van de Geer [2011], we organize the
proof in two parts. The first part is to verify that, with
high probability, the estimation error X :=x—X incurred
by nLasso (14) is approximately clustered according to
(11). The second part is to upper bound the nLasso
error X using the NCC (17).

First, any solution % of (14) trivially satisfies

(1/M) Z[— yi(&i—1:)+(1/2)(87 —77)]
ieM
<A2)([[x][rv = [I%][Tv)- (19)

Inserting (4) into (19) yields the inequality

(1/M) Y —2e@+ A&y < Alxllrv,  (20)
ieM
which is satisfied by any solution X of nLasso (14).

Let us, for the time being, assume the label noise ¢;
(see (4)) is sufficiently small such that

|(1/M) Y s < (V/2)r]%| s+ (A9 [%]lmv - (21)
ieM

holds for every graph signal x € RY.
Combining (21) with (20),
[1%[lTv < (1/2)[1%]lrv + %[l mv +K[1%]m

and, in turn, via the decomposition property ||x||tv =
[xlloF+x[lz7 (see (10)),

1%[lzz < (1/2) %[l ov + 1%l vy =% ]lo7 +#]1%] A1

< (1/2) %l e + 1%l o7~ 1% o +5]1%] a1
(®) . . -
< (1/2)xllov + X =%[lor +5[I%[m, (22)

where step (a) is valid since the true underlying graph
signal x is assumed to be clustered (see (11)) which
implies ||X||Tv = ||X|loF. In step (b) we used the (re-
verse) triangle inequality for the semi-norm || - ||s£.

Inserting [|X||57= [X||37 into (22) yields

%[5 < 3l1%[loF +25[I%[| - (23)

Thus, for sufficiently small observation noise ¢; (such
that (21) is valid), the nLasso error X =%X—X is approx-
imately clustered according to (11).

Next, we control the nLasso error x=%—x (see (14)).
According to (19),

(1/M)> " [—2e:3;+E7] + AR rv S AR[Tv.  (24)
ieM

Using the (reverse) triangle inequality for the TV semi-

norm || - [|ax (see (10)), (24) becomes
(1/M)> " [—2e:@;+E7] <AlIX|Tv. (25)
iEM

Inserting (21) into (25),

I%[I3 < (3/2 Ax[rv +EA%]|

23) - .
2 6A[[X[loF+4RA[IX ] A1- (26)
Combining (23) with (17) yields

K42k (b)
73 I¥llam < 3llXllae,  (27)

where () is due to L>3. Inserting (27) into (26),

I1%[lor <

IXII3 < 22261 a1, (28)

and, in turn,
%l <220, (20)

Putting together the pieces, by combining (29), (27)
and (23), we arrive at

[1%[| v < 308Ak2. (30)

Note that (30) implies the bound ||X||Tv <7 for the
choice \:=17/(308x2%).

The final step of the proof is to control the probability
of (21) to hold. By Corollary 1, (21) holds if

max (/1) ZE, < (A\/2)k (31)

i€Cy
and simultaneously
glg;_(_“( L) ee |l < Ma/4. (32)

We first bound the probability that (31) fails to hold.
For a particular cluster C;, (5) yields

SOIT) SEEPWES IS 'CZ'AQ"“Q). (33)

8o2
1€Cy

Applying a union bound to (33) yields

2,2
P{%(31) invalid” } < 2|F|exp (— |Cl§2“ ) (34)
ag
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For controlling the probability of (32) failing to hold,

we note that the entries of (DZZZ)TECL are normally dis-
tributed with zero-mean and some variance which is
upper bounded by 202||W ||« /p*(C;) (see (3)). There-
fore, (5) and a union bound yields

« : ES B M2p2.7:)\2
P{ (32) invalid }§2M exp <640'2||]:)|C2>O> . (35)

A union bound yields (18) by summing the bounds
(34) and (35) for the choice A:=7/(308k?).

Lemma 2 Consider an empirical graph G =
(V, &, W). For any two graph signals u,v € RY,

E u;v; <
i€y

WD S0 > wy +[|(DY V] llullrv. (36)

i€V jev
Here, D € REXY denotes the incidence matriz of the

graph G under an arbitrary orientation of its edges .

Proof: Any graph signal u can be decomposed as
u=Pu+ (I-P)u, (37)

with P denoting the orthogonal projection matrix on
the nullspace of the graph Laplacian matrix L (1).

For a connected graph, the nullspace /(L) is the one-
dimensional subspace of constant graph signals (see
von Luxburg [2007]). In this case

P=(1/1"1)11" = (1/|v)11” (38)

with the constant graph signal 1 assigning all nodes
the same signal value 1. Therefore,

Pu® (1/y)1Tw) = (1/V) S wl.  (39)
i€y

The projection on the orthogonal complement of the
nullspace (L) C RY is given by I — P. We can rep-
resent this projection conveniently using the incidence
matrix D (2) (see Hiitter and Rigollet [2016])

I-P=D'D. (40)
Combining (39) and (40) with (37),
> uwi=1/V)> ui y_ vj+v'DDu. (41)
eV eV jev
Combining (41) with the inequality a’b < ||a|||/b|1,
Zuwz‘ <
iev

/DS w S v+ ||(D) V|| IDulli.  (42)

i€V jev

The result (36) follows from (42) by using (9). O

Applying Lemma 2 to the subgraphs induced by a par-
tition F={Cy,...,C 5|}, yields the following result.

Corollary 1 Consider an empirical graph G =
(V,E, W) whose nodes are partitioned into disjoint
clusters F = {C1,...,C 5| }. We overload notation and
denote by C; also the subgraph induced by the nodes
in C; and assume that these subgraphs are connected.
Then, for any two graph signals u,v € RV,

> viug <, max_ [(1/|G]) douilY ] lul

ieEM ’ i€C;  jEM

+ mx[[(0L) ve | ey ()

Here, D¢, € REXY denotes the incidence matriz of the
subgraph C; under an arbitrary orientation of its edges.

5 Conclusion

Using a simple non-parametric regression model for
network-structured datasets, we have derived an up-
per bound on the probability of the nLasso error to
exceed a given threshold. This bound applies if the
training set satisfies the NCC with respect to a par-
titioning of the empirical graph into clusters of data
points with similar labels. The NCC is related to the
existence of a sufficiently large flow between nodes of
the training set and the boundaries between clusters
in the dataset. Our analysis reveals how the accuracy
of nLasso depends on the empirical graph structure
and identifies two key quantities which determine the
required size of the training set. These quantities are
the condition number associated with the NCC and
the spectral gap of the cluster structure. A promising
avenue for future work is the extension of our analy-
sis of nLasso to more general probabilistic models for
networked data. In particular we plan to extend our
analysis to probabilistic models which form exponen-
tial families. This larger class of probabilistic models
would allow to cover multi-class and multi-label clas-
sification problems.
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