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A Population CATE sensitivity bounds

Lemma 1. The sensitivity bounds for the conditional expected potential outcomes µt(x) and µ
t
(x) defined in

(5)(6) have the following equivalent characterization:

µt(x) = sup
u∈Und

αt(x)
∫
yft(y | x)dy + (βt(x)− αt(x))

∫
u(y)yft(y | x)dy

αt(x)
∫
ft(y | x)dy + (βt(x)− αt(x))

∫
u(y)ft(y | x)dy

µ
t
(x) = inf

u∈Uni

αt(x)
∫
yft(y | x)dy + (βt(x)− αt(x))

∫
u(y)yft(y | x)dy

αt(x)
∫
ft(y | x)dy + (βt(x)− αt(x))

∫
u(y)ft(y | x)dy

where

Und = {u : Y → [0, 1] | u(y)is nondecreasing},
Uni = {u : Y → [0, 1] | u(y)is nonincreasing},

and αt(x) and β(x) defined in (4).

Proof. Recall that

µt(x) = sup
wt(y|x)∈[αt(x),βt(x)]

∫
ywt(y | x)ft(y | x)dy∫
wt(y | x)ft(y | x)dy

, (25)

µ
t
(x) = inf

wt(y|x)∈[αt(x),βt(x)]

∫
ywt(y | x)ft(y | x)dy∫
wt(y | x)ft(y | x)dy

. (26)

By one-to-one change of variables wt(y | x) = αt(x) + u(y)(βt(x)− αt(x)) with u : Y → [0, 1],

µt(x) = sup
u:Y→[0,1]

αt(x)
∫
yft(y, x)dy + (βt(x)− αt(x))

∫
u(y)yft(y | x)dy

αt(x)
∫
ft(y, x)dy + (βt(x)− αt(x))

∫
u(y)ft(y | x)dy

(27)

µ
t
(x) = inf

u:Y→[0,1]

αt(x)
∫
yft(y, x)dy + (βt(x)− αt(x))

∫
u(y)yft(y | x)dy

αt(x)
∫
ft(y, x)dy + (βt(x)− αt(x))

∫
u(y)ft(y | x)dy

(28)

We next use duality to prove that the u∗(y) that achieves the supremum in (27) belongs to Und. Similar result
can be proved analogously for the infimum in (28).

Denote that a(x) = (βt(x)−αt(x)), b(x) = (βt(x)−αt(x)), c(x) = αt(x)
∫
yft(y | x)dy, d(x) = αt(x)

∫
ft(y | x)dy.

Then the optimization problem in (27) can be written as:

max
u:Y→[0,1]

a(x) 〈y, u〉ft(y|x) + c(x)

b(x) 〈1, u〉ft(y|x) + d(x)

where 〈·, ·〉ft(y|x) is the inner product with respect to measure ft(y | x).

By Charnes-Cooper transformation with ũ = u
b(x)〈1,u〉ft(y|x)+d(x) and ṽ(x) = 1

b(x)〈1,u〉ft(y|x)+d(x) , the optimization

problem in (27) is equivalent to the following linear program:

max
ũ:Y→[0,1]
ṽ(x)

a(x) 〈y, ũ〉ft(y|x) + c(x)ṽ(x)

s.t. ũ(y) ≤ ṽ(x),−ũ(y) ≤ 0, for ∀y ∈ Y
b(x) 〈1, ũ〉ft(y|x) + d(x)ṽ(x) = 1, ṽ(x) ≥ 0

Let the dual function p(y) be associated with the primal constraint ũ(y) ≤ ṽ(x) (u(y) ≤ 1), and q(y) be the
dual function associated with −ũ(y) ≤ 0 (u(y) ≥ 0), and λ be the dual variable associated with the constraint



Interval Estimation of Individual-Level Causal Effects Under Unobserved Confounding

b(x) 〈1, ũ〉ft(y|x) + d(x)ṽ = 1. The dual program is

min
λ,p�0,q�0

λ

s.t. p− q + λb(x)ft(y | x) = a(x)yft(y | x)

− 〈1, p〉+ λd(x) ≥ c(x)

By complementary slackness, at most one of zi or ρi is nonzero. The first dual constraint implies that

p = (βt(x)− αt(x))ft(y | x) max{y − λ, 0},
q = (βt(x)− αt(x))ft(y | x) max{λ− y, 0}.

Moreover, the constraint that −〈1, p〉 + λd(x) ≥ c(x) should be tight at optimality. (otherwise there exists
smaller yet feasible λ that achives lower objective of the dual program.) This implies that

(βt(x)− αt(x))

∫
ft(y | x) max{y − λ, 0}dy = αt(x)

∫
(λ− y)ft(y | x)dy

This rules out the possibility that λ > CY or λ < −CY where CY > 0 such that |Y | ≤ CY . Thus ∃yH ∈ [−CY , Cy]
such that when y < yH , q > 0 so u = 0 and when y ≥ yH , p > 0 so u = 1. Therefore, the optimal u∗(y) that
achieves the supremum in (27) belongs to Und.

B CATE sensitivity bounds estimators

Lemma 2. The kernel-regression based sensitivity bound estimators µ̂t(x), µ̂
t
(x) given in (12)(13) have the

following equivalent characterization: for t ∈ {0, 1}

µ̂t(x) = sup
u∈Und

∑n
i:Ti=t

α(Xi)K(Xi−xh )Yi +
∑n
i:Ti=t

(β(Xi)− α(Xi))K(Xi−xh )Yiu(Yi)∑n
i:Ti=t

α(Xi)K(Xi−xh ) +
∑n
i:Ti=t

(β(Xi)− α(Xi))K(Xi−xh )u(Yi)

µ̂
t
(x) = inf

u∈Uni

∑n
i:Ti=t

α(Xi)K(Xi−xh )Yi +
∑n
i:Ti=t

(β(Xi)− α(Xi))K(Xi−xh )Yiu(Yi)∑n
i:Ti=t

α(Xi)K(Xi−xh ) +
∑n
i:Ti=t

(β(Xi)− α(Xi))K(Xi−xh )u(Yi)

where Und and Uni are defined in Lemma 1.

Proof. We prove the result for µ̂t(x) and the result for µ̂
t
(x) can be proved analogously. Given (12), by one-to-one

change of variable Wi = α(Xi) + (β(Xi)− α(Xi))Ui where Ui ∈ [0, 1],

µ̂t(x) = sup
Ui∈[0,1]

∑n
i:Ti=t

α(Xi)K(Xi−xh )Yi +
∑n
i:Ti=t

(β(Xi)− α(Xi))K(Xi−xh )YiUi∑n
i:Ti=t

α(Xi)K(Xi−xh ) +
∑n
i:Ti=t

(β(Xi)− α(Xi))K(Xi−xh )Ui
, (29)

µ̂
t
(x) = inf

Ui∈[0,1]

∑n
i:Ti=t

α(Xi)K(Xi−xh )Yi +
∑n
i:Ti=t

(β(Xi)− α(Xi))K(Xi−xh )YiUi∑n
i:Ti=t

α(Xi)K(Xi−xh ) +
∑n
i:Ti=t

(β(Xi)− α(Xi))K(Xi−xh )Ui
. (30)

Now we use duality to prove that the optimal weights U∗i that attains the supremum in (29) satisfies that
U∗i = u(Yi) for some function u : Y → [0, 1] such that u(y) is nondecreasing in y. The analogous result for (30)
can be proved similarly.

Essentially, (29) gives the following fractional linear program:

max
U

ATU + C

BTU +D

s.t.

[
IN
−IN

]
U ≤

[
1
0

]
,
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where U = [U1, U2, . . . , Un−1, Un]>, A = [a1, a2, . . . , an]> with ai = I[Ti = t](β(Xi) − α(Xi))K(Xi−xh )Yi,

B = [b1, b2, . . . , bn]> with bi = I[Ti = t](β(Xi) − α(Xi))K(Xi−xh ), C =
∑n
i:Ti=t

α(Xi)K(Xi−xh )Yi, and

D =
∑n
i:Ti=t

α(Xi)K(Xi−xh ).

By Charnes-Cooper transformation with Ũ = U
B>U+D

and Ṽ = 1
B>U+D

, the linear-fractional program above is
equivalent to the following linear program:

max
Ũ,v

A>Ũ + CṼ

s.t.

[
In
−In

]
Ũ ≤ Ṽ

[
1
0

]
B>Ũ + Ṽ D = 1, Ṽ ≥ 0

where the solution for Ũ , Ṽ yields a solution for the original program, U = Ũ
Ṽ

.

Let the dual variables pi ≥ 0 be associated with the primal constraints Ũi ≤ Ṽ (corresponding to Ui ≤ 1), qi ≥ 0
associated with Ũi ≥ 0 (corresponding to Ui ≥ 0), and λ associated with the constraint B>Ũ +DṼ = 1. Denote
P = [p1, . . . , pn]> and Q = [q1, . . . , qn]>.

The dual problem is:

min
λ,z,ρ

λ

s.t. P −Q+ λB = A, pi ≥ 0, qi ≥ 0

− 1TP + λD ≥ C

By complementary slackness, at most one of pi or qi is nonzero. Rearranging the first set of equality constraints
gives pi − qi = I(Ti = t)(β(Xi)− α(Xi))K(Xi−xh )(Yi − λ), which implies that

pi = I[Ti = t](β(Xi)− α(Xi))K(
Xi − x
h

) max(Yi − λ, 0)

qi = I[Ti = t](β(Xi)− α(Xi))K(
Xi − x
h

) max(λ− Yi, 0)

Since the constraint −1TP + λD ≥ c is tight at optimality (otherwise there exists smaller yet feasible λ that
achives lower objective of the dual program),

n∑
i=1

I[Ti = t]α(Xi)K(
Xi − x
h

)(λ− Yi) =

n∑
i=1

I[Ti = t](β(Xi)− α(Xi))K(
Xi − x
h

) max(Yi − λ, 0) (31)

This rules out both λ > maxi Yi and λ < mini Yi, thus Y(k) < λ ≤ Y(k+1) for some k where Y(1), Y(2), . . . , Y(n)

are the order statistics of the sample outcomes . This means that qi > 0 can happen only when Yi ≤ Y(k), i.e.,
Ui = 0; and pi > 0 can happen only when i > k+1, i.e., Ui = 1. This proves there exist a nondecreasing function
u : Y → [0, 1] such that Ui = u(Yi) attains the upper bound in (29).

Proof for Proposition 1. We prove the result for µ̂t(x) and the result for µ̂
t
(x) can be proved analogously. In

the proof of Lemma 2, (31) implies that ∃kH such that the optimal YkH < λ∗ ≤ YkH+1 and∑
i≤kH

I[Ti = t]αt(Xi)K(
Xi − x
h

)(λ∗ − Yi) =
∑

i≥kH+1

I[Ti = t]βt(Xi)K(
Xi − x
h

)(Yi − λ∗).

Thus

λ∗ =

∑
i≤kH I[Ti = t]αt(Xi)K(Xi−xh )Yi +

∑
i≥kH+1 I[Ti = t]βt(Xi)K(Xi−xh )Yi∑

i≤kH I[Ti = t]αt(Xi)K(Xi−xh ) +
∑
i≥kH+1 I[Ti = t]βt(Xi)K(Xi−xh )

. (32)
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Now we prove that if λ(k) ≥ λ(k + 1), then λ(k + 1) ≥ λ(k + 2), so kH = inf{k : λ(k) ≥ λ(k + 1)}. Note that
λ(k) ≥ λ(k + 1) is equivalent to∑

i≤k+1 I[Ti = t]αt(Xi)K(Xi−xh )Yi +
∑
i≥k+2 I[Ti = t]βt(Xi)K(Xi−xh )Yi∑

i≤k+1 I[Ti = t]αt(Xi)K(Xi−xh ) +
∑
i≥k+2 I[Ti = t]βt(Xi)K(Xi−xh )

≤ Yk+1.

Thus, if we denote (βt(x)− αt(x)) as ∆β,α(x) for short,∑
i≤k+2 I[Ti = t]αt(Xi)K(Xi−xh )Yi +

∑
i≥k+3 I[Ti = t]βt(Xi)K(Xi−xh )Yi∑

i≤k+2 I[Ti = t]αt(Xi)K(Xi−xh ) +
∑
i≥k+3 I[Ti = t]βt(Xi)K(Xi−xh )

≤
∑
i≤k+1 I[Ti = t]αt(Xi)K(Xi−xh )Yi +

∑
i≥k+2 I[Ti = t]βt(Xi)K(Xi−xh )Yi + (βt(x)− αt(x))I[Ti = t]K(Xi−xh )Yi∑

i≤k+1 I[Ti = t]αt(Xi)K(Xi−xh ) +
∑
i≥k+2 I[Ti = t]βt(Xi)K(Xi−xh ) + ∆β,α(x)I[Ti = t]K(Xi−xh )

(∗)
≤

( ∑
i≤k+1

I[Ti = t]αt(Xi)K(Xi−xh ) +
∑

i≥k+2

I[Ti = t]βt(Xi)K(Xi−xh )

)
Yk+1 + ∆β,α(x)I[Tk+2 = t]K(Xk+2−x

h )Yk+2∑
i≤k+1 I[Ti = t]αt(Xi)K(Xi−xh ) +

∑
i≥k+2 I[Ti = t]βt(Xi)K(Xi−xh ) + ∆β,α(x)I[Ti = t]K(Xi−xh )

≤

( ∑
i≤k+1

I[Ti = t]αt(Xi)K(Xi−xh ) +
∑
i≥k+2 I[Ti = t]βt(Xi)K(Xi−xh )

)
Yk+2 + ∆β,α(x)I[Tk+2 = t]K(Xk+2−x

h )Yk+2∑
i≤k+1 I[Ti = t]αt(Xi)K(Xi−xh ) +

∑
i≥k+2 I[Ti = t]βt(Xi)K(Xi−xh ) + ∆β,α(x)I[Ti = t]K(Xi−xh )

= Yk+2,

where (*) holds due to (32).

This implies that λ(k + 1) ≥ λ(k + 2). By strong duality, we know that µ̂t(x) = λ∗ = λ(kH ;x) thus we prove
the result for µ̂t(x). We can analogously prove the result for µ̂

t
(x).

Proof for Theorem 1. Here we prove that µ̂t(x)→ µt(x). µ̂
t
(x)→ µ

t
(x) can be proved analogously.

Since
∫
K(u)du <∞, without loss of generality we assume

∫
K(u) = 1.

Define the following quantities:

κyα(t, x;n, h) =
1

nhd

n∑
i:Ti=t

αt(Xi)K(
Xi − x
h

)Yi, Iyα(t, x) = αt(x)

∫
yft(y | x)dy,

κu,yβ−α(t, x;n, h) =
1

nhd

n∑
i:Ti=t

(βt(Xi)− αt(Xi))K(
Xi − x
h

)Yiu(Yi), Iu,yβ−α(t, x) = (βt(x)− αt(x))

∫
u(y)yft(y | x)dy,

κα(t, x;n, h) =
1

nhd

n∑
i:Ti=t

αt(Xi)K(
Xi − x
h

), Iα(t, x) = αt(x)

∫
ft(y | x)dy,

κuβ−α(t, x;n, h) =
1

nhd

n∑
i:Ti=t

(βt(Xi)− αt(Xi))K(
Xi − x
h

)u(Yi), Iuβ−α(t, x) = (βt(x)− αt(x))

∫
u(y)ft(y | x)dy.

Then

µ̂t(x) = sup
u∈Und

κyα(t, x;n, h) + κu,yβ−α(t, x;n, h)

κα(t, x;n, h) + κuβ−α(t, x;n, h)

µt(x) = sup
u∈Und

Iyα(t, x) + Iu,yβ−α(t, x)

Iα(t, x) + Iuβ−α(t, x)
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According to Lemma 3,∣∣µ̂t(x)− µt(x)
∣∣ ≤ sup

u∈Und

∣∣∣∣κyα(t, x;n, h) + κu,yβ−α(t, x;n, h)

κα(t, x;n, h) + κuβ−α(t, x;n, h)
−
Iyα(t, x) + Iu,yβ−α(t, x)

Iα(t, x) + Iuβ−α(t, x)

∣∣∣∣
≤ sup
u∈Und

{ ∣∣∣κyα + κu,yβ−α

∣∣∣
∣∣∣κα + κuβ−α − (Iα + Iuβ−α)

∣∣∣∣∣∣κα + κuβ−α

∣∣∣ ∣∣∣Iα + Iuβ−α

∣∣∣ +
1∣∣∣Iα + Iuβ−α

∣∣∣
∣∣∣κyα + κu,yβ−α − (Iyα + Iu,yβ−α)

∣∣∣ }

≤
(∆1(t, x;n, h) +

∣∣∣Iyα + Iu,yβ−α

∣∣∣)∆2(t, x;n, h)∣∣∣Iα + Iuβ−α

∣∣∣ (∣∣∣Iα + Iuβ−α

∣∣∣−∆2(t, x;n, h))
+

∆1(t, x;n, h)∣∣∣Iα + Iuβ−α

∣∣∣ (33)

where

∆1(t, x;n, h) = sup
u∈Und

∣∣∣∣[κyα(t, x;n, h) + κu,yβ−α(t, x;n, h)]− [Iyα(t, x) + Iu,yβ−α(t, x)]

∣∣∣∣, (34)

∆2(t, x;n, h) = sup
u∈Und

∣∣∣∣[κα(t, x;n, h) + κuβ−α(t, x;n, h)]− [Iα(t, x) + Iuβ−α(t, x)]

∣∣∣∣. (35)

Therefore, we only need to prove that when n → ∞, h → 0, and nh2d → ∞, ∆1(t, x;n, h)
p→ 0 and

∆2(t, x;n, h)
p→ 0 for t ∈ {0, 1} and x ∈ X . We prove ∆1(t, x;n, h)

p→ 0 in this proof. ∆2(t, x;n, h)
p→ 0

can be proved analogously.

Note that

∆1(t, x;n, h) ≤
∣∣∣∣κyα(t, x;n, h)− Iyα(t, x)

∣∣∣∣+ sup
u∈Und

∣∣∣∣κu,yβ−α(t, x;n, h)− Iu,yβ−α(t, x)

∣∣∣∣.
Step 1: prove that supu∈Und

∣∣∣∣κu,yβ−α(t, x;n, h)− Iu,yβ−α(t, x)

∣∣∣∣→ 0.

Obviously

sup
u∈Und

∣∣∣∣κu,yβ−α(t, x;n, h)− Iu,yβ−α(t, x)

∣∣∣∣
≤ sup
u∈Und

∣∣∣∣κu,yβ−α(t, x;n, h)− Eκu,yβ−α(t, x;n, h)

∣∣∣∣+ sup
u∈Und

∣∣∣∣Eκu,yβ−α(t, x;n, h)− Iu,yβ−α(t, x)

∣∣∣∣
:= Λ1 + Λ2

Step 1.1: prove Λ1
p→ 0.

By assumption, there exists δ > 0 with et(x, y) ∈ [δ, 1 − δ]. Hence, αt(x) ≤ Cδ,Γ(α) = 1
Γ ( 1

δ − 1) + 1 and
βt(x) − αt(x) ≤ Cδ,Γ(β − α) = (Γ − 1

Γ )( 1
δ − 1). Under the assumptions that |K(x)| ≤ CK and |Y | ≤ CY , there

exists a constant c > 0 such that for any two different observations (Xi, Ti, Yi) and (X ′i, T
′
i , Y

′
i ),∣∣∣∣ 1

nhd
(βt(Xi)− αt(Xi))K(

Xi − x
h

)I(Ti = t)u(Yi)Yi

− 1

nhd
(βt(X

′
i)− αt(X ′i))K(

X ′i − x
h

)I(T ′i = t)u(Y ′i )Y ′i

∣∣∣∣
≤ cCdKCY Cδ,Γ(β − α)

nhd
.

Then Lemma 4 and Mcdiarmid inequality implies that with high probability at least 1−exp(− 2nh2dε2

c2C2
Y C

2d
K C2

δ,Γ(β−α)
),

Λ1 ≤ EΛ1 + ε.
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Moreover, we can bound EΛ1 by Rademacher complexity: for i.i.d Rademacher random variables σ1, . . . , σn,

EΛ1 ≤ 2E sup
u∈Und

∣∣∣∣ 1

nhd

n∑
i=1

σi(βt(Xi)− αt(Xi))K(
Xi − x
h

)I(Ti = t)u(Yi)Yi

∣∣∣∣. (36)

Furthermore, we can bound the Rademacher complexity given the monotonicity structure of Und. Suppose
we reorder the data so that Y1 ≤ Y2 ≤ · · · ≤ Yn. Denote the whole sample by S = {(Xi, Ti, Yi)}ni=1 and
κi = (βt(Xi) − αt(Xi))K(Xi−xh )I(Ti = t)u(Yi)Yi. Since (36) is a linear programming problem, we only need to
consider the vertex solutions, i.e., u ∈ {0, 1}. Therefore,

EΛ1 ≤ 2E sup
u∈Und,u∈{0,1}

∣∣∣∣ 1

nhd

n∑
i=1

σi(βt(Xi)− αt(Xi))K(
Xi − x
h

)I(Ti = t)u(Yi)Yi

∣∣∣∣. (37)

Conditionally on S, (u(Y1), . . . , u(Yn)) thus can only have n+ 1 possible values:

(0, 0, . . . , 0, 0), (0, 0, . . . , 0, 1), . . . ,

(0, 1, . . . , 1, 1), (1, 1, . . . , 1, 1).

This means that conditionally on S, (κ1, κ2, . . . , κN ) can have at most N + 1 possible values. Plus, |κi| ≤
CdKCY Cδ,Γ(β − α). So by Massart’s finite class lemma,

E sup
u∈Und

∣∣∣∣ 1

nhd

N∑
i=1

σi(βt(Xi)− αt(Xi))K(
Xi − x
h

)I(Ti = t)u(Yi)Yi

∣∣∣∣
≤

√
2C2

Y C
2d
K C

2
δ,Γ(β − α) log(n+ 1)

nh2d
.

Therefore, with high probability at least 1− exp(− 2nh2dε2

c2C2
Y C

2d
K C2

δ,Γ(β−α)
),

Λ1 ≤ 2

√
2C2

Y C
2d
K C

2
δ,Γ(β − α) log(n+ 1)

nh2d
+ ε,

which means that Λ1
p→ 0 when nh2d →∞.

Step 1.2: prove Λ2
p→ 0.

E
1

nhd

n∑
i=1

(β(Xi)− α(Xi))K(
Xi − x
h

)I(Ti = t)u(Yi)Yi

=
1

hd
E[(βt(Xi)− αt(Xi))K(

Xi − x
h

)I(Ti = t)u(Yi)Yi]

=
1

hd

∫
u(y)y

[ ∫
(βt(z

′)− αt(z′))K(
z′ − x
h

)ft(y | x)dz′
]
dy

(a)
=

∫
u(y)y

[ ∫
(βt − αt)(x+ zh)K(z)ft(y | x+ zh)dz

]
dy

where in (a) we use change-of-variable z = z′−x
h .

Since βt(x), αt(x), and ft(y | x) are twice continuously differentiable with respect to x at any x ∈ X and y ∈ Y.
Apply Taylor expansion to (βt − αt)(x+ zh) and ft(y | x+ zh) around x:

(βt − αt)(x+ zh) = (βt − αt)(x) + hz>
d

dx
(βt − αt)(x) +

1

2
h2z>

d2

dx2
(βt − αt)(x)z + o(h2)

ft(y | x+ zh) = ft(y | x) + hz>
∂

∂x
ft(y | x) +

1

2
h2z>

∂2

∂x2
ft(y | x)z + o(h2)
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Then

E
1

nhd

n∑
i=1

(βt(Xi)− αt(Xi))K(
Xi − x
h

)I(Ti = t)u(Yi)Yi

=

∫
(βt − αt)(x)u(y)yft(y | x)dy +

h2

2

( ∫
K(z)z2dz

) ∫
u(y)y

(
ft(y | x)

d2

dx2
(βt − αt)(x)

+ (βt − αt)(x)
∂2

∂x2
ft(y | x) + 2

d

dx
(βt(x)− αt(x))

∂

∂x
ft(y | x)

)
dy + o(h2)

=
h2

2

( ∫
K(z)z2dz

) ∫
u(y)y

(
∂2

∂x2

(
(βt − αt)(x)ft(y | x)

))
dy + Iuβ−α(t, x) + o(h2)

Since the first order and second order derivatives of βt(x), αt(x), and ft(y | x) with respect to x are bounded,
obviously, ∣∣∣∣∫ u(y)y

(
∂2

∂x2

(
(βt − αt)(x)ft(y | x)

))
dy

∣∣∣∣ <∞.
Thus as h→ 0,

Λ2 = sup
u∈Und

∣∣∣∣h2

2

( ∫
K(z)z2dz

) ∫
u(y)y

(
∂2

∂x2

(
(βt − αt)(x)ft(y | x)

))
dy + o(h2)

∣∣∣∣
→ 0.

Step 2: prove that

∣∣∣∣κyα(t, x;n, h)− Iyα(t, x)

∣∣∣∣ p→ 0. Obviously

∣∣∣∣κyα(t, x;n, h)− Iyα(t, x)

∣∣∣∣
≤
∣∣∣∣κyα(t, x;n, h)− Eκyα(t, x;n, h)

∣∣∣∣+

∣∣∣∣Eκyα(t, x;n, h)− Iyα(t, x)

∣∣∣∣
:= Λ3 + Λ4

Step 2.1: prove Λ3
p→ 0. By Mcdiarmid inequality, with high probability at least 1− 2 exp(− 2nh2dε2

c2C2
Y C

2
KC

2
δ,Γ(α)

),

Λ3 ≤ ε.

Thus Λ3
p→ 0 when nh2d →∞.

Step 2.2: prove Λ4
p→ 0. Similarly to Step 1.2, we can prove that

Λ4 =

∣∣∣∣h2

2

( ∫
K(z)z2dz

) ∫
u(y)y

∂2

∂x2

(
αt(x)ft(y | x)

)
dy + o(h2)

∣∣∣∣
→ 0.

So far, we have proved that ∆1(t, x;n, h)
p→ 0. Analogously we can prove that ∆2(t, x;n, h)

p→ 0. Thus when
n→∞, h→ 0, and nh2d →∞, ∣∣µ̂t(x)− µt(x)

∣∣ p→ 0.

Analogously, ∣∣∣µ̂
t
(x)− µ

t
(x)
∣∣∣ p→ 0.

Therefore,

τ̂(x)
p→ τ(x), τ̂(x)

p→ τ(x).
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Lemma 3. For functions J : S → R and J̃ : S → R where S is some subset in Euclidean space,∣∣ sup
x∈S

J(x)− sup
x∈S

J̃(x)
∣∣ ≤ sup

x∈S
|J(x)− J̃(x)|∣∣ inf

x∈S
J(x)− inf

x∈S
J̃(x)

∣∣ ≤ sup
x∈S
|J(x)− J̃(x)|

Proof. Obviously,

sup
x∈S

J(x) ≤ sup
x∈S

J̃(x) + sup
x∈S
{J(x)− J̃(x)}

inf
x∈S
−J̃(x) ≥ inf

x∈S
−J(x) + inf

x∈S
{J̃(x)− J(x)}.

This implies that

− sup
x∈S
|J(x)− J̃(x)| ≤ inf

x∈S
{J̃(x)− J(x)}

≤ sup
x∈S

J(x)− sup
x∈S

J̃(x)

≤ sup
x∈S
{J(x)− J̃(x)} ≤ sup

x∈S
|J(x)− J̃(x)|,

i.e., | supx∈S J(x)− supx∈S J̃(x)| ≤ supx∈S |J(x)− J̃(x)|.

On the other hand,

sup
x∈S
−J̃(x) ≤ sup

x∈S
−J(x) + sup

x∈S
{J(x)− J̃(x)}

inf
x∈S

J(x) ≥ inf
x∈S

J̃(x) + inf
x∈S
{J(x)− J̃(x)}

which implies that

− sup
x∈S
|J(x)− J̃(x)| ≤ − sup

x∈S
{J̃(x)− J(x)}

≤ inf
x∈S

J(x)− inf
x∈S

J̃(x)

≤ sup
x∈S
{J(x)− J̃(x)} ≤ sup

x∈S
|J(x)− J̃(x)|

Namely | infx∈S J(x)− infx∈S J̃(x)| ≤ supx∈S |J(x)− J̃(x)|.

Lemma 4. For functions J : S → R and J̃ : S → R where S is some subset in Euclidean space,∣∣supx∈S |J(x)| − supx∈S |J̃(x)|
∣∣ ≤ sup

x∈S
|J(x)− J̃(x)|

Proof. On the one hand,

sup
x∈S
|J(x)| = sup

x∈S
|J(x)− J̃(x) + J̃(x)| ≤ sup

x∈S
|J(x)− J̃(x)|+ sup

x∈S
|J̃(x)|,

which implies that
sup
x∈S
|J(x)| − sup

x∈S
|J̃(x)| ≤ sup

x∈S
|J(x)− J̃(x)|.

On the other hand,

inf
x∈S
−|J̃(x)| = inf

x∈S
−|J̃(x)− J(x) + J(x)| ≥ inf

x∈S
(−|J̃(x)− J(x)| − |J(x)|) ≥ inf

x∈S
(−|J̃(x)− J(x)|) + inf

x∈S
(−|J(x)|),

which implies that
sup
x∈S
|J(x)| − sup

x∈S
|J̃(x)| ≥ − sup

x∈S
|J(x)− J̃(x)|.

Therefore, the conclusion follows.
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C Policy Learning

Proof for Proposition 2. The optimal policy π∗(·; Γ) solves the following optimization problem:

inf
π:X→[0,1]

sup
τ(x)∈T (x;Γ) ∀x∈X

E[(π(X)− π0(X))τ(X)]. (38)

Since both π and τ are bounded, according to Von Neumann theorem, the optimaization problem (38) is equiv-
alent to

sup
τ∈T

inf
π:X→[0,1]

E[(π(X)− π0(X))τ(X)], (39)

which means that there exist optimal τ∗ ∈ T and π∗ such that: (a) τ∗ is pessimal for π∗ in that
E[(π∗(X)− π0(X))τ∗(X)] ≥ E[(π∗(X)− π0(X))τ(X)] for ∀τ ∈ T and (b) π∗ is optimal for τ∗ in that
E[(π∗(X)− π0(X))τ∗(X)] ≤ E[(π(X)− π0(X))τ∗(X)], ∀π : X → [0, 1]. Obviously (b) implies that π∗ =
I [τ∗(x) < 0] + π0(x)I [τ∗(x) = 0] can make an optimal policy. Plugging π∗ = I [τ∗(x) < 0] + π0(x)I [τ∗(x) = 0]
into (39) gives

τ∗ = argmax
τ∈T

Emin((1− π0(X))τ(X),−π0(X)τ(X)). (40)

Actually τ∗ has closed form solution:

• When τ(x) ≤ 0, obviously τ(x) ≤ 0 so min((1− π0(x))τ(x),−π0(x)τ(x)) = (1− π0(x))τ(x).

– τ∗(x) = τ(x) if π0(x) < 1;

– τ∗(x) can be anything between τ(x) and τ(x) if π0(x) = 1.

• When τ(x) ≥ 0, obviously τ(x) ≥ 0 so min((1− π0(x))τ(x),−π0(x)τ(x)) = −π0(x)τ(x).

– τ∗(x) = τ(x) if π0(x) > 0;

– τ∗(x) can be anything between τ(x) and τ(x) if π0(x) = 0.

• When τ(x) < 0 < τ(x),

– If 0 < π0(x) < 1, when choosing τ∗(x) ≥ 0, min((1 − π0(x))τ∗(x),−π0(x)τ∗(x)) = −π0(x)τ∗(x)) ≤ 0,
so τ∗(x) must be 0; similarly, when choosing τ∗(x) ≤ 0, τ∗(x) must be 0. This means that τ∗(x) = 0.

– When π0(x) = 0, τ∗(x) can be anything between 0 and τ(x).

– When π0(x) = 1, τ∗(x) can be anything between τ(x) and 0.

In summary, the following τ∗ always solves the optimization problem in (40):

τ∗(x) = τ(x)I(τ(x) ≤ 0) + τ(x)I(τ(x) ≥ 0).

Therefore, the following policy is a minimax-optimal policy that optimizes (39):

π∗(x) = I [τ∗(x) < 0] + π0(x)I [τ∗(x) = 0] ,

with
τ∗(x) = τ(x)I(τ(x) ≤ 0) + τ(x)I(τ(x) ≥ 0).

Namely,
π∗(x) = I(τ(x) ≤ 0) + π0(x)I(τ(x) < 0 ≤ τ(x)).
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Proof for Theorem 2. According to the proof for Proposition 2,

sup
τ∈T

Rπ0
(π∗(·; Γ); Γ) = Emin((1− π0(X))τ∗(X),−π0(X)τ∗(X))

= E(1− π0(X))τ(X)I(τ(X) < 0) + E(−π0(X))τ(X)I(τ(X) > 0)

In contrast,

sup
τ∈T

Rπ0
(π̂∗(·; Γ); Γ) = max

τ∈T
E[(1− π0(X))τ(X)I(τ̂(X) < 0) + (−π0(X))τ(X)I(τ̂(X) > 0)]

= E[(1− π0(X))τ(X)I(τ̂(X) < 0) + (−π0(X))τ(X)I(τ̂(X) > 0)]

Thus

sup
τ∈T

Rπ0
(π̂∗(·; Γ); Γ)− sup

τ∈T
Rπ0

(π∗(·; Γ); Γ) = E
[(

(1− π0(X))τ(X)I(τ(X) < 0) + (−π0(X))τ(X)I(τ(X) > 0)

)
−
(

(1− π0(X))τ(X)I(τ̂(X) < 0) + (−π0(X))τ(X)I(τ̂(X) > 0)

)]
= E

[
(1− π0(X))τ(X)

(
I(τ(X) < 0)− I(τ̂(X) < 0)

)
+ (−π0(X))τ(X)

(
I(τ(X) > 0)− I(τ̂(X) > 0)

)]
= −E

[(
(1− π0(X)) |τ(X)| I(sign(τ(X)) 6= sign(τ̂(X)))

)
+

(
(−π0(X)) |τ(X)| I(sign(τ(X)) 6= sign(τ̂(X)))

)]

Next, we prove that under the assumptions in Theorem 1, when n→∞, h→ 0, and nh2 →∞,

E
(

(1− π0(X)) |τ(X)| I(sign(τ(X)) 6= sign(τ̂(X)))

)
→ 0.

Given that |Y | ≤ CY , |τ(x)| ≤ 2CY and |τ(x)| ≤ 2CY . For any η > 0,

E
[
(1− π0(X)) |τ(X)| I(sign(τ(X)) 6= sign(τ̂(X)))

]
≤ 2CY P

(
I(sign(τ(X)) 6= sign(τ̂(X)))I(|τ(X)| > η)

)
+ ηP

(
I(sign(τ(X)) 6= sign(τ̂(X)))I(|τ(X)| ≤ η)

)
(b)

≤ 2CY P
(
I(sign(τ(X)) 6= sign(τ̂(X)))I(|τ(X)− τ̂(X)| > η)

)
+ η

≤ 2CY P(|τ(X)− τ̂(X)| > η) + η

= 2CY E
[
P(|τ(X)− τ̂(X)| > η | X)

]
+ η

(c)→ η

Here (b) holds because when sign(τ(X)) 6= sign(τ̂(X)), |τ(X) − τ̂(X)| > |τ(X)|; (c) holds because Theorem 1

proves that P(|τ(X) − τ̂(X)| > η | X) → 0 , which implies E
[
P(|τ(X) − τ̂(X)| > η | X)

]
→ 0 according to

bounded convergence theorem considering that P(|τ(X)− τ̂(X)| > η | X) ≤ 1.

Therefore, when n→∞, h→ 0 and nh2d →∞,

E
[
(1− π0(X)) |τ(X)| I(sign(τ(X)) 6= sign(τ̂(X)))

]
→ 0.
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Analogously, we can prove that, when n→∞, h→ 0 and nh2d →∞,

E
[
π0(X) |τ(X)| I(sign(τ(X)) 6= sign(τ̂(X)))

]
→ 0.

As a result, when n→∞, h→ 0 and nh2d →∞, sup
τ∈T

Rπ0
(π̂∗(·; Γ); Γ)− sup

τ∈T
Rπ0

(π∗(·; Γ); Γ)→ 0.

D PCATE sensitivity bounds

Analogously, the corresponding sensitivity bounds for partial conditional average treatment effect are:

τ(xS ; Γ) = µ1(xS ; Γ)− µ
0
(xS ; Γ), (41)

τ(xS ; Γ) = µ
1
(xS ; Γ)− µ0(xS ; Γ), (42)

where µt(xS ; Γ) and µ
t
(xS ; Γ) for t ∈ {0, 1} are given in (17)(18). The corresponding PCATE bounds estimators

are:

τ̂(xS ; Γ) = µ̂1(xS ; Γ)− µ̂
0
(xS ; Γ), (43)

τ̂(xS ; Γ) = µ̂
1
(xS ; Γ)− µ̂0(xS ; Γ), (44)

where µ̂t(xS ; Γ) and µ̂
t
(xS ; Γ) for t ∈ {0, 1} are given in (22)(23).

For any πS : XS → [0, 1], the policy value and the worst-case policy regret are:

V (πS ; τ) = E[π(XS)Y (1) + (1− π(XS))Y (0)]

R
S

π0
(π; Γ) = sup

τ(xS)∈T (xS ;Γ) ∀xS∈XS
(V (πS ; τ)− V (π0; τ)) (45)

Corollary 2.1. Consider the partial conditional expected potential outcome

µt(xS) = E[Y (t) | XS = xS ],

where t ∈ {0, 1}, XS is a subset of the observed covariates X, and xS ∈ XS. The corresponding population PCAT
sensitivity bounds (17)(18) have the following equivalent characterization:

µt(xS ; Γ) = sup
u∈Und

∫∫
αt(xS , xSc)yft(y, xSc | xS)dydxSc +

∫∫
(βt(xS , xSc)− αt(xS , xSc))u(y)yft(y, xSc | xS)dydxSc∫∫

αt(xS , xSc)ft(y, xSc | xS)dydxSc +
∫∫

(βt(xS , xSc)− αt(xS , xSc))u(y)ft(y, xSc | xS)dydxSc

µ
t
(xS ; Γ) = inf

u∈Uni

∫∫
αt(xS , xSc)yft(y, xSc | xS)dydxSc +

∫∫
(βt(xS , xSc)− αt(xS , xSc))u(y)yft(y, xSc | xS)dydxSc∫∫

αt(xS , xSc)ft(y, xSc | xS)dydxSc +
∫∫

(βt(xS , xSc)− αt(xS , xSc))u(y)ft(y, xSc | xS)dydxSc

where ft(y, xSc | xS) is the conditional joint density function for {T = t, Y (t), XSc} given XS = xS with XSc

as the complementary subset of X with respect to XS, αt(·) and βt(·) are defined in (4), and Und and Uni are
defined in Lemma 1.

Proof. By analogous arguments of change of variable and duality in the proof for Lemma 1, we can prove the
conclusions in Corollary 2.1.

Corollary 2.2. Consider the following estimators:

µ̂t(xS ; Γ) = sup
Wti∈[αt(Xi;Γ),βt(Xi;Γ)]

∑n
i=1 I(Ti = t)K(

Xi,S−xS
h )WtiYi∑n

i=1 I(Ti = t)K(
Xi,S−xS

h )Wti

,

µ̂
t
(xS ; Γ) = inf

Wti∈[αt(Xi;Γ),βt(Xi;Γ)]

∑n
i=1 I(Ti = t)K(

Xi,S−xS
h )WtiYi∑n

i=1 I(Ti = t)K(
Xi,S−xS

h )Wti

.
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where αt(·) and βt(·) are defined in (4).

Assume that et(xS , xSc) and ft(y, xSc | xS) are twice continuously differentiable with respect to xS for any y ∈ Y
and xSc ∈ XS with bounded first and second derivatives. Under the other assumptions in Theorem 1, when

n→∞, h→ 0, and nh2|S| →∞, µ̂t(xS)
p→ µt(xS) and µ̂

t
(xS)

p→ µ
t
(xS).

Proof. Following the proof for Theorem 1, we can analogously prove that when n → ∞ and nh2|S| → ∞, with
∆β,α(Xi,S , Xi,Sc) = (βt(Xi,S , Xi,Sc)− αt(Xi,S , Xi,Sc)) for short,

µ̂t(xS ; Γ)
p→ (46)

sup
u∈Und

E
[
I(Ti = t)αt(Xi,S , Xi,Sc)K(

Xi,S−xS
h )Yi + I(Ti = t)u(Yi)(∆β,α(Xi,S , Xi,Sc))K(

Xi,S−xS
h )Yi

]
E
[
I(Ti = t)αt(Xi,S , Xi,Sc)K(

Xi,S−xS
h ) + I(Ti = t)u(Yi)K(

Xi,S−xS
h )

]
(47)

Note that

E
[
I(Ti = t)αt(Xi,S , Xi,Sc)K(

Xi,S − xS
h

)Yi

]
=

∫∫∫
αt(x

′
S , xSc)ft(y, x

′
S , xSc)K(

x′S − xS
h

)ydydx′SdxSc .

By the similar Taylor expansion argument in the proof for Theorem 1, when h→ 0,

E
[
I(Ti = t)αt(Xi,S , Xi,Sc)K(

Xi,S − xS
h

)Yi

]
→
∫∫

αt(xS , xSc)ft(y, xS , xSc)ydydxSc .

Similarly, we can prove the convergence of other components in Corollary 2.2. Given the characterization
in Corollary 2.1, we can decompose the estimation bias in a way similar to (33), which leads to the final
conclusions.

Corollary 2.3. Define the following policies based on the subset observed covariates XS: for any xS ∈ X ,

πP (xS ; Γ) = I(τ(xS ; Γ) ≤ 0) + π0(xS)I(τ(xS ; Γ) ≤ 0 < τ(xS ; Γ))

π̂P (xS ; Γ) = I(τ̂(xS ; Γ) ≤ 0) + π0(xS)I(τ̂(xS ; Γ) ≤ 0 < τ̂(xS ; Γ)).

where τ(xS ; Γ) and τ(xS ; Γ) are the population PCATE sentivity bounds defined in (41)(42), and τ̂(xS ; Γ) and
τ̂(xS ; Γ) are the PCATE sensitivity bounds estimators given in (43) (44).

Then πP (·; Γ) is the population minimax-optimal policies. Namely,

πP (·; Γ) ∈ argmin
πS :XS→[0,1]

[ sup
τ∈TS

R
S

π0
(π; Γ)]

where TS = {τ : τ(xS) ∈ [τ(xS), τ(xS)],∀xS ∈ XS}. Furthermore, the sample policy π̂P is asymptotically
minimax-optimal:

R
S

π0
(π̂P (·; Γ); Γ)

p→ R
S

π0
(πP (·; Γ); Γ).

Proof. The conclusions can be proved analougously to the proofs for Proposition 2 and Theorem 2.

E Additional figures

E.1 Bounds on Partial CATE

We next illustrate the case of learning the PCATE using our interval estimators in eqs. (21) and (23). In Fig. 4, we
show the same CATE specification used in Fig. 1, but introduce additional confounders which impact selection to
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Figure 4: Bounds on PCATE. Legend same as in Fig 1.

illustrate the use of this approach with higher-dimensional observed covariates. We consider observed covariates
X ∈ R3, uniformly generated on [−1, 1]3, where heterogeneity in treatment effect is only due to xS , S = {1},
the first dimension. That is, we specify the outcome model for t ∈ {0, 1} as:

Y (t) = (2t− 1)XS + (2t− 1)− 2 sin(2(2t− 1)XS)

− 2(2u− 1)(1 + 0.5XS) + β>x X + ε

We fix the nominal propensities as e(x) = σ(θ>x + 0.5), with θ = [0.75,−0.5, 0.5] and the outcome coefficient
vector βx = [0.5, 0.5, 0.5]. Again, we set the propensity scores such that the complete propensities achieve the
extremal bounds. Additional confounding dimensions tend to increase the outcome variation for any given xS
value, so the bounds are wider in Fig. 4.

E.2 Estimated vs. fixed marginal propensity scores

Figure 5: Bounds on CATE for differing values of Γ.

In the main text, for the sake of illustration we presented an example where we fix the nominal propensities e(X)
and set the true propensities e(X,U) such that the maximal odds-ratio bounds α(X), β(X) are “achieved” by
the true propensities. We computed bounds on the pre-specified e(X). We now consider a setting with a binary
confounder where log(Γ) = 1 is not a uniform bound, but bounds most of the observed odds ratios, and instead
we learn the marginal propensities Pr[T = 1 | X = x] from data using logistic regression. The results (Fig. 5)
are materially the same as in the main text.

We consider the same setting as in Fig. 1 with a binary confounder u ∼ Bern(1/2) generated independently, and
X ∼ Unif[−2, 2]. Then we set the true propensity score as

e∗(x, u) = σ(θx+ 2(u− 0.5) + 0.5)

We learn the nominal propensity scores e(x) by predicting them from data with logistic regression, which essen-
tially learns the marginalized propensity scores e(x) = Pr[T = 1 | X = x]. The outcome model yields a nonlinear
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CATE, with linear confounding and with randomly generated mean-zero noise, ε ∼ N(0, 1):

Y (t) = (2t− 1)x+ (2t− 1)− 2 sin(2(2t− 1)X)− 2(u− 1)(1 + 0.5X) + ε

This outcome model specification yields a confounded CATE estimate of

E[Y | X = x, T = 1]− E[Y | X = x, T = 0]

= 2− 2x+ 2(sin(−2x)− sin(2x))+

2(2 + x)(Pr[u = 1 | X=x
T=1 ]− Pr[u = 1 | X=x

T=0 ])

By Bayes’ rule,

Pr[u = 1 | X = x, T = 1] =
Pr[T = 1 | X = x, u = 1] Pr[u = 1 | X = x]

Pr[T = 1 | X = x]

In Fig. 5, we compute the bounds using our approach for log(Γ) = 0.5, 1, 1.5 on a dataset with n = 2000. The
purple long-dashed line corresponds to a confounded kernel regression. (Bandwidths are estimated by leave-
one-out cross-validation for each treatment arm regression). The confounding is greatest for large, positive x.
The true, unconfounded CATE is plotted in black. While the confounded estimation suggests a large region,
x ∈ [0, 1.25], where T = 1 is beneficial, the true CATE suggests a much smaller region where T = 1 is optimal.


