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A Proofs

A.1 Theorem 1

(i) Case of C = 1

To avoid complicating the notation, we first consider the case of the single output (C = 1). The general case is
shown after. The network output is denoted by f(t) here. We denote the Fisher information matrix with full
components as

F =

T∑
t=1

[
∇W f(t)∇W f(t)T ∇W f(t)∇bf(t)T

∇bf(t)∇W f(t)T ∇bf(t)∇bf(t)T

]
/T, (A.1)

where we notice that
∇blif(t) = δli(t). (A.2)

In general, the sum over the eigenvalues is given by the matrix trace, mλ = Trace(F )/P . We also denote the
average of the eigenvalues of the diagonal block as m(W )

λ for ∇W f∇W fT , and m(b)
λ for ∇bf∇bfT . Accordingly,

we find
mλ = m

(W )
λ +m

(b)
λ . (A.3)

The contribution of m(b)
λ is negligible in the large M limit as follows. The first term is

m
(W )
λ =

T∑
t=1

Trace(∇W f(t)∇W f(t)T )/(TP ) (A.4)

=

T∑
t=1

∑
l

∑
i,j

δli(t)
2hl−1j (t)2/(TP ). (A.5)

We can apply the central limit theorem to summations over the units
∑
i δ
l
i(t)

2 and
∑
j h

l−1
j (t)2 indepen-

dently because they do not share the index of the summation. By taking the limit of M � 1, we obtain∑
i δ
l
i(t)

2
∑
j h

l−1
j (t)2/Ml−1 = q̃lq̂l−1. The variable q̃l is computed by the recursive relation (9). Under the

Assumption 1, q̂l−1 is given by the recursive relation (11). Note that this transformation to the macroscopic
variables holds regardless of the sample index t. Therefore, we obtain

m
(W )
λ = κ1/M, κ1 :=

L∑
l=1

αl−1
α

q̃lq̂l−1, (A.6)

where αl comes from Ml = αlM , and α comes from P = αM2.

In contrast, the contributions of the bias entries are smaller than those of the weight entries in the limit of M � 1,
as is easily confirmed:
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m
(b)
λ =

∑
t

Trace(∇bf(t)∇bf(t)T )/(TP ) (A.7)

=
∑
t

∑
l

∑
i

δli(t)
2/(TP ) (A.8)

=
∑
l

q̃l/(αM2) (when M � 1). (A.9)

m
(W )
λ is O(1/M) while m(b)

λ is O(1/M2). Hence, the mean m(b)
λ is negligible and we obtain mλ = κ1/M .

(ii) C > 1 of O(1)

We can apply the above computation of C = 1 to each network output ∇fk (k = 1, ..., C):

Trace(∇θfk∇θfTk /T )/P = κ1/M. (A.10)

Therefore, the mean of the eigenvalues becomes

mλ =

C∑
k

Trace(∇θfk∇θfTk /T )/P (A.11)

= Cκ1/M. (A.12)

�

A.2 Corollary 2

Because the FIM is a positive semi-definite matrix, its eigenvalues are non-negative. For a constant k > 0, we
obtain

mλ =
1

P

 ∑
i;λi<k

λi +
∑
i;λi≥k

λi

 (A.13)

≥ 1

P

∑
i;λi≥k

λi (A.14)

≥ 1

P
N(λ ≥ k)k. (A.15)

This is known as Markov’s inequality. When M � 1, combining this with Theorem 1 immediately yields Corollary
2:

N(λ ≥ k) ≤ ακ1CM/k. (A.16)

�

A.3 Theorem 3

Let us describe the outline of the proof. One can express the FIM as F = (BBT )/T by definition. Here, let us
consider a dual matrix of F , that is, F ∗ := (BTB)/T . F and F ∗ have the same nonzero eigenvalues. Because the
sum of squared eigenvalues is equal to Trace(F ∗(F ∗)T ), we have sλ =

∑T
s,t(F

∗
st)

2/P . The non-diagonal entry
F ∗st (s 6= t) corresponds to an inner product of the network activities for different inputs x(s) and x(t), that is,
κ2. The diagonal entry F ∗ss is given by κ1. Taking the summation of (F ∗st)

2 over all of s and t, we obtain the
theorem. In particular, when T = 1 and C = 1, F ∗ is equal to the squared norm of the derivative ∇θfθ, that is,
F ∗ = ||∇θfθ||2, and one can easily check sλ = ακ21.

The detailed proof is given as follows.
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(i) Case of C = 1

Here, let us express the FIM as F = ∇θf∇θfT /T , where ∇θf is a P × T matrix whose columns are the gradients
on each input sample, i.e., ∇θf(t) (t = 1, ..., T ). We also introduce a dual matrix of F , that is, F ∗:

F ∗ := ∇θfT∇θf/T. (A.17)

Note that F is a P × P matrix while F ∗ is a T × T matrix. We can easily confirm that these F and F ∗ have the
same non-zero eigenvalues.

The squared sum of the eigenvalues is given by
∑
i λ

2
i = Trace(F ∗(F ∗)T ) =

∑
st(F

∗
st)

2. By using the Frobenius
norm ||A||F :=

√∑
ij A

2
ij , this is

∑
i λ

2
i = ||F ∗||2F . Similar to mλ, the bias entries in F ∗ are negligible because

the number of the entries is much less than that of weight entries. Therefore, we only need to consider the weight
entries. The st-th entry of F ∗ is given by

F ∗st =
∑
l

∑
ij

∇W l
ij
f(s)∇W l

ij
f(t)/T (A.18)

=
∑
l

Ml−1Z̃
l(s, t)Ẑl−1(s, t)/T, (A.19)

where we defined
Ẑl(s, t) :=

1

Ml

∑
j

hlj(s)h
l
j(t), Z̃l(s, t) :=

∑
i

δli(s)δ
l
i(t). (A.20)

We can apply the central limit theorem to Ẑl−1(s, t) and Z̃l(s, t) independently because they do not share the
index of the summation. For s 6= t, we have Ẑl = q̂lst +N (0, γ̂/M) and Z̃l = q̃lst +N (0, γ̃/M) in the limit of
M � 1, where the macroscopic variables q̂lst and q̃lst satisfy the recurrence relations (10) and (12). Note that the
recurrence relation (12) requires the Assumption 1. γ̂ and γ̃ are constants of O(1). Then, for all s and t(6= s),

F ∗st =
∑
l

Ml−1(q̃lst +O(1/
√
M))(q̂l−1st +O(1/

√
M))/T (A.21)

= ακ2M/T +O(
√
M)/T. (A.22)

Similarly, for s = t, we have Ẑl = q̂l +O(1/
√
M), Z̃l = q̃l +O(1/

√
M) and then F ∗ss = ακ1M/T +O(

√
M)/T .

Thus, under the limit of M � 1, the dual matrix is asymptotically given by

F ∗ = αMK/T +O(
√
M)/T, K :=


κ1 κ2 · · · κ2

κ2 κ1
...

...
. . . κ2

κ2 · · · κ2 κ1

 . (A.23)

Neglecting the lower order term, we obtain

sλ =

T∑
s,t

(F ∗st)
2/P (A.24)

= α

(
T − 1

T
κ22 +

1

T
κ21

)
. (A.25)

Note that, when q̂lst = 0, κ2 becomes zero and the lower order term may be non-negligible. In this exceptional
case, we have sλ = ακ21/T + O(1/M), where the second term comes from the O(

√
M)/T term of Eq. (A.23).

Therefore, the lower order evaluation depends on the T/M ratio, although it is outside the scope of this study.
Intuitively, the origin of q̂lst 6= 0 is related to the offset of firing activities hli. The condition of q̂lst 6= 0 is satisfied
when the bias terms exist or when the activation φ(·) is not an odd function. In such cases, the firing activities
have the offset E[hli(t)] 6= 0. Therefore, for any input samples s and t (s 6= t), we have

∑
i h

l
i(s)h

l
i(t)/Ml = q̂lst 6= 0

and then κ2 6= 0 makes sλ of O(1).
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(ii) C > 1 of O(1)

Here, we introduce the following dual matrix F ∗:

F ∗ := BTB/T, (A.26)
B := [∇θf1 ∇θf2 · · · ∇θfC ], (A.27)

where ∇θfk is a P × T matrix whose columns are the gradients on each input sample, i.e., ∇θfk(t) (t = 1, ..., T ),
and B is a P × CT matrix. The FIM is represented by F = BBT /T . F ∗ is a CT × CT matrix and consists of
T × T block matrices,

F ∗(k, k′) := ∇θfTk ∇θfk′/T, (A.28)

for k, k′ = 1, ..., C.

The diagonal block F ∗(k, k) is evaluated in the same way as the case of C = 1. It becomes αMK/T as shown in
Eq. (A.23). The non-diagonal block F ∗(k, k′) has the following st-th entries:

F ∗(k, k′)st =
∑
ij

∇W l
ij
fTk (s)∇W l

ij
fk′(t)/T (A.29)

= Ml−1(
∑
i

δlk,i(s)δ
l
k′,i(t))Ẑ

l−1(s, t)/T. (A.30)

Under the limit of M � 1, while Z̃l(s, t) becomes q̃lst of O(1), (
∑
i δ
l
k,i(s)δ

l
k′,i(t)) becomes zero and its lower order

term of O(1/
√
M) appears. This is because the different outputs (k 6= k′) do not share the weights WL

ij . We have∑
i δ
L
k,i(s)δ

L
k′,i(t) = 0 and then obtain

∑
i δ
l
k,i(s)δ

l
k′,i(t) = 0 (l = 1, ..., L− 1) through the backpropagated chain

(7). Thus, the entries of the non-diagonal blocks (A.28) become of O(
√
M)/T , and we have

F ∗(k, k′) = αMK/Tδk,k′ +O(
√
M)/T, (A.31)

where δk,k′ is the Kronecker delta.

After all, we have

sλ =

C∑
k,k′

T∑
s,t

(F ∗(k, k′)st)
2/P (A.32)

= Cα

(
T − 1

T
κ22 +

1

T
κ21

)
+ CO(1/

√
M) + C(C − 1)O(1/M), (A.33)

where the first term comes from the diagonal blocks of O(M) and the second one is their lower order term. The
third term comes from the non-diagonal blocks of O(

√
M). As one can see from here, when C = O(M), the thrid

term becomes non-negligible. This case is examined in Section 3.4. �

A.4 Theorem 4

(i) Case of C = 1

Because F and F ∗ have the same non-zero eigenvalues, what we should derive here is the maximum eigenvalue of
F ∗. As shown in Eq. (A.23), the leading term of F ∗ asymptotically becomes αMK/T in the limit of M � 1.
The eigenvalues of αMK/T are explicitly obtained as follows: λmax = α

(
T−1
T κ2 + 1

T κ1
)
M for an eigenvector

e = (1, ..., 1), and λi = α(κ1 − κ2)M/T for eigenvectors e1 − ei (i = 2, ..., T ) where ei denotes a unit vector whose
entries are 1 for the i-th entry and 0 otherwise. Thus, we obtain λmax = α

(
T−1
T κ2 + 1

T κ1
)
M .

(ii) C > 1 of O(1)

Let us denote F ∗ shown in Eq. (A.31) by F ∗ := F̄ ∗ +R. F̄ ∗ is the leading term of F ∗ and given by a CT × CT
block diagonal matrix whose diagonal blocks are given by αMK/T . R denotes the residual term of O(

√
M)/T .
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In general, the maximum eigenvalue is denoted by the spectral norm || · ||2, that is, λmax = ||F ∗||2. Using the
triangle inequality, we have

λmax ≤ ||F̄ ∗||2 + ||R||2, (A.34)

We can obtain ||F̄ ∗||2 = α
(
T−1
T κ2 + 1

T κ1
)
M because the maximum eigenvalues of the diagonal blocks are the

same as the case of C = 1. Its eigenvector is given by a CT -dimensional vector e = (1, ..., 1). Regarding ||R||2,
this is bounded by ||R||2 ≤ ||R||F =

√
C2
∑
st(O(

√
M)/T )2 = O(C

√
M). Therefore, when C = O(1), we can

neglect ||R||2 of O(
√
M) compared to ||F̄ ∗||2 of O(M).

On the other hand, we can also derive the lower bound of λmax as follows. In general, we have

λmax = max
v;||v||2=1

vTF ∗v. (A.35)

Then, we find

λmax ≥ vT1 F
∗v1, (A.36)

where v1 is a CT -dimensional vector whose first T entries are 1/
√
T and the others are 0, that is, v1 =

(1, ..., 1, 0, ..., 0)/
√
T . We can compute this lower bound by taking the sum over the entries of F ∗(1, 1), which is

equal to Eq. (A.23):

λmax ≥
(
T − 1

T
κ2 +

1

T
κ1

)
M. (A.37)

Finally, we find that the upper bound (A.34) and lower bound (A.37) asymptotically take the same value of
O(M), that is, λmax =

(
T−1
T κ2 + 1

T κ1
)
M .

�

A.5 Case of C = O(M)

The mean of eigenvalues m′λ is derived in the same way as shown in Section A.1 (ii), that is, m′λ = Cκ1/M .

Regarding the second moment s′λ, the lower order term becomes non-negligible as remarked in Eq. (A.33). We
evaluate this s′λ by using inequalities as follows:

s′λ = ||F ∗||2F /P (A.38)

=

 C∑
k

||∇θfTk ∇θfk||2F +

C∑
k,k′

||∇θfTk ∇θfk′ ||2F

 /P (A.39)

≥
C∑
k

||∇θfTk ∇θfk||2F /P. (A.40)

As shown in Section A.3, for any k, we obtain ||∇θfTk (s)∇θfk(t)||2F /P = α
(
T−1
T κ22 + 1

T κ
2
1

)
in the limit of M � 1.

Thus, the lower bound becomes the same form as sλ, That is, sλ = Cα(T−1T κ22 + 1
T κ

2
1) . In contrast, the upper

bound is given by

s′λ = ||F ||2F /P (A.41)

= ||
C∑
k

Fk||2F /P (A.42)

≤ (

C∑
k

||Fk||F )2/P, (A.43)

where Fk denotes the FIM of the k-th output, i.e., Fk :=
∑
t∇θfk(t)∇θfk(t)T /T . Therefore, the upper bound

is reduced to the summation over sλ of C = 1. In the limit of M � 1, we obtain s′λ ≤ C2||Fk||2F /P =
C2α

(
T−1
T κ22 + 1

T κ
2
1

)
= Csλ.
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Next, we show inequalities for λmax. We have already derived the lower bound (A.37) and this bound holds in
the case of C = O(M) as well. In contrast, the upper bound (A.34) may become loose when C is larger than
O(1) because of the residual term ||R||2. Although it is hard to explicitly obtain the value of ||R||2, the following
upper bound holds and is easy to compute by using sλ of Eq. (14). Because the FIM is a positive semi-definite
matrix, λi ≥ 0 holds by definition. Then, we have λmax ≤

√∑
i λ

2
i . Combining this with s′λ =

∑
i λ

2
i /P , we have

λmax ≤
√
αs′λM ≤

√
αCsλM .

�

A.6 Theorem 5

The Fisher-Rao norm is written as

||θ||FR =
∑
l,ij

∑
l′,ab

F(l,ij),(l′,ab)W
l
ijW

l′

ab, (A.44)

where F(l,ij),(l′,ab) represents an entry of the FIM, that is,
∑C
k

∑
t∇W l

ij
fk(t)∇W l′

ab
fk(t)/T . Because F(l,ij),(l′,ab)

includes the random variables W l
ij and W l′

ab, we consider the following expansion. Note that W l
ij and W l′

ab are
infinitesimals generated by Eq. (8). Performing a Taylor expansion around W l

ij = W l′

ab = 0, we obtain

F(l,ij),(l′,ab)(θ) = F(l,ij),(l′,ab)(θ
∗) +

∂F(l,ij),(l′,ab)

∂W l
ij

(θ∗)W l
ij +

∂F(l,ij),(l′,ab)

∂W l′
ab

(θ∗)W l′

ab

+ higher-order terms, (A.45)

where θ∗ is the parameter set {W l
ij , b

l
i} with W l

ij = W l′

ab = 0. By substituting the above expansion into the
Fisher-Rao norm and taking the average 〈·〉θ, we obtain the following leading term:

〈F(l,ij),(l′,ab)W
l
ijW

l′

ab〉θ = 〈F(l,ij),(l′,ab)(θ
∗)W l

ijW
l′

ab〉θ (A.46)

= 〈F(l,ij),(l′,ab)(θ
∗)〉θ∗〈W l

ijW
l′

ab〉{W l
ij ,W

l′
ab}

(A.47)

For, (l, ij) 6= (l′, ab), the last line becomes zero because of 〈W l
ijW

l′

ab〉{W l
ij ,W

l′
ab}

= 〈W l
ij〉W l

ij
〈W l′

ab〉W l′
ab

= 0. For

(l, ij) = (l′, ab), we have 〈(W l
ij)

2〉{W l
ij} = σ2

w/Ml−1. After all, in the limit of M � 1, we obtain

〈||θ||FR〉θ =

C∑
k

∑
t

T

∑
l

〈
∑
i

δlk,i(t)
2
∑
j

hl−1j (t)2〉θ∗
σ2
w

Ml−1
(A.48)

=

C∑
k

∑
t

T
σ2
w

∑
l

〈q̃l〉θ〈q̂l−1〉θ (A.49)

= σ2
wC

∑
l

q̃lq̂l−1, (A.50)

where the derivation of the macroscopic variables is similar to that of mλ, as shown in Section A.1. Since we
have κ1 =

∑
l
αl−1

α q̃lq̂l−1, it is easy to confirm 〈||θ||FR〉θ ≤ Cσ2
wα/αminCκ1. When all αl take the same value,

we have α/αmin = L− 1 and the equality holds. �

A.7 Lemma 6

Suppose a perturbation around the global minimum: θt = θ∗ + ∆t. Then, the gradient update becomes

∆t+1 ← (I − ηF )∆t + µ(∆t −∆t−1), (A.51)

where we have used E(θ∗) = 0 and ∂E(θ∗)/∂θ = 0.
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Consider a coordinate transformation from ∆t to ∆̄t that diagonalizes F . It does not change the stability of the
gradients. Accordingly, we can update the i-th component as follows:

∆̄t+1,i ← (1− ηλi + µ)∆̄t,i − µ∆t−1,i. (A.52)

Solving its characteristic equation, we obtain the general solution,

∆̄t,i = Aλt+ +Bλt−, λ± = (1− ηλi + µ±
√

(1− ηλi + µ)2 − 4µ)/2, (A.53)

where A and B are constants. This recurrence relation converges if and only if ηλi < 2(1 + µ) for all i. Therefore,
η < 2(1 + µ)/λmax is necessary for the steepest gradient to converge to θ∗. �

B Analytical recurrence relations

B.1 Erf networks

Consider the following error function as an activation function φ(x):

erf(x) =
2√
π

∫ x

0

exp(−t2)dt. (B.1)

The error function well approximates the tanh function and has a sigmoid-like shape. For a network with
φ(x) = erf(x), the recurrence relations for macroscopic variables do not require numerical integrations.

(i) q̂l and q̃l: Note that we can analytically integrate the error functions over a Gaussian distribution:∫ ∞
0

Dxerf(ax)erf(bx) =
1

π
tan−1

√
2ab√

a2 + b2 + 1/2
. (B.2)

Hence, the recurrence relations for the feedforward signals (9) have the following analytical forms:

q̂l+1 =
2

π
tan−1

(
ql+1√

ql+1 + 1/4

)
, ql+1 = σ2

w q̂
l + σ2

b . (B.3)

Because the derivative of the error function is Gaussian, we can also easily integrate φ′(x) over the Gaussian
distribution and obtain the following analytical representations of the recurrence relations (11):

q̃l =
2q̃l+1σ2

w

π
√
ql + 1/4

, q̃L = 1. (B.4)

(ii) q̂lst and q̃lst:

To compute the recurrence relations for the feedforward correlations (10), note that we can generally transform
Iφ[a, b] into

Iφ[a, b] =

∫
Dy

(∫
Dxφ(

√
a− bx+

√
by)

)2

. (B.5)

For the error function, ∫
Dxφ(

√
a− bx+

√
by) = erf

√
by√

1 + 2a− 2b
, (B.6)

and we obtain
Iφ[a, b] =

2

π
tan−1

2b√
(1 + 2a)2 − (2b)2

. (B.7)

This is the analytical form of the recurrence relation for q̂lst.

Finally, because the derivative of the error function is Gaussian, we can also easily obtain

Iφ′ [a, b] =
4

π
√

(1 + 2a)2 − (2b)2
. (B.8)

This is the analytical forms of the recurrence relations for q̃lst.
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B.2 ReLU networks

We define a ReLU activation as φ(x) = 0 (x < 0), x (0 ≤ x). For a network with this ReLU activation function,
the recurrence relations for the macroscopic variables require no numerical integrations.

(i) q̂l and q̃l: We can explicitly perform the integrations in the recurrence relations (9) and (11):

q̂l+1 = q̂lσ2
w/2 + σ2

b/2, (B.9)
q̃l = q̃l+1σ2

w/2, q̃L = 1/2. (B.10)

(ii) q̂lst and q̃lst: We can explicitly perform the integrations in the recurrence relations (10) and (12):

Iφ[a, b] =
a

2π
(
√

1− c2 + cπ/2 + c sin−1 c), (B.11)

Iφ′ [a, b] =
a

2π
(π/2 + sin−1 c), (B.12)

where c = b/a.

B.3 Linear networks

We define a linear activation as φ(x) = x. For a network with this linear activation function, the recurrence
relations for the macroscopic variables do not require numerical integrations.

(i) q̂l and q̃l: We can explicitly perform the integrations in the recurrence relations (9) and (11):

ql = ql−1σ2
w + σ2

b , (B.13)
q̃l = q̃l+1σ2

w, q̃L = 1. (B.14)

(ii) q̂lst and q̃lst: We can explicitly perform the integrations in the recurrence relations (10) and (12):

q̂l+1
st = q̂lstσ

2
w + σ2

b , (B.15)
q̃lst = q̃l+1

st σ2
w, q̃Lst = 1. (B.16)



Ryo Karakida, Shotaro Akaho, Shun-ichi Amari

C Additional Experiments

C.1 Dependence on T

m
λ

s λ λ m
ax

T

Tanh (M =1000)

ReLU 

Linear

TT

m
λ

s λ λ m
ax

T TT

m
λ

s λ λ m
ax

T TT

100 101 102 103 104
10-4

10-3

10-2

100 101 102 103 104
10-2

10-1

100

101

100 101 102 103 104
101

102

103

m
λ

s λ λ m
ax

T TT

         (M = 300)

Figure C.1: Statistics of FIM eigenvalues with fixed M and changing T (L = 3, αl = C = 1). The red line
represents theoretical results obtained in the limit of M � 1. The first row shows results of Tanh networks with
M = 1000. The second row shows those with a relatively small width (M = 300) and higher T . We set M = 1000
in ReLU and linear networks. The other settings are the same as in Fig. 1.

C.2 Training on CIFAR-10
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Figure C.2: Color map of training losses after one epoch of SGD training: Tanh, ReLU, and linear networks
trained on CIFAR-10.
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