Universal Statistics of Fisher Information in Deep Neural Networks: Mean Field Approach

Ryo Karakida

AIST, Japan

Shotaro Akaho
AIST, Japan

Shun-ichi Amari
RIKEN CBS, Japan

Supplementary Materials

A Proofs

A. 1 Theorem 1

(i) Case of $C=1$

To avoid complicating the notation, we first consider the case of the single output ($C=1$). The general case is shown after. The network output is denoted by $f(t)$ here. We denote the Fisher information matrix with full components as

$$
F=\sum_{t=1}^{T}\left[\begin{array}{ll}
\nabla_{W} f(t) \nabla_{W} f(t)^{T} & \nabla_{W} f(t) \nabla_{b} f(t)^{T} \tag{A.1}\\
\nabla_{b} f(t) \nabla_{W} f(t)^{T} & \nabla_{b} f(t) \nabla_{b} f(t)^{T}
\end{array}\right] / T,
$$

where we notice that

$$
\begin{equation*}
\nabla_{b_{i}^{l}} f(t)=\delta_{i}^{l}(t) . \tag{A.2}
\end{equation*}
$$

In general, the sum over the eigenvalues is given by the matrix trace, $m_{\lambda}=\operatorname{Trace}(F) / P$. We also denote the average of the eigenvalues of the diagonal block as $m_{\lambda}^{(W)}$ for $\nabla_{W} f \nabla_{W} f^{T}$, and $m_{\lambda}^{(b)}$ for $\nabla_{b} f \nabla_{b} f^{T}$. Accordingly, we find

$$
\begin{equation*}
m_{\lambda}=m_{\lambda}^{(W)}+m_{\lambda}^{(b)} . \tag{A.3}
\end{equation*}
$$

The contribution of $m_{\lambda}^{(b)}$ is negligible in the large M limit as follows. The first term is

$$
\begin{align*}
m_{\lambda}^{(W)} & =\sum_{t=1}^{T} \operatorname{Trace}\left(\nabla_{W} f(t) \nabla_{W} f(t)^{T}\right) /(T P) \tag{A.4}\\
& =\sum_{t=1}^{T} \sum_{l} \sum_{i, j} \delta_{i}^{l}(t)^{2} h_{j}^{l-1}(t)^{2} /(T P) . \tag{A.5}
\end{align*}
$$

We can apply the central limit theorem to summations over the units $\sum_{i} \delta_{i}^{l}(t)^{2}$ and $\sum_{j} h_{j}^{l-1}(t)^{2}$ independently because they do not share the index of the summation. By taking the limit of $M \gg 1$, we obtain $\sum_{i} \delta_{i}^{l}(t)^{2} \sum_{j} h_{j}^{l-1}(t)^{2} / M_{l-1}=\tilde{q}^{l} \hat{q}^{l-1}$. The variable \tilde{q}^{l} is computed by the recursive relation (9). Under the Assumption 1, \hat{q}^{l-1} is given by the recursive relation (11). Note that this transformation to the macroscopic variables holds regardless of the sample index t. Therefore, we obtain

$$
\begin{equation*}
m_{\lambda}^{(W)}=\kappa_{1} / M, \quad \kappa_{1}:=\sum_{l=1}^{L} \frac{\alpha_{l-1}}{\alpha} \tilde{q}^{l} \hat{q}^{l-1}, \tag{A.6}
\end{equation*}
$$

where α_{l} comes from $M_{l}=\alpha_{l} M$, and α comes from $P=\alpha M^{2}$.
In contrast, the contributions of the bias entries are smaller than those of the weight entries in the limit of $M \gg 1$, as is easily confirmed:

$$
\begin{align*}
m_{\lambda}^{(b)} & =\sum_{t} \operatorname{Trace}\left(\nabla_{b} f(t) \nabla_{b} f(t)^{T}\right) /(T P) \tag{A.7}\\
& =\sum_{t} \sum_{l} \sum_{i} \delta_{i}^{l}(t)^{2} /(T P) \tag{A.8}\\
& =\sum_{l} \tilde{q}^{l} /\left(\alpha M^{2}\right) \quad(\text { when } \quad M \gg 1) \tag{A.9}
\end{align*}
$$

$m_{\lambda}^{(W)}$ is $O(1 / M)$ while $m_{\lambda}^{(b)}$ is $O\left(1 / M^{2}\right)$. Hence, the mean $m_{\lambda}^{(b)}$ is negligible and we obtain $m_{\lambda}=\kappa_{1} / M$.
(ii) $C>1$ of $O(1)$

We can apply the above computation of $C=1$ to each network output $\nabla f_{k}(k=1, \ldots, C)$:

$$
\begin{equation*}
\operatorname{Trace}\left(\nabla_{\theta} f_{k} \nabla_{\theta} f_{k}^{T} / T\right) / P=\kappa_{1} / M \tag{A.10}
\end{equation*}
$$

Therefore, the mean of the eigenvalues becomes

$$
\begin{align*}
m_{\lambda} & =\sum_{k}^{C} \operatorname{Trace}\left(\nabla_{\theta} f_{k} \nabla_{\theta} f_{k}^{T} / T\right) / P \tag{A.11}\\
& =C \kappa_{1} / M \tag{A.12}
\end{align*}
$$

A. 2 Corollary 2

Because the FIM is a positive semi-definite matrix, its eigenvalues are non-negative. For a constant $k>0$, we obtain

$$
\begin{align*}
m_{\lambda} & =\frac{1}{P}\left(\sum_{i ; \lambda_{i}<k} \lambda_{i}+\sum_{i ; \lambda_{i} \geq k} \lambda_{i}\right) \tag{A.13}\\
& \geq \frac{1}{P} \sum_{i ; \lambda_{i} \geq k} \lambda_{i} \tag{A.14}\\
& \geq \frac{1}{P} N(\lambda \geq k) k . \tag{A.15}
\end{align*}
$$

This is known as Markov's inequality. When $M \gg 1$, combining this with Theorem 1 immediately yields Corollary 2 :

$$
\begin{equation*}
N(\lambda \geq k) \leq \alpha \kappa_{1} C M / k \tag{A.16}
\end{equation*}
$$

A. 3 Theorem 3

Let us describe the outline of the proof. One can express the FIM as $F=\left(B B^{T}\right) / T$ by definition. Here, let us consider a dual matrix of F, that is, $F^{*}:=\left(B^{T} B\right) / T . F$ and F^{*} have the same nonzero eigenvalues. Because the sum of squared eigenvalues is equal to $\operatorname{Trace}\left(F^{*}\left(F^{*}\right)^{T}\right)$, we have $s_{\lambda}=\sum_{s, t}^{T}\left(F_{s t}^{*}\right)^{2} / P$. The non-diagonal entry $F_{s t}^{*}(s \neq t)$ corresponds to an inner product of the network activities for different inputs $x(s)$ and $x(t)$, that is, κ_{2}. The diagonal entry $F_{s s}^{*}$ is given by κ_{1}. Taking the summation of $\left(F_{s t}^{*}\right)^{2}$ over all of s and t, we obtain the theorem. In particular, when $T=1$ and $C=1, F^{*}$ is equal to the squared norm of the derivative $\nabla_{\theta} f_{\theta}$, that is, $F^{*}=\left\|\nabla_{\theta} f_{\theta}\right\|^{2}$, and one can easily check $s_{\lambda}=\alpha \kappa_{1}^{2}$.

The detailed proof is given as follows.

(i) Case of $C=1$

Here, let us express the FIM as $F=\nabla_{\theta} f \nabla_{\theta} f^{T} / T$, where $\nabla_{\theta} f$ is a $P \times T$ matrix whose columns are the gradients on each input sample, i.e., $\nabla_{\theta} f(t)(t=1, \ldots, T)$. We also introduce a dual matrix of F, that is, F^{*} :

$$
\begin{equation*}
F^{*}:=\nabla_{\theta} f^{T} \nabla_{\theta} f / T . \tag{A.17}
\end{equation*}
$$

Note that F is a $P \times P$ matrix while F^{*} is a $T \times T$ matrix. We can easily confirm that these F and F^{*} have the same non-zero eigenvalues.
The squared sum of the eigenvalues is given by $\sum_{i} \lambda_{i}^{2}=\operatorname{Trace}\left(F^{*}\left(F^{*}\right)^{T}\right)=\sum_{s t}\left(F_{s t}^{*}\right)^{2}$. By using the Frobenius norm $\|A\|_{F}:=\sqrt{\sum_{i j} A_{i j}^{2}}$, this is $\sum_{i} \lambda_{i}^{2}=\left\|F^{*}\right\|_{F}^{2}$. Similar to m_{λ}, the bias entries in F^{*} are negligible because the number of the entries is much less than that of weight entries. Therefore, we only need to consider the weight entries. The $s t$-th entry of F^{*} is given by

$$
\begin{align*}
F_{s t}^{*} & =\sum_{l} \sum_{i j} \nabla_{W_{i j}^{l}} f(s) \nabla_{W_{i j}^{l}} f(t) / T \tag{A.18}\\
& =\sum_{l} M_{l-1} \tilde{Z}^{l}(s, t) \hat{Z}^{l-1}(s, t) / T \tag{A.19}
\end{align*}
$$

where we defined

$$
\begin{equation*}
\hat{Z}^{l}(s, t):=\frac{1}{M_{l}} \sum_{j} h_{j}^{l}(s) h_{j}^{l}(t), \quad \tilde{Z}^{l}(s, t):=\sum_{i} \delta_{i}^{l}(s) \delta_{i}^{l}(t) \tag{A.20}
\end{equation*}
$$

We can apply the central limit theorem to $\hat{Z}^{l-1}(s, t)$ and $\tilde{Z}^{l}(s, t)$ independently because they do not share the index of the summation. For $s \neq t$, we have $\hat{Z}^{l}=\hat{q}_{s t}^{l}+\mathcal{N}(0, \hat{\gamma} / M)$ and $\tilde{Z}^{l}=\tilde{q}_{s t}^{l}+\mathcal{N}(0, \tilde{\gamma} / M)$ in the limit of $M \gg 1$, where the macroscopic variables $\hat{q}_{s t}^{l}$ and $\tilde{q}_{s t}^{l}$ satisfy the recurrence relations (10) and (12). Note that the recurrence relation (12) requires the Assumption 1. $\hat{\gamma}$ and $\tilde{\gamma}$ are constants of $O(1)$. Then, for all s and $t(\neq s)$,

$$
\begin{align*}
F_{s t}^{*} & =\sum_{l} M_{l-1}\left(\tilde{q}_{s t}^{l}+O(1 / \sqrt{M})\right)\left(\hat{q}_{s t}^{l-1}+O(1 / \sqrt{M})\right) / T \tag{A.21}\\
& =\alpha \kappa_{2} M / T+O(\sqrt{M}) / T . \tag{A.22}
\end{align*}
$$

Similarly, for $s=t$, we have $\hat{Z}^{l}=\hat{q}^{l}+O(1 / \sqrt{M}), \tilde{Z}^{l}=\tilde{q}^{l}+O(1 / \sqrt{M})$ and then $F_{s s}^{*}=\alpha \kappa_{1} M / T+O(\sqrt{M}) / T$.
Thus, under the limit of $M \gg 1$, the dual matrix is asymptotically given by

$$
F^{*}=\alpha M K / T+O(\sqrt{M}) / T, \quad K:=\left[\begin{array}{cccc}
\kappa_{1} & \kappa_{2} & \cdots & \kappa_{2} \tag{A.23}\\
\kappa_{2} & \kappa_{1} & & \vdots \\
\vdots & & \ddots & \kappa_{2} \\
\kappa_{2} & \cdots & \kappa_{2} & \kappa_{1}
\end{array}\right]
$$

Neglecting the lower order term, we obtain

$$
\begin{align*}
s_{\lambda} & =\sum_{s, t}^{T}\left(F_{s t}^{*}\right)^{2} / P \tag{A.24}\\
& =\alpha\left(\frac{T-1}{T} \kappa_{2}^{2}+\frac{1}{T} \kappa_{1}^{2}\right) . \tag{A.25}
\end{align*}
$$

Note that, when $\hat{q}_{s t}^{l}=0, \kappa_{2}$ becomes zero and the lower order term may be non-negligible. In this exceptional case, we have $s_{\lambda}=\alpha \kappa_{1}^{2} / T+O(1 / M)$, where the second term comes from the $O(\sqrt{M}) / T$ term of Eq. (A.23). Therefore, the lower order evaluation depends on the T / M ratio, although it is outside the scope of this study. Intuitively, the origin of $\hat{q}_{s t}^{l} \neq 0$ is related to the offset of firing activities h_{i}^{l}. The condition of $\hat{q}_{s t}^{l} \neq 0$ is satisfied when the bias terms exist or when the activation $\phi(\cdot)$ is not an odd function. In such cases, the firing activities have the offset $\mathrm{E}\left[h_{i}^{l}(t)\right] \neq 0$. Therefore, for any input samples s and $t(s \neq t)$, we have $\sum_{i} h_{i}^{l}(s) h_{i}^{l}(t) / M_{l}=\hat{q}_{s t}^{l} \neq 0$ and then $\kappa_{2} \neq 0$ makes s_{λ} of $O(1)$.
(ii) $C>1$ of $O(1)$

Here, we introduce the following dual matrix F^{*} :

$$
\begin{align*}
F^{*} & :=B^{T} B / T \tag{A.26}\\
B & :=\left[\begin{array}{llll}
\nabla_{\theta} f_{1} & \nabla_{\theta} f_{2} & \cdots & \nabla_{\theta} f_{C}
\end{array}\right] \tag{A.27}
\end{align*}
$$

where $\nabla_{\theta} f_{k}$ is a $P \times T$ matrix whose columns are the gradients on each input sample, i.e., $\nabla_{\theta} f_{k}(t)(t=1, \ldots, T)$, and B is a $P \times C T$ matrix. The FIM is represented by $F=B B^{T} / T . F^{*}$ is a $C T \times C T$ matrix and consists of $T \times T$ block matrices,

$$
\begin{equation*}
F^{*}\left(k, k^{\prime}\right):=\nabla_{\theta} f_{k}^{T} \nabla_{\theta} f_{k^{\prime}} / T \tag{A.28}
\end{equation*}
$$

for $k, k^{\prime}=1, \ldots, C$.
The diagonal block $F^{*}(k, k)$ is evaluated in the same way as the case of $C=1$. It becomes $\alpha M K / T$ as shown in Eq. (A.23). The non-diagonal block $F^{*}\left(k, k^{\prime}\right)$ has the following $s t$-th entries:

$$
\begin{align*}
F^{*}\left(k, k^{\prime}\right)_{s t} & =\sum_{i j} \nabla_{W_{i j}^{l}} f_{k}^{T}(s) \nabla_{W_{i j}^{l}} f_{k^{\prime}}(t) / T \tag{A.29}\\
& =M_{l-1}\left(\sum_{i} \delta_{k, i}^{l}(s) \delta_{k^{\prime}, i}^{l}(t)\right) \hat{Z}^{l-1}(s, t) / T \tag{A.30}
\end{align*}
$$

Under the limit of $M \gg 1$, while $\tilde{Z}^{l}(s, t)$ becomes $\tilde{q}_{s t}^{l}$ of $O(1),\left(\sum_{i} \delta_{k, i}^{l}(s) \delta_{k^{\prime}, i}^{l}(t)\right)$ becomes zero and its lower order term of $O(1 / \sqrt{M})$ appears. This is because the different outputs $\left(k \neq k^{\prime}\right)$ do not share the weights $W_{i j}^{L}$. We have $\sum_{i} \delta_{k, i}^{L}(s) \delta_{k^{\prime}, i}^{L}(t)=0$ and then obtain $\sum_{i} \delta_{k, i}^{l}(s) \delta_{k^{\prime}, i}^{l}(t)=0(l=1, \ldots, L-1)$ through the backpropagated chain (7). Thus, the entries of the non-diagonal blocks (A.28) become of $O(\sqrt{M}) / T$, and we have

$$
\begin{equation*}
F^{*}\left(k, k^{\prime}\right)=\alpha M K / T \delta_{k, k^{\prime}}+O(\sqrt{M}) / T \tag{A.31}
\end{equation*}
$$

where $\delta_{k, k^{\prime}}$ is the Kronecker delta.
After all, we have

$$
\begin{align*}
s_{\lambda} & =\sum_{k, k^{\prime}}^{C} \sum_{s, t}^{T}\left(F^{*}\left(k, k^{\prime}\right)_{s t}\right)^{2} / P \tag{A.32}\\
& =C \alpha\left(\frac{T-1}{T} \kappa_{2}^{2}+\frac{1}{T} \kappa_{1}^{2}\right)+C O(1 / \sqrt{M})+C(C-1) O(1 / M) \tag{A.33}
\end{align*}
$$

where the first term comes from the diagonal blocks of $O(M)$ and the second one is their lower order term. The third term comes from the non-diagonal blocks of $O(\sqrt{M})$. As one can see from here, when $C=O(M)$, the thrid term becomes non-negligible. This case is examined in Section 3.4.

A. 4 Theorem 4

(i) Case of $C=1$

Because F and F^{*} have the same non-zero eigenvalues, what we should derive here is the maximum eigenvalue of F^{*}. As shown in Eq. (A.23), the leading term of F^{*} asymptotically becomes $\alpha M K / T$ in the limit of $M \gg 1$. The eigenvalues of $\alpha M K / T$ are explicitly obtained as follows: $\lambda_{\max }=\alpha\left(\frac{T-1}{T} \kappa_{2}+\frac{1}{T} \kappa_{1}\right) M$ for an eigenvector $e=(1, \ldots, 1)$, and $\lambda_{i}=\alpha\left(\kappa_{1}-\kappa_{2}\right) M / T$ for eigenvectors $e_{1}-e_{i}(i=2, \ldots, T)$ where e_{i} denotes a unit vector whose entries are 1 for the i-th entry and 0 otherwise. Thus, we obtain $\lambda_{\max }=\alpha\left(\frac{T-1}{T} \kappa_{2}+\frac{1}{T} \kappa_{1}\right) M$.
(ii) $C>1$ of $O(1)$

Let us denote F^{*} shown in Eq. (A.31) by $F^{*}:=\bar{F}^{*}+R . \bar{F}^{*}$ is the leading term of F^{*} and given by a $C T \times C T$ block diagonal matrix whose diagonal blocks are given by $\alpha M K / T . R$ denotes the residual term of $O(\sqrt{M}) / T$.

In general, the maximum eigenvalue is denoted by the spectral norm $\|\cdot\|_{2}$, that is, $\lambda_{\max }=\left\|F^{*}\right\|_{2}$. Using the triangle inequality, we have

$$
\begin{equation*}
\lambda_{\max } \leq\left\|\bar{F}^{*}\right\|_{2}+\|R\|_{2} \tag{A.34}
\end{equation*}
$$

We can obtain $\left\|\bar{F}^{*}\right\|_{2}=\alpha\left(\frac{T-1}{T} \kappa_{2}+\frac{1}{T} \kappa_{1}\right) M$ because the maximum eigenvalues of the diagonal blocks are the same as the case of $C=1$. Its eigenvector is given by a $C T$-dimensional vector $e=(1, \ldots, 1)$. Regarding $\|R\|_{2}$, this is bounded by $\|R\|_{2} \leq\|R\|_{F}=\sqrt{C^{2} \sum_{s t}(O(\sqrt{M}) / T)^{2}}=O(C \sqrt{M})$. Therefore, when $C=O(1)$, we can neglect $\|R\|_{2}$ of $O(\sqrt{M})$ compared to $\left\|\bar{F}^{*}\right\|_{2}$ of $O(M)$.
On the other hand, we can also derive the lower bound of $\lambda_{\max }$ as follows. In general, we have

$$
\begin{equation*}
\lambda_{\max }=\max _{\mathbf{v} ;\|\mathbf{v}\|^{2}=1} \mathbf{v}^{T} F^{*} \mathbf{v} \tag{A.35}
\end{equation*}
$$

Then, we find

$$
\begin{equation*}
\lambda_{\max } \geq \mathbf{v}_{1}^{T} F^{*} \mathbf{v}_{1} \tag{A.36}
\end{equation*}
$$

where v_{1} is a $C T$-dimensional vector whose first T entries are $1 / \sqrt{T}$ and the others are 0 , that is, $v_{1}=$ $(1, \ldots, 1,0, \ldots, 0) / \sqrt{T}$. We can compute this lower bound by taking the sum over the entries of $F^{*}(1,1)$, which is equal to Eq. (A.23):

$$
\begin{equation*}
\lambda_{\max } \geq\left(\frac{T-1}{T} \kappa_{2}+\frac{1}{T} \kappa_{1}\right) M \tag{A.37}
\end{equation*}
$$

Finally, we find that the upper bound (A.34) and lower bound (A.37) asymptotically take the same value of $O(M)$, that is, $\lambda_{\max }=\left(\frac{T-1}{T} \kappa_{2}+\frac{1}{T} \kappa_{1}\right) M$.

A. 5 Case of $C=O(M)$

The mean of eigenvalues m_{λ}^{\prime} is derived in the same way as shown in Section A. 1 (ii), that is, $m_{\lambda}^{\prime}=C \kappa_{1} / M$.
Regarding the second moment s_{λ}^{\prime}, the lower order term becomes non-negligible as remarked in Eq. (A.33). We evaluate this s_{λ}^{\prime} by using inequalities as follows:

$$
\begin{align*}
s_{\lambda}^{\prime} & =\left\|F^{*}\right\|_{F}^{2} / P \tag{A.38}\\
& =\left(\sum_{k}^{C}\left\|\nabla_{\theta} f_{k}^{T} \nabla_{\theta} f_{k}\right\|_{F}^{2}+\sum_{k, k^{\prime}}^{C}\left\|\nabla_{\theta} f_{k}^{T} \nabla_{\theta} f_{k^{\prime}}\right\|_{F}^{2}\right) / P \tag{A.39}\\
& \geq \sum_{k}^{C}\left\|\nabla_{\theta} f_{k}^{T} \nabla_{\theta} f_{k}\right\|_{F}^{2} / P . \tag{A.40}
\end{align*}
$$

As shown in Section A.3, for any k, we obtain $\left\|\nabla_{\theta} f_{k}^{T}(s) \nabla_{\theta} f_{k}(t)\right\|_{F}^{2} / P=\alpha\left(\frac{T-1}{T} \kappa_{2}^{2}+\frac{1}{T} \kappa_{1}^{2}\right)$ in the limit of $M \gg 1$. Thus, the lower bound becomes the same form as s_{λ}, That is, $s_{\lambda}=C \alpha\left(\frac{T-1}{T} \kappa_{2}^{2}+\frac{1}{T} \kappa_{1}^{2}\right)$. In contrast, the upper bound is given by

$$
\begin{align*}
s_{\lambda}^{\prime} & =\|F\|_{F}^{2} / P \tag{A.41}\\
& =\left\|\sum_{k}^{C} F_{k}\right\|_{F}^{2} / P \tag{A.42}\\
& \leq\left(\sum_{k}^{C}\left\|F_{k}\right\|_{F}\right)^{2} / P, \tag{A.43}
\end{align*}
$$

where F_{k} denotes the FIM of the k-th output, i.e., $F_{k}:=\sum_{t} \nabla_{\theta} f_{k}(t) \nabla_{\theta} f_{k}(t)^{T} / T$. Therefore, the upper bound is reduced to the summation over s_{λ} of $C=1$. In the limit of $M \gg 1$, we obtain $s_{\lambda}^{\prime} \leq C^{2}\left\|F_{k}\right\|_{F}^{2} / P=$ $C^{2} \alpha\left(\frac{T-1}{T} \kappa_{2}^{2}+\frac{1}{T} \kappa_{1}^{2}\right)=C s_{\lambda}$.

Next, we show inequalities for $\lambda_{\max }$. We have already derived the lower bound (A.37) and this bound holds in the case of $C=O(M)$ as well. In contrast, the upper bound (A.34) may become loose when C is larger than $O(1)$ because of the residual term $\|R\|_{2}$. Although it is hard to explicitly obtain the value of $\|R\|_{2}$, the following upper bound holds and is easy to compute by using s_{λ} of Eq. (14). Because the FIM is a positive semi-definite matrix, $\lambda_{i} \geq 0$ holds by definition. Then, we have $\lambda_{\max } \leq \sqrt{\sum_{i} \lambda_{i}^{2}}$. Combining this with $s_{\lambda}^{\prime}=\sum_{i} \lambda_{i}^{2} / P$, we have $\lambda_{\max } \leq \sqrt{\alpha s_{\lambda}^{\prime}} M \leq \sqrt{\alpha C s_{\lambda}} M$.

A. 6 Theorem 5

The Fisher-Rao norm is written as

$$
\begin{equation*}
\|\theta\|_{F R}=\sum_{l, i j} \sum_{l^{\prime}, a b} F_{(l, i j),\left(l^{\prime}, a b\right)} W_{i j}^{l} W_{a b}^{l^{\prime}} \tag{A.44}
\end{equation*}
$$

where $F_{(l, i j),\left(l^{\prime}, a b\right)}$ represents an entry of the FIM, that is, $\sum_{k}^{C} \sum_{t} \nabla_{W_{i j}^{l}} f_{k}(t) \nabla_{W_{a b}^{l^{\prime}}} f_{k}(t) / T$. Because $F_{(l, i j),\left(l^{\prime}, a b\right)}$ includes the random variables $W_{i j}^{l}$ and $W_{a b}^{l^{\prime}}$, we consider the following expansion. Note that $W_{i j}^{l}$ and $W_{a b}^{l^{\prime}}$ are infinitesimals generated by Eq. (8). Performing a Taylor expansion around $W_{i j}^{l}=W_{a b}^{l^{\prime}}=0$, we obtain

$$
\begin{align*}
F_{(l, i j),\left(l^{\prime}, a b\right)}(\theta)=F_{(l, i j),\left(l^{\prime}, a b\right)}\left(\theta^{*}\right) & +\frac{\partial F_{(l, i j),\left(l^{\prime}, a b\right)}}{\partial W_{i j}^{l}}\left(\theta^{*}\right) W_{i j}^{l}+\frac{\partial F_{(l, i j),\left(l^{\prime}, a b\right)}}{\partial W_{a b}^{l^{\prime}}}\left(\theta^{*}\right) W_{a b}^{l^{\prime}} \\
& + \text { higher-order terms } \tag{A.45}
\end{align*}
$$

where θ^{*} is the parameter set $\left\{W_{i j}^{l}, b_{i}^{l}\right\}$ with $W_{i j}^{l}=W_{a b}^{l^{\prime}}=0$. By substituting the above expansion into the Fisher-Rao norm and taking the average $\langle\cdot\rangle_{\theta}$, we obtain the following leading term:

$$
\begin{align*}
\left\langle F_{(l, i j),\left(l^{\prime}, a b\right)} W_{i j}^{l} W_{a b}^{l^{\prime}}\right\rangle_{\theta} & =\left\langle F_{(l, i j),\left(l^{\prime}, a b\right)}\left(\theta^{*}\right) W_{i j}^{l} W_{a b}^{l^{\prime}}\right\rangle_{\theta} \tag{A.46}\\
& =\left\langle F_{(l, i j),\left(l^{\prime}, a b\right)}\left(\theta^{*}\right)\right\rangle_{\theta^{*}}\left\langle W_{i j}^{l} W_{a b}^{l^{\prime}}\right\rangle_{\left\{W_{i j}^{l}, W_{a b}^{l^{\prime}}\right\}} \tag{A.47}
\end{align*}
$$

For, $(l, i j) \neq\left(l^{\prime}, a b\right)$, the last line becomes zero because of $\left\langle W_{i j}^{l} W_{a b}^{l^{\prime}}\right\rangle_{\left\{W_{i j}^{l}, W_{a b}^{l^{\prime}}\right\}}=\left\langle W_{i j}^{l}\right\rangle_{W_{i j}^{l}}\left\langle W_{a b}^{l^{\prime}}\right\rangle_{W_{a b}^{l^{\prime}}}=0$. For $(l, i j)=\left(l^{\prime}, a b\right)$, we have $\left\langle\left(W_{i j}^{l}\right)^{2}\right\rangle_{\left\{W_{i j}^{l}\right\}}=\sigma_{w}^{2} / M_{l-1}$. After all, in the limit of $M \gg 1$, we obtain

$$
\begin{align*}
\left\langle\|\theta\|_{F R}\right\rangle_{\theta} & =\sum_{k}^{C} \frac{\sum_{t}}{T} \sum_{l}\left\langle\sum_{i} \delta_{k, i}^{l}(t)^{2} \sum_{j} h_{j}^{l-1}(t)^{2}\right\rangle_{\theta^{*}} \frac{\sigma_{w}^{2}}{M_{l-1}} \tag{A.48}\\
& =\sum_{k}^{C} \frac{\sum_{t}}{T} \sigma_{w}^{2} \sum_{l}\left\langle\tilde{q}^{l}\right\rangle_{\theta}\left\langle\hat{q}^{l-1}\right\rangle_{\theta} \tag{A.49}\\
& =\sigma_{w}^{2} C \sum_{l} \tilde{q}^{l} \hat{q}^{l-1} \tag{A.50}
\end{align*}
$$

where the derivation of the macroscopic variables is similar to that of m_{λ}, as shown in Section A.1. Since we have $\kappa_{1}=\sum_{l} \frac{\alpha_{l-1}}{\alpha} \tilde{q}^{l} \hat{q}^{l-1}$, it is easy to confirm $\left\langle\|\theta\|_{F R}\right\rangle_{\theta} \leq C \sigma_{w}^{2} \alpha / \alpha_{m i n} C \kappa_{1}$. When all α_{l} take the same value, we have $\alpha / \alpha_{\text {min }}=L-1$ and the equality holds.

A. 7 Lemma 6

Suppose a perturbation around the global minimum: $\theta_{t}=\theta^{*}+\Delta_{t}$. Then, the gradient update becomes

$$
\begin{equation*}
\Delta_{t+1} \leftarrow(I-\eta F) \Delta_{t}+\mu\left(\Delta_{t}-\Delta_{t-1}\right) \tag{A.51}
\end{equation*}
$$

where we have used $E\left(\theta^{*}\right)=0$ and $\partial E\left(\theta^{*}\right) / \partial \theta=0$.

Consider a coordinate transformation from Δ_{t} to $\bar{\Delta}_{t}$ that diagonalizes F. It does not change the stability of the gradients. Accordingly, we can update the i-th component as follows:

$$
\begin{equation*}
\bar{\Delta}_{t+1, i} \leftarrow\left(1-\eta \lambda_{i}+\mu\right) \bar{\Delta}_{t, i}-\mu \Delta_{t-1, i} \tag{A.52}
\end{equation*}
$$

Solving its characteristic equation, we obtain the general solution,

$$
\begin{equation*}
\bar{\Delta}_{t, i}=A \lambda_{+}^{t}+B \lambda_{-}^{t}, \quad \lambda_{ \pm}=\left(1-\eta \lambda_{i}+\mu \pm \sqrt{\left(1-\eta \lambda_{i}+\mu\right)^{2}-4 \mu}\right) / 2 \tag{A.53}
\end{equation*}
$$

where A and B are constants. This recurrence relation converges if and only if $\eta \lambda_{i}<2(1+\mu)$ for all i. Therefore, $\eta<2(1+\mu) / \lambda_{\max }$ is necessary for the steepest gradient to converge to θ^{*}.

B Analytical recurrence relations

B. 1 Erf networks

Consider the following error function as an activation function $\phi(x)$:

$$
\begin{equation*}
\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} \exp \left(-t^{2}\right) d t \tag{B.1}
\end{equation*}
$$

The error function well approximates the tanh function and has a sigmoid-like shape. For a network with $\phi(x)=\operatorname{erf}(x)$, the recurrence relations for macroscopic variables do not require numerical integrations.
(i) \hat{q}^{l} and \tilde{q}^{l} : Note that we can analytically integrate the error functions over a Gaussian distribution:

$$
\begin{equation*}
\int_{0}^{\infty} D x \operatorname{erf}(a x) \operatorname{erf}(b x)=\frac{1}{\pi} \tan ^{-1} \frac{\sqrt{2} a b}{\sqrt{a^{2}+b^{2}+1 / 2}} \tag{B.2}
\end{equation*}
$$

Hence, the recurrence relations for the feedforward signals (9) have the following analytical forms:

$$
\begin{equation*}
\hat{q}^{l+1}=\frac{2}{\pi} \tan ^{-1}\left(\frac{q^{l+1}}{\sqrt{q^{l+1}+1 / 4}}\right), \quad q^{l+1}=\sigma_{w}^{2} \hat{q}^{l}+\sigma_{b}^{2} \tag{B.3}
\end{equation*}
$$

Because the derivative of the error function is Gaussian, we can also easily integrate $\phi^{\prime}(x)$ over the Gaussian distribution and obtain the following analytical representations of the recurrence relations (11):

$$
\begin{equation*}
\tilde{q}^{l}=\frac{2 \tilde{q}^{l+1} \sigma_{w}^{2}}{\pi \sqrt{q^{l}+1 / 4}}, \quad \tilde{q}^{L}=1 \tag{B.4}
\end{equation*}
$$

(ii) $\hat{q}_{s t}^{l}$ and $\tilde{q}_{s t}^{l}$:

To compute the recurrence relations for the feedforward correlations (10), note that we can generally transform $I_{\phi}[a, b]$ into

$$
\begin{equation*}
I_{\phi}[a, b]=\int D y\left(\int D x \phi(\sqrt{a-b} x+\sqrt{b} y)\right)^{2} \tag{B.5}
\end{equation*}
$$

For the error function,

$$
\begin{equation*}
\int D x \phi(\sqrt{a-b} x+\sqrt{b} y)=\operatorname{erf} \frac{\sqrt{b} y}{\sqrt{1+2 a-2 b}} \tag{B.6}
\end{equation*}
$$

and we obtain

$$
\begin{equation*}
I_{\phi}[a, b]=\frac{2}{\pi} \tan ^{-1} \frac{2 b}{\sqrt{(1+2 a)^{2}-(2 b)^{2}}} \tag{B.7}
\end{equation*}
$$

This is the analytical form of the recurrence relation for $\hat{q}_{s t}^{l}$.
Finally, because the derivative of the error function is Gaussian, we can also easily obtain

$$
\begin{equation*}
I_{\phi^{\prime}}[a, b]=\frac{4}{\pi \sqrt{(1+2 a)^{2}-(2 b)^{2}}} \tag{B.8}
\end{equation*}
$$

This is the analytical forms of the recurrence relations for $\tilde{q}_{s t}^{l}$.

B. 2 ReLU networks

We define a ReLU activation as $\phi(x)=0 \quad(x<0), \quad x \quad(0 \leq x)$. For a network with this ReLU activation function, the recurrence relations for the macroscopic variables require no numerical integrations.
(i) \hat{q}^{l} and \tilde{q}^{l} : We can explicitly perform the integrations in the recurrence relations (9) and (11):

$$
\begin{align*}
\hat{q}^{l+1} & =\hat{q}^{l} \sigma_{w}^{2} / 2+\sigma_{b}^{2} / 2 \tag{B.9}\\
\tilde{q}^{l} & =\tilde{q}^{l+1} \sigma_{w}^{2} / 2, \quad \tilde{q}^{L}=1 / 2 \tag{B.10}
\end{align*}
$$

(ii) $\hat{q}_{s t}^{l}$ and $\tilde{q}_{s t}^{l}:$ We can explicitly perform the integrations in the recurrence relations (10) and (12):

$$
\begin{align*}
I_{\phi}[a, b] & =\frac{a}{2 \pi}\left(\sqrt{1-c^{2}}+c \pi / 2+c \sin ^{-1} c\right) \tag{B.11}\\
I_{\phi^{\prime}}[a, b] & =\frac{a}{2 \pi}\left(\pi / 2+\sin ^{-1} c\right) \tag{B.12}
\end{align*}
$$

where $c=b / a$.

B. 3 Linear networks

We define a linear activation as $\phi(x)=x$. For a network with this linear activation function, the recurrence relations for the macroscopic variables do not require numerical integrations.
(i) \hat{q}^{l} and \tilde{q}^{l} : We can explicitly perform the integrations in the recurrence relations (9) and (11):

$$
\begin{align*}
& q^{l}=q^{l-1} \sigma_{w}^{2}+\sigma_{b}^{2} \tag{B.13}\\
& \tilde{q}^{l}=\tilde{q}^{l+1} \sigma_{w}^{2}, \quad \tilde{q}^{L}=1 \tag{B.14}
\end{align*}
$$

(ii) $\hat{q}_{s t}^{l}$ and $\tilde{q}_{s t}^{l}$: We can explicitly perform the integrations in the recurrence relations (10) and (12):

$$
\begin{align*}
\hat{q}_{s t}^{l+1} & =\hat{q}_{s t}^{l} \sigma_{w}^{2}+\sigma_{b}^{2} \tag{B.15}\\
\tilde{q}_{s t}^{l} & =\tilde{q}_{s t}^{l+1} \sigma_{w}^{2}, \quad \tilde{q}_{s t}^{L}=1 \tag{B.16}
\end{align*}
$$

C Additional Experiments

C. 1 Dependence on T

Figure C.1: Statistics of FIM eigenvalues with fixed M and changing $T\left(L=3, \alpha_{l}=C=1\right)$. The red line represents theoretical results obtained in the limit of $M \gg 1$. The first row shows results of Tanh networks with $M=1000$. The second row shows those with a relatively small width $(M=300)$ and higher T. We set $M=1000$ in ReLU and linear networks. The other settings are the same as in Fig. 1.

C. 2 Training on CIFAR-10

Figure C.2: Color map of training losses after one epoch of SGD training: Tanh, ReLU, and linear networks trained on CIFAR-10.

