Supplementary Materials

A Proofs

A.1 Theorem 1

(i) Case of $C = 1$

To avoid complicating the notation, we first consider the case of the single output ($C = 1$). The general case is shown after. The network output is denoted by $f(t)$ here. We denote the Fisher information matrix with full components as

$$F = \sum_{t=1}^{T} \begin{bmatrix} \nabla_W f(t) \nabla_W f(t)^T & \nabla_W f(t) \nabla_b f(t)^T \\ \nabla_b f(t) \nabla_W f(t)^T & \nabla_b f(t) \nabla_b f(t)^T \end{bmatrix}/T, \quad (A.1)$$

where we notice that $\nabla_b l_i(t) = \delta l_i(t)$.

In general, the sum over the eigenvalues is given by the matrix trace, $m_\lambda = \text{Trace}(F)/P$. We also denote the average of the eigenvalues of the diagonal block as $m_\lambda^{(W)}$ for $\nabla_W f \nabla_W f^T$, and $m_\lambda^{(b)}$ for $\nabla_b f \nabla_b f^T$. Accordingly, we find

$$m_\lambda = m_\lambda^{(W)} + m_\lambda^{(b)}. \quad (A.3)$$

The contribution of $m_\lambda^{(b)}$ is negligible in the large M limit as follows. The first term is

$$m_\lambda^{(W)} = \sum_{t=1}^{T} \text{Trace}(\nabla_W f(t) \nabla_W f(t)^T)/(TP) \quad (A.4)$$

$$= \sum_{t=1}^{T} \sum_{i,j} \delta_i(t)^2 h^{l_i-1}_j(t)^2/(TP). \quad (A.5)$$

We can apply the central limit theorem to summations over the units $\sum_i \delta_i(t)^2$ and $\sum_j h^{l-1}_j(t)^2$ independently because they do not share the index of the summation. By taking the limit of $M \gg 1$, we obtain $\sum_i \delta_i(t)^2 \sum_j h^{l-1}_j(t)^2/M_{l-1} = \bar{q}^{l-1} \hat{q}^{l-1}$. The variable \bar{q}^l is computed by the recursive relation (9). Under the Assumption 1, \hat{q}^{l-1} is given by the recursive relation (11). Note that this transformation to the macroscopic variables holds regardless of the sample index t. Therefore, we obtain

$$m_\lambda^{(W)} = \kappa_1/M, \quad \kappa_1 := \sum_{t=1}^{L} \frac{\alpha_{l-1}}{\alpha} \bar{q}^l \hat{q}^{l-1}, \quad (A.6)$$

where α_l comes from $M_l = \alpha_l M$, and α comes from $P = \alpha M^2$.

In contrast, the contributions of the bias entries are smaller than those of the weight entries in the limit of $M \gg 1$, as is easily confirmed:
\[
m^{(b)}_\lambda = \sum_t \text{Trace}(\nabla_b f(t)\nabla_b f(t)^T)/(TP) \quad (A.7)
\]
\[
= \sum_t \sum_l \sum_i \delta_l^i(t)^2/(TP) \quad (A.8)
\]
\[
= \sum_t \bar{q}^i/(\alpha M^2) \quad \text{(when } M \gg 1). \quad (A.9)
\]

\(m^{(W)}_\lambda\) is \(O(1/M)\) while \(m^{(b)}_\lambda\) is \(O(1/M^2)\). Hence, the mean \(m^{(b)}_\lambda\) is negligible and we obtain \(m_\lambda = \kappa_1/M\).

(ii) \(C > 1\) of \(O(1)\)

We can apply the above computation of \(C = 1\) to each network output \(\nabla f_k (k = 1, \ldots, C):\)

\[
\text{Trace}(\nabla_\theta f_k \nabla_\theta f_k^T)/P = \kappa_1/M. \quad (A.10)
\]

Therefore, the mean of the eigenvalues becomes

\[
m_\lambda = \sum_k C \text{Trace}(\nabla_\theta f_k \nabla_\theta f_k^T)/P \quad (A.11)
\]
\[
= C\kappa_1/M. \quad (A.12)
\]

\[\blacksquare\]

A.2 Corollary 2

Because the FIM is a positive semi-definite matrix, its eigenvalues are non-negative. For a constant \(k > 0\), we obtain

\[
m_\lambda = \frac{1}{P} \left(\sum_{i: \lambda_i < k} \lambda_i + \sum_{i: \lambda_i \geq k} \lambda_i \right) \quad (A.13)
\]
\[
\geq \frac{1}{P} \sum_{i: \lambda_i \geq k} \lambda_i \quad (A.14)
\]
\[
\geq \frac{1}{P} N(\lambda \geq k)k. \quad (A.15)
\]

This is known as Markov's inequality. When \(M \gg 1\), combining this with Theorem 1 immediately yields Corollary 2:

\[
N(\lambda \geq k) \leq \alpha \kappa_1 CM/k. \quad (A.16)
\]

\[\blacksquare\]

A.3 Theorem 3

Let us describe the outline of the proof. One can express the FIM as \(F = (BB^T)/T\) by definition. Here, let us consider a dual matrix of \(F\), that is, \(F^* := (B^T B)/T\). \(F\) and \(F^*\) have the same nonzero eigenvalues. Because the sum of squared eigenvalues is equal to \(\text{Trace}(F^*(F^*)^T)\), we have \(s_\lambda = \sum_{s,t} (F^*_{st})^2/P\). The non-diagonal entry \(F^*_{st}\) \((s \neq t)\) corresponds to an inner product of the network activities for different inputs \(x(s)\) and \(x(t)\), that is, \(\kappa_2\). The diagonal entry \(F^*_{ss}\) is given by \(\kappa_1\). Taking the summation of \((F^*_{st})^2\) over all of \(s\) and \(t\), we obtain the theorem. In particular, when \(T = 1\) and \(C = 1\), \(F^*\) is equal to the squared norm of the derivative \(\nabla_\theta f_\theta\), that is, \(F^* = ||\nabla_\theta f_\theta||^2\), and one can easily check \(s_\lambda = \alpha \kappa_1^2\).

The detailed proof is given as follows.
(i) Case of $C = 1$

Here, let us express the FIM as $F = \nabla_\theta f \nabla_\theta f^T / T$, where $\nabla_\theta f$ is a $P \times T$ matrix whose columns are the gradients on each input sample, i.e., $\nabla_\theta f(t)$ ($t = 1, ..., T$). We also introduce a dual matrix of F, that is, F^*:

$$ F^* := \nabla_\theta f^T \nabla_\theta f / T. $$

(A.17)

Note that F is a $P \times P$ matrix while F^* is a $T \times T$ matrix. We can easily confirm that these F and F^* have the same non-zero eigenvalues.

The squared sum of the eigenvalues is given by $\sum_i \lambda_i^2 = \text{Trace}(F^*(F^*)^T) = \sum_{st}(F^{st*})^2$. By using the Frobenius norm $||A||_F := \sqrt{\sum_{ij} A^2_{ij}}$, this is $\sum_i \lambda_i^2 = ||F^*||_F^2$. Similar to m_λ, the bias entries in F^* are negligible because the number of the entries is much less than that of weight entries. Therefore, we only need to consider the weight entries. The st-th entry of F^* is given by

$$ F^{st*} = \sum_l \sum_{ij} \nabla_{W_{ij}}^l f(s) \nabla_{W_{ij}}^l f(t) / T $$

(A.18)

$$ = \sum_l M_{l-1} \hat{Z}^l(s,t) \hat{Z}^{l-1}(s,t) / T, $$

(A.19)

where we defined

$$ \hat{Z}^l(s,t) := \frac{1}{M_l} \sum_j h_j^l(s)h_j^l(t), \quad \hat{Z}^l(s,t) := \sum_i \delta_i^l(s)\delta_i^l(t). $$

(A.20)

We can apply the central limit theorem to $\hat{Z}^{l-1}(s,t)$ and $\hat{Z}^l(s,t)$ independently because they do not share the index of the summation. For $s \neq t$, we have $\hat{Z}^l = \hat{q}_{st}^l + \mathcal{N}(0, \hat{\gamma}/M)$ and $\hat{Z}^l = \hat{q}_{st}^l + \mathcal{N}(0, \hat{\gamma}/M)$ in the limit of $M \gg 1$, where the macroscopic variables \hat{q}_{st}^l and \hat{q}_{st}^l satisfy the recurrence relations (10) and (12). Note that the recurrence relation (12) requires the Assumption 1. $\hat{\gamma}$ and $\hat{\gamma}$ are constants of $O(1)$. Then, for all s and $t(s \neq s)$,

$$ F^{st*} = \sum_l M_{l-1}(\hat{q}_{st}^l + O(1/\sqrt{M}))(\hat{q}_{st}^{l-1} + O(1/\sqrt{M}))/T $$

(A.21)

$$ = \alpha \kappa_2 M/T + O(\sqrt{M})/T. $$

(A.22)

Similarly, for $s = t$, we have $\hat{Z}^l = \hat{q}^l + O(1/\sqrt{M})$, $\hat{Z}^l = \hat{q}^l + O(1/\sqrt{M})$ and then $F^{st*} = \alpha \kappa_1 M/T + O(\sqrt{M})/T$.

Thus, under the limit of $M \gg 1$, the dual matrix is asymptotically given by

$$ F^* = \alpha MK/T + O(\sqrt{M})/T, \quad K := \begin{bmatrix} \kappa_1 & \kappa_2 & \cdots & \kappa_2 \\ \kappa_2 & \kappa_1 & \cdots & \kappa_2 \\ \vdots & \vdots & \ddots & \vdots \\ \kappa_2 & \cdots & \kappa_2 & \kappa_1 \end{bmatrix}. $$

(A.23)

Neglecting the lower order term, we obtain

$$ s_\lambda = \sum_{s,t} (F^{st*})^2 / P $$

(A.24)

$$ = \alpha \left(\frac{T - 1}{T} \kappa_2^2 + \frac{1}{T} \kappa_1^2 \right). $$

(A.25)

Note that, when $\hat{q}_{st}^l = 0$, κ_2 becomes zero and the lower order term may be non-negligible. In this exceptional case, we have $s_\lambda = \alpha \kappa_2^2 / T + O(1/M)$, where the second term comes from the $O(\sqrt{M})/T$ term of Eq. (A.23). Therefore, the lower order evaluation depends on the T/M ratio, although it is outside the scope of this study. Intuitively, the origin of $\hat{q}_{st}^l \neq 0$ is related to the offset of firing activities h_i^l. The condition of $\hat{q}_{st}^l \neq 0$ is satisfied when the bias terms exist or when the activation $\phi(\cdot)$ is not an odd function. In such cases, the firing activities have the offset $E[h_i^l(t)] \neq 0$. Therefore, for any input samples s and $t (s \neq t)$, we have $\sum_i h_i^l(s)h_i^l(t)/M_l = \hat{q}_{st}^l \neq 0$ and then $\kappa_2 \neq 0$ makes s_λ of $O(1)$.

Ryo Karakida, Shotaro Akaho, Shun-ichi Amari
Here, we introduce the following dual matrix F^*:

\[
F^* := B^T B/T, \quad B := [\nabla_\theta f_1 \ \nabla_\theta f_2 \ \cdots \ \nabla_\theta f_C],
\]

where $\nabla_\theta f_k$ is a $P \times T$ matrix whose columns are the gradients on each input sample, i.e., $\nabla_\theta f_k(t)$ ($t = 1, \ldots, T$), and B is a $P \times CT$ matrix. The FIM is represented by $F = BB^T/T$. F^* is a $CT \times CT$ matrix and consists of $T \times T$ block matrices,

\[
F^*(k, k') := \nabla^T \theta f^T_k \nabla_\theta f_{k'}/T,
\]

for $k, k' = 1, \ldots, C$.

The diagonal block $F^*(k, k)$ is evaluated in the same way as the case of $C = 1$. It becomes $\alpha M K/T$ as shown in Eq. (A.23). The non-diagonal block $F^*(k, k')$ has the following st-th entries:

\[
F^*(k, k')_{st} = \sum_{ij} \nabla W_{ij}^T f_i^T(s) \nabla W_{ij}^T f_j(t)/T
\]

\[
= M_{t-1} \sum_{i} \delta_{k,i}(s) \delta_{k',i}(t) \tilde{Z}^l(s, t)/T.
\]

Under the limit of $M \gg 1$, while $\tilde{Z}^l(s, t)$ becomes \hat{q}_{st} of $O(1)$, $(\sum_i \delta_{k,i}(s) \delta_{k',i}(t))$ becomes zero and its lower order term of $O(1/\sqrt{M})$ appears. This is because the different outputs ($k \neq k'$) do not share the weights W_{ij}^T. We have $\sum_i \delta_{k,i}(s) \delta_{k',i}(t) = 0$ and then obtain $\sum_i \delta_{k,i}(s) \delta_{k',i}(t)$ through the backpropagated chain (7). Thus, the entries of the non-diagonal blocks (A.28) become of $O(\sqrt{M})/T$, and we have

\[
F^*(k, k') = \alpha M K/T \delta_{k,k'} + O(\sqrt{M})/T,
\]

where $\delta_{k,k'}$ is the Kronecker delta.

After all, we have

\[
s_{\lambda} = \sum_{k,k'} \sum_{s,t} (F^*(k, k')_{st})^2/P
\]

\[
= C \alpha \left(\frac{T-1}{T} \kappa_2^2 + \frac{1}{T} \kappa_1^2 \right) + CO(1/\sqrt{M}) + C(C-1)O(1/M),
\]

where the first term comes from the diagonal blocks of $O(M)$ and the second one is their lower order term. The third term comes from the non-diagonal blocks of $O(\sqrt{M})$. As one can see from here, when $C = O(M)$, the third term becomes non-negligible. This case is examined in Section 3.4.

A.4 Theorem 4

(i) Case of $C = 1$

Because F and F^* have the same non-zero eigenvalues, what we should derive here is the maximum eigenvalue of F^*. As shown in Eq. (A.23), the leading term of F^* asymptotically becomes $\alpha M K/T$ in the limit of $M \gg 1$. The eigenvalues of $\alpha M K/T$ are explicitly obtained as follows: $\lambda_{\max} = \alpha \left(\frac{T-1}{T} \kappa_2 + \frac{1}{T} \kappa_1 \right) M$ for an eigenvector $e = (1, \ldots, 1)$, and $\lambda_i = \alpha(\kappa_1 - \kappa_2) M/T$ for eigenvectors $e_i - e_i$ ($i = 2, \ldots, T$) where e_i denotes a unit vector whose entries are 1 for the i-th entry and 0 otherwise. Thus, we obtain $\lambda_{\max} = \alpha \left(\frac{T-1}{T} \kappa_2 + \frac{1}{T} \kappa_1 \right) M$.

(ii) $C > 1$ of $O(1)$

Let us denote F^* shown in Eq. (A.31) by $F^* := \tilde{F}^* + R$. \tilde{F}^* is the leading term of F^* and given by a $CT \times CT$ block diagonal matrix whose diagonal blocks are given by $\alpha M K/T$. R denotes the residual term of $O(\sqrt{M})/T$.

In general, the maximum eigenvalue is denoted by the spectral norm $||\cdot||_2$, that is, $\lambda_{\text{max}} = ||F^*||_2$. Using the triangle inequality, we have
\[\lambda_{\text{max}} \leq ||F^*||_2 + ||R||_2. \tag{A.34} \]

We can obtain $||F^*||_2 = \alpha \left(\frac{T-1}{T} \kappa_2 + \frac{1}{T} \kappa_1 \right) M$ because the maximum eigenvalues of the diagonal blocks are the same as the case of $C = 1$. Its eigenvector is given by a CT-dimensional vector $e = (1, ..., 1)$. Regarding $||R||_2$, this is bounded by $||R||_2 \leq ||R||_F = \sqrt{C^2 \sum_{s} (O(\sqrt{M})/T)^2} = O(C\sqrt{M})$. Therefore, when $C = O(1)$, we can neglect $||R||_2$ of $O(M)$. On the other hand, we can also derive the lower bound of λ_{max} as follows. In general, we have
\[\lambda_{\text{max}} = \max_{v ||v||=1} v^TF^*v. \tag{A.35} \]

Then, we find
\[\lambda_{\text{max}} \geq v_1^TF^*v_1, \tag{A.36} \]
where v_1 is a CT-dimensional vector whose first T entries are $1/\sqrt{T}$ and the others are 0, that is, $v_1 = (1, ..., 1, 0, ..., 0)/\sqrt{T}$. We can compute this lower bound by taking the sum over the entries of $F^*(1,1)$, which is equal to Eq. (A.23): \[\lambda_{\text{max}} \geq \left(\frac{T-1}{T} \kappa_2 + \frac{1}{T} \kappa_1 \right) M. \tag{A.37} \]

Finally, we find that the upper bound (A.34) and lower bound (A.37) asymptotically take the same value of $O(M)$, that is, $\lambda_{\text{max}} = \left(\frac{T-1}{T} \kappa_2 + \frac{1}{T} \kappa_1 \right) M$.

\section*{A.5 Case of $C = O(M)$}

The mean of eigenvalues m'_s is derived in the same way as shown in Section A.1 (ii), that is, $m'_s = C\kappa_1/M$.

Regarding the second moment s'_s, the lower order term becomes non-negligible as remarked in Eq. (A.33). We evaluate this s'_s by using inequalities as follows:
\[s'_s = ||F^*||_F^2/P \tag{A.38} \]
\[= \left(\sum_k ||\nabla_\theta f_k^T \nabla_\theta f_k||^2_F + \sum_{k,k'} ||\nabla_\theta f_k^T \nabla_\theta f_{k'}||^2_F \right) / P \tag{A.39} \]
\[\geq \sum_k ||\nabla_\theta f_k^T \nabla_\theta f_k||^2_F / P. \tag{A.40} \]

As shown in Section A.3, for any k, we obtain $||\nabla_\theta f_k^T(s)\nabla_\theta f_k(t)||^2_F / P = \alpha \left(\frac{T-1}{T} \kappa_2^2 + \frac{1}{T} \kappa_1^2 \right)$ in the limit of $M \gg 1$. Thus, the lower bound becomes the same form as s_λ. That is, $s_\lambda = C\alpha\left(\frac{T-1}{T} \kappa_2^2 + \frac{1}{T} \kappa_1^2 \right)$. In contrast, the upper bound is given by
\[s'_s = ||F||_F^2/P \tag{A.41} \]
\[= \sum_k ||F_k||_F^2/P \tag{A.42} \]
\[\leq \sum_k ||F_k||_F^2/P, \tag{A.43} \]

where F_k denotes the FIM of the k-th output, i.e., $F_k := \sum_\theta \nabla_\theta f_k(t)\nabla_\theta f_k(t)^T / T$. Therefore, the upper bound is reduced to the summation over s_λ of $C = 1$. In the limit of $M \gg 1$, we obtain $s'_s \leq C^2||F_k||_F^2/P = C^2\alpha \left(\frac{T-1}{T} \kappa_2^2 + \frac{1}{T} \kappa_1^2 \right) = C s_\lambda$.

Next, we show inequalities for λ_{max}. We have already derived the lower bound (A.37) and this bound holds in the case of $C = O(M)$ as well. In contrast, the upper bound (A.34) may become loose when C is larger than $O(1)$ because of the residual term $||R||_2$. Although it is hard to explicitly obtain the value of $||R||_2$, the following upper bound holds and is easy to compute by using s^*_{λ} of Eq. (14). Because the FIM is a positive semi-definite matrix, $\lambda_i \geq 0$ holds by definition. Then, we have $\lambda_{\text{max}} \leq \sqrt{\sum_i \lambda_i^2}$. Combining this with $s^*_{\lambda} = \sum_i \lambda_i^2/P$, we have $\lambda_{\text{max}} \leq \sqrt{\alpha s^*_{\lambda} M} \leq \sqrt{\alpha C s^*_{\lambda} M}$.

\section{A.6 Theorem 5}

The Fisher-Rao norm is written as

$$||\theta||_{FR} = \sum_{l,ij} \sum_{(l',ab)} F_{(l,ij),(l',ab)} W_{ij}^l W_{ab}^{l'},$$

where $F_{(l,ij),(l',ab)}$ represents an entry of the FIM, that is, $\sum_{i} \sum_{C} \nabla W_{ij}^l f_k(t) \nabla W_{ab}^{l'} f_k(t)/T$. Because $F_{(l,ij),(l',ab)}$ includes the random variables W_{ij}^l and $W_{ab}^{l'}$, we consider the following expansion. Note that W_{ij}^l and $W_{ab}^{l'}$ are infinitesimals generated by Eq. (8). Performing a Taylor expansion around $W_{ij}^l = W_{ab}^{l'} = 0$, we obtain

$$F_{(l,ij),(l',ab)}(\theta) = F_{(l,ij),(l',ab)}(\theta^*) + \frac{\partial F_{(l,ij),(l',ab)}}{\partial W_{ij}^l}(\theta^*) W_{ij}^l + \frac{\partial F_{(l,ij),(l',ab)}}{\partial W_{ab}^{l'}}(\theta^*) W_{ab}^{l'} + \text{higher-order terms},$$

where θ^* is the parameter set \{ W_{ij}^l, θ^*_l \} with $W_{ij}^l = W_{ab}^{l'} = 0$. By substituting the above expansion into the Fisher-Rao norm and taking the average $\langle \cdot \rangle_\theta$, we obtain the following leading term:

$$\langle F_{(l,ij),(l',ab)} W_{ij}^l W_{ab}^{l'} \rangle_\theta = \langle F_{(l,ij),(l',ab)}(\theta^*) W_{ij}^l W_{ab}^{l'} \rangle_\theta$$

$$= \langle F_{(l,ij),(l',ab)}(\theta^*) \rangle_\theta \langle W_{ij}^l W_{ab}^{l'} \rangle_{\{ W_{ij}^l, W_{ab}^{l'} \}}.$$

For $(l, ij) \neq (l', ab)$, the last line becomes zero because of $\langle W_{ij}^l W_{ab}^{l'} \rangle_{\{ W_{ij}^l, W_{ab}^{l'} \}} = W_{ij}^l W_{ab}^{l'} = 0$. For $(l, ij) = (l', ab)$, we have $\langle W_{ij}^l W_{ab}^{l'} \rangle_{\{ W_{ij}^l, W_{ab}^{l'} \}} = \sigma^2_w/M_{l-1}$. After all, in the limit of $M \gg 1$, we obtain

$$\langle ||\theta||_{FR} \rangle_\theta = \sum_{k} \frac{C}{T} \sum_{l} \sum_{i} \delta_{k,i}(t)^2 \sum_{j} h_{j}^{l-1}(t)^2 \langle \theta^* \rangle_\theta \frac{\sigma^2_w}{M_{l-1}}$$

$$= \sum_{k} \frac{C}{T} \sigma^2_w \sum_{l} \langle \theta^* \rangle_\theta \langle q^l \rangle_\theta \langle q^{l-1} \rangle_\theta$$

$$= \sigma^2_w C \sum_{l} \langle q^l \rangle_\theta \langle q^{l-1} \rangle_\theta.$$

where the derivation of the macroscopic variables is similar to that of m_λ, as shown in Section A.1. Since we have $\kappa_1 = \sum_{l} \frac{\alpha_{l-1}}{\alpha_l} q^l q^{l-1}$, it is easy to confirm $\langle ||\theta||_{FR} \rangle_\theta \leq C \sigma^2_w \alpha/\alpha_{\text{min}} C \kappa_1$. When all α_l take the same value, we have $\alpha/\alpha_{\text{min}} = L - 1$ and the equality holds.

\section{A.7 Lemma 6}

Suppose a perturbation around the global minimum: $\theta_t = \theta^* + \Delta_t$. Then, the gradient update becomes

$$\Delta_{t+1} \leftarrow (I - \eta F) \Delta_t + \mu (\Delta_t - \Delta_{t-1}),$$

where we have used $E(\theta^*) = 0$ and $\partial E(\theta^*)/\partial \theta = 0$.

Consider a coordinate transformation from Δ_t to $\bar{\Delta}_t$ that diagonalizes F. It does not change the stability of the gradients. Accordingly, we can update the i-th component as follows:

$$\bar{\Delta}_{t+1,i} \leftarrow (1 - \eta \lambda_i + \mu) \bar{\Delta}_{t,i} - \mu \Delta_t - 1,i.$$ (A.52)

Solving its characteristic equation, we obtain the general solution,

$$\bar{\Delta}_{t,i} = A\lambda^+ t + B\lambda^- t - 1, \quad \lambda^\pm = (1 - \eta \lambda_i + \mu \pm \sqrt{(1 - \eta \lambda_i + \mu)^2 - 4\mu})/2,$$ (A.53)

where A and B are constants. This recurrence relation converges if and only if $\eta \lambda_i < 2(1 + \mu)$ for all i. Therefore, $\eta < 2(1 + \mu)/\lambda_{\text{max}}$ is necessary for the steepest gradient to converge to θ^*.

B Analytical recurrence relations

B.1 Erf networks

Consider the following error function as an activation function $\phi(x)$:

$$\text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x \exp(-t^2) dt.$$ (B.1)

The error function well approximates the tanh function and has a sigmoid-like shape. For a network with $\phi(x) = \text{erf}(x)$, the recurrence relations for macroscopic variables do not require numerical integrations.

(i) \hat{q}^l and \tilde{q}^l: Note that we can analytically integrate the error functions over a Gaussian distribution:

$$\int_0^\infty dx \text{erf}(ax) \text{erf}(bx) = \frac{1}{\pi} \tan^{-1} \frac{\sqrt{2ab}}{\sqrt{a^2 + b^2 + 1/2}}.$$ (B.2)

Hence, the recurrence relations for the feedforward signals (9) have the following analytical forms:

$$\hat{q}^{l+1} = \frac{2}{\pi} \tan^{-1} \left(\frac{\hat{q}^{l+1}}{\sqrt{\hat{q}^{l+1} + 1/4}} \right), \quad q^{l+1} = \sigma^2 \hat{q}^l + \sigma_b^2.$$ (B.3)

Because the derivative of the error function is Gaussian, we can also easily integrate $\phi'(x)$ over the Gaussian distribution and obtain the following analytical representations of the recurrence relations (11):

$$\hat{q}^l = \frac{2\hat{q}^{l+1}\sigma_w^2}{\pi \sqrt{\hat{q}^l + 1/4}}, \quad \tilde{q}^L = 1.$$ (B.4)

(ii) \hat{q}_{st}^l and \tilde{q}_{st}^l:

To compute the recurrence relations for the feedforward correlations (10), note that we can generally transform $I_{\phi}[a, b]$ into

$$I_{\phi}[a, b] = \int Dy \left(\int Dx \phi(\sqrt{a - bx} + \sqrt{by}) \right)^2.$$ (B.5)

For the error function,

$$\int Dx \phi(\sqrt{a - bx} + \sqrt{by}) = \text{erf} \frac{\sqrt{by}}{\sqrt{1 + 2a - 2b}},$$ (B.6)

and we obtain

$$I_{\phi}[a, b] = \frac{2}{\pi} \tan^{-1} \frac{2b}{\sqrt{(1 + 2a - 2b)^2 - (2b)^2}}.$$ (B.7)

This is the analytical form of the recurrence relation for \hat{q}_{st}^l.

Finally, because the derivative of the error function is Gaussian, we can also easily obtain

$$I_{\phi'}[a, b] = \frac{4}{\pi \sqrt{(1 + 2a)^2 - (2b)^2}}.$$ (B.8)

This is the analytical forms of the recurrence relations for \tilde{q}_{st}^l.

Ryo Karakida, Shotaro Akaho, Shun-ichi Amari
B.2 ReLU networks

We define a ReLU activation as $\phi(x) = 0 \ (x < 0), \ x \ (0 \leq x)$. For a network with this ReLU activation function, the recurrence relations for the macroscopic variables require no numerical integrations.

(i) \hat{q}^l and \tilde{q}^l: We can explicitly perform the integrations in the recurrence relations (9) and (11):

\[\hat{q}^{l+1} = \frac{\hat{q}^l \sigma^2_w}{2} + \frac{\sigma^2_b}{2}, \quad \frac{\hat{q}^l}{\tilde{q}^L} = 1/2. \]

(ii) \hat{q}_{st}^l and \tilde{q}_{st}^l: We can explicitly perform the integrations in the recurrence relations (10) and (12):

\[I_{\phi}[a, b] = \frac{a}{2\pi} \left(\sqrt{1 - c^2} + \frac{c\pi}{2} + c\sin^{-1} c \right), \]
\[I_{\phi'}[a, b] = \frac{a}{2\pi} \left(\frac{\pi}{2} + \sin^{-1} c \right), \]

where $c = b/a$.

B.3 Linear networks

We define a linear activation as $\phi(x) = x$. For a network with this linear activation function, the recurrence relations for the macroscopic variables do not require numerical integrations.

(i) \hat{q}^l and \tilde{q}^l: We can explicitly perform the integrations in the recurrence relations (9) and (11):

\[\hat{q}^l = q^{l-1} \sigma^2_w + \sigma^2_b, \quad \hat{q}^{l+1} = \frac{\hat{q}^l \sigma^2_w}{2}, \quad \hat{q}^L = 1. \]

(ii) \hat{q}_{st}^l and \tilde{q}_{st}^l: We can explicitly perform the integrations in the recurrence relations (10) and (12):

\[\hat{q}_{st}^{l+1} = \frac{\hat{q}_{st}^l \sigma^2_w}{2}, \quad \hat{q}_{st}^l = \hat{q}_{st}^{l+1} \sigma^2_w, \quad \tilde{q}_{st}^L = 1. \]
C Additional Experiments

C.1 Dependence on T

Figure C.1: Statistics of FIM eigenvalues with fixed M and changing T ($L = 3, \alpha_l = C = 1$). The red line represents theoretical results obtained in the limit of $M \gg 1$. The first row shows results of Tanh networks with $M = 1000$. The second row shows those with a relatively small width ($M = 300$) and higher T. We set $M = 1000$ in ReLU and linear networks. The other settings are the same as in Fig. 1.

C.2 Training on CIFAR-10

Figure C.2: Color map of training losses after one epoch of SGD training: Tanh, ReLU, and linear networks trained on CIFAR-10.