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S1 Review of existing results in random matrix theory

In what follows, we give a review of the existing technical literature regarding the distribution of
eigenvalues in high dimensions. We divide this review into two parts: results concerning the bulk
of the spectral distribution and those concerning the edge. Bulk results are concerned with charac-
terizing the spectral distribution of Σ̂, i.e with the (random) probability measure with distribution

dFp(x) =
1

p

n∑
i=1

δ
λi(Σ̂)

(x) .

Edge results are concerned with the fluctuation behavior of the eigenvalues that are at the edge of
the spectrum of the matrices of interest, such as the distribution of the largest eigenvalue.

Notations We call λ1(M) the largest eigenvalue of a symmetric matrix M . We call λ1(M) ≥
λ2(M) ≥ λ3(M) ≥ λp(M) the ordered eigenvalues of the p × p matrix M . If Z ∼ NC(0,Σ), Z
has a complex normal distribution, i.e Z = 1√

2
(Z1 + iZ2) where Z1 and Z2 are independent with

Zi ∼ N (0,Σ). We call C+ the set of complex numbers with positive imaginary part.

S1.1 Bulk results

Bulk results are concerned with the spectral distribution of Σ̂, Fp(x), as defined above.
An efficient way to characterize the limiting behavior of Fp is through its Stieltjes transform:

for z = u+ iv with v > 0, mp(z) =
1

p
trace

(
(Σ̂− zIdp)−1

)
.

Note that mp(z) : C+ 7→ C+. We have of course

mp(z) =

∫
dFp(λ)

λ− z
=

1

p

p∑
i=1

1

λi(Σ̂)− z
.

An important result in this area is the so-called Marchenko-Pastur equation [20, 27], which
states the following

Theorem S1.1. Suppose Xi
iid
v Σ1/2Zi, where Zi has i.i.d entries, with mean 0, variance 1 and 4

moments. Suppose that the spectral distribution of Σ has a limitH in the sense of weak convergence
of probability measures and p/n→ r ∈ (0, 1). Then

Fp =⇒ Fa.s ,

where F is a deterministic probability distribution.
Call vp(z) = (1 − p/n)−1

z + p
nmp(z). Then vp(z) → vF (z) a.s. The Stieltjes transform of F

can be characterized through the equation

− 1

vF (z)
= z − r

∫
λdH∞(λ)

1 + λvF (z)
, ∀z ∈ C+

At an intuitive level, this result means that the histogram of eigenvalues of Σ̂ is asymptoti-
cally non-random, and its limiting shape, which depends on the ratio p/n, is characterized by the
Marchenko-Pastur distribution.

A generalization of this result to the case of elliptical predictors was obtained in [12]. For the
purpose of the current paper, the main result of [12] states the following:
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Theorem S1.2. Suppose Xi
iid
v Σ1/2Zi, where Zi has i.i.d entries, with mean 0, variance 1 and 4

moments. Suppose that the spectral distribution of Σ has a limit H , that H has one moment and
p/n→ r ∈ (0,∞). Consider the matrix

Bn =
1

n

n∑
i=1

wiXiX
′
i .

Assume that the weights {wi}ni=1 are independent of Xi’s. Call νn the empirical distribution of the
weights wi’s and suppose that νn =⇒ ν.

Then Bn =⇒ B a.s, where B is a deterministic probability distribution; furthermore the Stielt-
jes transform of B, m, satisfies the system

m(z) =

∫
dH(τ)

τ
∫

w2

1+rw2γ(z)
dν(w)− z

and

γ(z) =

∫
τdH(τ)

τ
∫

w2

1+rw2γ(z)
dν(w)− z

.

where γ(z) is the only solution of this equation mapping C+ into C+.

Theorem S1.2 is interesting statistically because it shows that the limiting spectral distribution of
weighted covariance matrices is completely different from that of unweighted covariance matrices,
even when E (wi) = 1. This is in very sharp contrast with the low-dimensional case. (Note that as
shown in [11], Theorem S1.2 holds for many other distributions for Xi’s that the one mentioned in
our statement.)

In the context of the current paper, this result is especially useful since bootstrapping a covari-
ance matrix amounts to moving from an unweighted to a weighted covariance matrix.

S1.1.1 Consequences of the previous results for the bootstrap

As recalled above, in the case of a Gaussian design the spectral distribution of Σ̂, Ln(Σ̂), has a non-
random limit, L(Σ) satisfying the Marchenko-Pastur equation (see [20],[28], [27],[2]). The results
above also say that when sampling both wi’s and Xi’s, with {wi}ni=1 independent of {Xi}ni=1, that
Σ̂w has a non-random limiting distribution, L(Σ, w). L(Σ, w) can be implicitly characterized by
a pair of equations for a variant of the Stieltjes transform of Σ̂w (see [8], [12]). As can be seen
from above, this limit distribution is in general hard to characterize analytically, however it is not
the same as that of Σ̂, i.e. L(Σ, w) 6= L(Σ).

Furthermore, this discrepancy between the sample distribution and the bootstrap distribution
also happens almost surely for the bootstrap distribution of eigenvalues generated from a specific
realization of the design matrix. Specifically, let us call Ln(Σ̂w)|{Xi}ni=1 the bootstrapped spectral
distribution of Σ̂ for a specific design matrix X . Then it is clear by a simple conditioning argument,
that if Ln(Σ̂w) is the spectral distribution of Σ̂w,

Ln(Σ̂w)|{Xi}ni=1 =⇒ L(Σ, w) a.s

where the a.s statement refers to the design matrix. The limit , L(Σ, w) is different from the
limiting spectral distribution of Σ̂, L(Σ) when p, n tend to infinity and p/n → r ∈ (0,∞). Hence
the bootstrapped distribution of the eigenvalues of Σ̂ is in general biased.

One could argue that this is not disqualifying since the empirical spectral distribution is itself
biased for the population spectral distribution. However, as the system above shows, the relationship
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between the spectral distributions of the bootstrapped sample covariance and sample covariance is
different from that between the spectral distribution of the sample covariance and the population
covariance. This helps explain why the bootstrap fails in our context.

S1.2 Edge results

The first result ( [17]) concerns the distribution of the largest eigenvalue of Σ̂ in the case that might
be considered the “null” case for PCA – the predictors are all independent with covariance matrix
equal to Idp.

Theorem S1.3. Suppose Xi
iid
v N (0, Idp). Assume that p/n→ r ∈ (0, 1). Then

n2/3λ1(Σ̂)− µn,p
σn,p

=⇒ TW1 .

We have for instance µn,p = (1 +
√
p/n)2 and σn,p = (1 +

√
p/n)(1 +

√
n/p)1/3. The result

for the case r ∈ (1,∞) follows immediately by changing the role of p and n; see [17] for details.
TW1 refers to the Tracy-Widom distribution appearing in the study of the Gaussian Orthogonal

ensemble (GOE); details about its density can be found in [17] for instance. Further details about
µn,p and σn,p are in the appendix; they both converge to finite, non-zero limit. This result implies,
among other things, that the standard estimate λ1(Σ̂) is a biased estimator of the true λ1(Σ) when
p/n is not close to zero, overestimating the true size of λ1(Σ).

From the point of view of PCA, λ1(Σ) > 1 corresponds to the scenario of the “alternative”
hypothesis, and an important question is how well can we differentiate when the data came from
the alternative distribution rather than the null. [4] shows that the distribution of λ1(Σ̂) given in
Theorem S1.3 also describes the distribution of λ1(Σ̂) when Σ is a finite rank perturbations of the
Idp, provided none of the eigenvalues of Σ are too separated from each other. In practical terms,
this signifies that λ1(Σ̂) has - asymptotically - the exact same distribution under the null as under
the alternative and therefore no ability to differentiate the null and the alternative, provided the
alternative is not far away from the null.

Following a question posed by Johnstone, Baik, Ben-Arous and Péché obtained the following
result [4], which gives the point at which the alternative hypothesis is sufficiently removed from the
null so that the distribution of λ1(Σ̂) is stochastically different from that of λ1(Σ̂) under the null.

Theorem S1.4. Suppose Xi
iid
v NC(0,Σ). Suppose that λ1(Σ) = 1 + η

√
p/n and λi(Σ) = 1 for

i > 1.

1. If 0 < η < 1, then

n2/3λ1(Σ̂)− µn,p
σn,p

=⇒ TW2 .

2. On the other hand, if η > 1, then

√
n
λ1(Σ̂)− µη,n,p

ση,n,p
=⇒ N (0, 1) .

Here,

µη,n,p = λ1(1 +

√
p/n

η
) and ση,n,p = λ1

√
1− η−2 .

4



We note that we can rewrite the previous quantities solely as functions of λ1, specifically

µη,n,p = λ1

(
1 +

p/n

λ1 − 1

)
and ση,n,p = λ1

√
1− n

p
(λ1 − 1)−2 .

This representation shows that µη,n,p is an increasing function of λ1 on (1+
√
p/n,∞) and therefore

it would be easy to estimate λ1(Σ) from λ1(Σ̂). In particular, it is very simple to build confidence
intervals in this context.

S1.2.1 Gaussian Phase Transition

These results show that if the largest eigenvalue is changed from 1 to λ1(Σ) > 1 +
√
p/n and

the other eigenvalues remain the same, then λ1(Σ̂) has Gaussian fluctuations and they are of order
n−1/2. See also [23]. In other words, there is a phase-transition: if λ1 is sufficiently large, i.e larger
than 1 +

√
p/n the largest eigenvalue of Σ̂ has Gaussian fluctuations. If it is not large enough, i.e

smaller than 1 +
√
p/n, the fluctuations are Tracy-Widom, and in fact are the same if λ1(Σ) = 1.

The value 1 +
√
p/n is therefore called the Gaussian phase transition. Statistically, it is hard to

build confidence intervals for λ1 in the latter case - but it is very easy to do so in the first case where
λ1 is sufficiently large. Part of our simulation study investigates whether the bootstrap is capable of
capturing this statistically interesting phase transition.

Similar results were obtained in [11] for general Σ in the complex Gaussian case and extended
to the real case in [19]. [10] showed that Theorem S1.3 holds when p/n → 0 and p → ∞ at any
rate. See also the interesting [23] and [16]. We finally note that the main result in [4] is slightly
more general than Theorem S1.4 but we just need that version for the current paper.

S2 Description of Simulations and other Numerics

For each of 1,000 simulations, we generate a n× p data matrix X . For each X , we calculate either
the top eigenvalue (or the gap statistic) from the sample covariance matrix. Specifically, we perform
the SVD of X using the ARPACK numeric routines (implemented in the package rARPACK in R)
to find the top five singular values of X and get estimates λ̂i by multiplying the singular values of
X by 1/n.

For each simulation, we perform bootstrap resampling of the n rows of X to get a bootstrap
resample X∗b and λ∗bi ; we repeat the bootstrap resampling B = 999 times for each simulation,
resulting in 999 values of λ∗bi for each simulation.

In all simulations, we only consider the case where only λ1 is allowed to differ from the rest
of the eigenvalues. Therefore for all eigen values except the first, λi = 1. For λ1, we consider
λ1 = 1 + c

√
p
n for the following c: 0, 0.9, 1.1, 1.5, 2.0, 3.0, 6.0, 11.0, 50.0, 100.0, and 1000.0 (not

all of these values are shown in figures or tables accompanying this manuscript). The results shown
in this manuscript set n = 1, 000, though n = 500 was also simulated.

Generating X We generate X as X = ZΣ where Σ = V ΛV ′, and Λ is a diagonal matrix of
eigenvalues λ1 ≥ . . . ≥ λp. We assume that there is no structure in the true eigenvectors, and
generate V as the right eigenvectors of the SVD of a nxp matrix with entries i.i.d N(0, 1).

Z = DZ0 is a nxp matrix, with Z0 having entries i.i.d. N(0, 1) and D is a diagonal matrix D.
If D is the identity matrix, Z will be i.i.d. normally distributed; otherwise Z will be i.i.d with an
elliptical distribution. We simulated under the following distributions for the diagonal entries of D
to create elliptical distribution for Z,
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• Dii ∼ N(0, 1)

• Dii ∼ Unif(1/2,
√

3
√

4−1/4

2 − 1
4)

• Dii ∼ Exp(
√

2)

In this manuscript, we concentrated only on Dii ∼ Exp(
√

2), the “Elliptical Exponential” distri-
bution. This was because its behavior resulted in an elliptical distribution for Z with properties
the most different from when Z is normal. The remaining choices for the distribution of D result
in elliptical distributions between that of the Elliptical Exponential and the Normal. The results
from when Dii ∼ Unif were generally fairly similar to when Z is normal and results from when
Dii ∼ N(0, 1) were more different, though not as extreme as the exponential weights.

S3 Proofs

S3.1 Proof of Lemma 3.1

Proof of Lemma 3.1. We recall the following result from a simple application of the Sherman-
Morrison-Woodbury formula (see [15] and [2]): if M is a symmetric matrix, q is a real vector
v > 0 and and z = u+ iv ∈ C+,

|trace
(
(M + qq′ − zIdp)−1

)
− trace

(
(M − zIdp)−1

)
| ≤ 1

v
.

We use bounded martingale difference arguments as in [14], [22], [12].
• Case 1: independent weights wi

Consider the filtration {Fi}ni=0, with Fi = σ(w1, . . . , wi) - the σ-field generated by w1, . . . , wi -
and F0 = ∅.

Call S(i)
w = Sw − 1

nwiXiX
′
i − zIdp. In light of the result we just mentioned,

1

p
|trace

(
[S(i)
w ]−1

)
− trace

(
[Sw]−1

)
| ≤ 1

pv
.

In particular, this implies, since E
(

trace
(

[S
(i)
w ]−1

)
|Fi
)

= E
(

trace
(

[S
(i)
w ]−1

)
|Fi−1

)
that

1

p
|E
(
trace

(
[Sw]−1

)
|Fi
)
−E

(
trace

(
[Sw]−1

)
|Fi−1

)
| ≤ 2

pv
.

Hence, di = 1
pE
(
trace

(
[Sw]−1

)
|Fi
)
−1
pE
(
trace

(
[Sw]−1

)
|Fi−1

)
is a bounded martingale-difference

sequence. We can therefore apply Azuma’s inequality ([18], p. 68), to get

P (|mp(z)−E (mp(z)) | > t) ≤ C exp(−cp
2v2t2

n
) .

In [12] it is shown that we can take C = 4 and c = 1/16.
• Case 2: multinomial weights

In this case, the previous result cannot be applied directly because the weights are not independent,
since they must sum to n. However, to draw according to a Multinomial(n, 1/n), we can simply pick
an index from {1, . . . , n} uniformly and repeat the operation n times independently. Let I(k) be
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the value of the index picked on the k-th draw from our sampling scheme. Clearly, the bootstrapped
covariance matrix can be written as

Sw =
1

n

n∑
k=1

XI(k)X
′
I(k) .

Consider the filtration {Fi}ni=0, withFi = σ(I(1), . . . , I(i)) - the σ-field generated by I(1), . . . , I(i)
- and F0 = ∅. Clearly Sw is a sum of rank-1, independent matrices. So, if Sw(k) = Sw −
XI(k)X

′
I(k)/n,

E
(

trace
(

[S(i)
w ]−1

)
|Fi
)

= E
(

trace
(

[S(i)
w ]−1

)
|Fi−1

)
.

The same argument as above therefore applies and the theorem is shown.

S3.2 Proofs of Theorem 3.1 and 3.2

Proof of Theorem 3.1. Recall that Wielandt’s Theorem (see p.261 in [9]) gives

sup
1≤i≤q

0 ≤ λi(Sn)− λi(Tn) ≤ λmax(UnU
′
n)

λq(Tn)− n−αλmax(Vn)
,

provided λq(Tn) > n−αλmax(Vn).
Recall that the Schur complement formula gives

n−αVn � U ′nT−1
n Un � U ′nUn/λmax(Tn) ,

where the second inequality is a standard application of Lemma V.1.5 in [7]. Since λmax(UnU
′
n) =

λmax(U ′nUn) by simply writing the singular value decomposition of Un, we conclude that

λmax(Tn)n−α|||Vn|||2 ≥ λmax(UnU
′
n) .

So we conclude that provided λq(Tn) > n−αλmax(Vn),

sup
1≤i≤q

0 ≤ λi(Sn)− λi(Tn) ≤ n−α λmax(Vn)

λq(Tn)− n−αλmax(Vn)
. (1)

• Proof of Equation (1) Note that under assumption A2, standard results in random matrix
theory [13, 25, 26] guarantee that |||Vn|||2 = OP (1). Furthermore, standard results in classic
multivariate analysis [1] show that λq(Tn)→ λq(Σ11) in probability. Hence, we have

λmax(Vn)

λq(Tn)− n−αλmax(Vn)
= OP (1) .

We therefore have
sup

1≤i≤q

√
n(λi(Sn)− λi(Tn)) = OP (n1/2−α) .

• Proof of Equation (2) We note that if Dw is the diagonal matrix with the bootstrap weights
on the diagonal, we have

S∗n =
1

n
X ′DwX .

Therefore, we see that |||T ∗n |||2 = OP,w(1), λq(T ∗n)→P,w λq(Σ11) by the law of large numbers
(provided E (wi) = 1; the case of Multinomial(n, 1/n) weights is also easy to deal with by the
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technique described in the previous subsection for instance) and |||V ∗n |||2 = OP,w(polyLog(n))
provided ‖w‖∞ = polyLog(n).

We can then conclude that

sup
1≤i≤q

√
n(λi(S

∗
n)− λi(T ∗n)) = oP,w(1) .

Preliminary remarks concerning Theorem 3.2 Before we prove these theorems, we recall the
definitions of bootstrap consistency.

Definition 1. Suppose θ̂n(X1, . . . , Xn) is a statistic, θ̂∗n is its bootstrapped version. Suppose that
θ̂n =⇒ T . We say that the bootstrap is consistent in probability if

θ̂∗n =⇒w T in PX1,...,Xn − probability.

Here =⇒w refers to weak convergence of θ̂∗n under the bootstrap weight distribution; the con-
vergence in probability is with respect to the joint distribution of X1, . . . , Xn, which we denote
PX1,...,Xn . For simplicity, we often abbreviate PX1,...,Xn by P .

We say that the bootstrap is strongly consistent if

θ̂∗n =⇒w T a.s PX1,...,Xn .

Key results of [5, 6] and [9], p.269 show that in the classical low-dimensional case, where p is
fixed and n → ∞, if all eigenvalues of Σ are simple, the bootstrap distribution of the eigenvalues
of Sn is strongly consistent. On the other hand, it is known from these papers that the bootstrap
distribution of the eigenvalues of Sn is inconsistent when the eigenvalues of Σ have multiplicities
higher than 1.

Proof of Theorem 3.2. The results from Theorem 3.1 imply that

sup
1≤i≤q

∣∣[√n(λi(S
∗
n)− λi(Sn))

]
−
[√
n(λi(T

∗
n)− λi(Tn))

]∣∣ = oP,w(1) . (2)

The arguments used in the proof of Theorem 3.1 also apply to Σ and show that

sup
1≤i≤q

|λi(Σn)− λi(Σ11)| ≤ n−α λmax(Σ22)λmax(Σ11)

λq(Σ11)− n−αλmax(Σ22)

Hence, when α > 1/2 + ε, we have
√
n sup

1≤i≤q
|λi(Σn)− λi(Σ11)| = o(1) .

Therefore,
sup

1≤i≤q

√
n |λi(Sn)− λi(Σn)− [λi(Tn)− λi(Σ11)]| = oP (1) .

Hence, the q largest eigenvalues of Sn have the same limiting fluctuation behavior as the q largest
eigenvalues of Tn (classical results [1] show that

√
n is the correct order of fluctuations). The same

is true for the bootstrapped version of their distributions, according to Equation (2).
Since the aforementioned results of [5, 6, 9] show consistency of the bootstrap distribution of

the eigenvalues of Tn, this result carries over to the bootstrap distribution of Sn.
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S3.2.1 Discussion of the assumptions of Theorems 3.1 and 3.2

Recall our assumptions: A1 We assume that |||Σ22|||2 = O(1) and that λmin(Σ11) > η > 0. We
assume that Σ11 is q × q with q fixed. A2 Xi’s are i.i.d with Xi = riZi, where Zi ∼ N (0,Σn),
and 0 < δ0 < ri < γ0 is a bounded random variable independent of Zi, with E

(
r2
i

)
= 1.A3 The

bootstrap weights wi have infinitely many moments, ‖w‖∞ = O(polyLog(n)) and E (wi) = 1.
These weights can either be independent or Multinomial(n, 1/n). A4 p/n remains bounded as n
and p tend to infinity.

Distributional assumptions on Xi’s The assumption that Zi ∼ N (0,Σn) is not critical: most of
our arguments could be adapted to handle the case where Zi = Σ

1/2
n Yi, where Yi has independent,

mean 0, variance 1 entries, with sufficiently many moments. This simply requires appealing to
slightly different random matrix results that exist in the literature. Also, the first q coordinates of
Xi could have a much more general distribution than the elliptical distributions we consider here,
as our proof simply requires control of |||Vn|||2, which is where we appeal to random matrix theory.
Doing this entails minor technical modifications to the proof, but since it might reduce clarity, we
leave them to the interested reader.

Assumptions on Σ The block representation assumptions are made for analytic convenience and
can be easily dispensed of: eigenvalues are of course unaffected by rotations, so we simply chose
to write Σ in a basis that gave us this nice block format. As long as the ratio between the q-th
eigenvalue of Σ and q + 1st is of order nα, our results hold. Furthermore, our results also handle a
situation similar to ours, where for instance the top q largest eigenvalues of Σ grow like nα and the
q+1st is of order 1, by simple rescaling, using for instance the fact that trace (Tn) /trace (Σ11)→ 1
in probability.

Strong consistency of the bootstrap We have chosen to present our results using convergence in
probability statements, as we think they better reflect the questions encountered in practice. How-
ever, a quick scan through the proofs show that all the approximation results could be extended to
a.s convergence: the random matrix results we rely on hold a.s, and the low-dimensional bootstrap
results we use also hold a.s in low-dimension.

S3.3 On bootstrap bias for the top eigenvalue in the non well-separated case

Recall that if M is a symmetric matrix, the application M 7→ λ1(M) is convex. We assume that the
bootstrap weights wi’s have (bootstrap) mean 1, i.e. E∗ (wi) = 1.

For the sake of simplicity we consider the case where Xi’s are i.i.dN (0,Σn), in which case the
maximum likelihood estimate of covariance is Σ̂n = 1

n

∑n
i=1XiX

′
i. Applying Jensen’s inequality

to Σ̂n, we see that
E
(
λ1(Σ̂n)

)
≥ λ1(Σ) .

Now the bootstrapped version of Σ̂n is Σ̂∗n = 1
n

∑n
i=1wiXiX

′
i. Hence we have for the bootstrap

expectation, when E∗ (wi) = 1

E∗
(
λ1(Σ̂∗n)

)
≥ λ1(E∗

(
Σ̂∗n

)
) = λ1(Σ̂n) .

In other words, Jensen’s inequality, applied in two slightly different manners, shows that the
sample largest eigenvalue is potentially biased and so is the sample largest bootstrap eigenvalue. As
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we have recalled in this supplementary material, λ1(Σ̂n) is severely biased when p/n is not close
to 0. A naive application of the bootstrap to estimate the sampling distribution of such a biased
estimator is clearly a bad idea, a fact which is not perhaps sufficiently appreciated in the context
of the bootstrap for eigenvalues. But this does not rule out in general that the bootstrap could
work for estimating simpler quantities than the sampling distribution, such as the bias of the largest
eigenvalue.

We have the following simple observation.

Fact S3.1. Suppose Xi’s are i.i.d N (0, Idp). Suppose the bootstrap weights have distributionW .
Consider the random matrix Sw = 1

n

∑n
i=1wiXiX

′
i where X ′is and wi’s are drawn independently

has the property that its largest eigenvalue converges in probability (with respect to P{Xi}i=1n
⊗PW

to the edge of the limiting empirical spectral distribution of SW , denoted by eW .
Then

λ1(S∗w)− eW = oPW (1) with probability 1 wrtPX1,...,Xn .

This very simple fact follows immediately from the fact that if λ1(Sw) converges in probability
to a constant jointly with respect toW and PX1,...,Xn , it converges to the same constant conditionally
on Xi’s, with probability 1 with respect to Xi’s.

An idealized and simplified example For technical reasons, let us now assume that w’s are
drawn i.i.d according to a Poisson(1) distribution conditioned to be less than K, where K is a
fixed number, say K = 20 when n is a few 100’s like in our paper. We use this distribution as
an approximation of bootstrap weights truncated to not be too large. (Recall that the marginal
distribution of a Mult(n, 1/n) converges to a Poisson(1) distribution.) For this distribution of
weights, results such as [11, 21, 3] apply, after we recall that if M = DX , its eigenvalues are
the same as those of M ′ = X ′D′ and understanding the limiting spectral distribution of Sw is
the same as understanding the spectrum of a sample covariance matrix computed from X̃i where
X̃i ∼ N (0,Σw) data with Σw = diag(w). Naturally in this formulation the role of n and p has
been switched. In particular, rewriting slightly the results of these papers, the largest eigenvalue of
n
pSw converges to µn,p(W) with

µn,p(W) =
1

cn,p

(
1 +

n

p

∫
wcn,p

1− wcn,p
dHn(w)

)
,where n

∫ (
wcn,p

1− wcn,p

)2

dHn(w) = p

where Hn is the empirical distribution of wi’s, i.e. dHn(w) = 1
n

∑n
i=1 δwi and cn,p is the unique

solution of the equation on the right hand side in (0, 1/max1≤i≤nwi).
In general, we will have

µn,p(W)− (1 +
√
p/n)2 6= (1 +

√
(p/n))2 − 1 .

In other words, the bootstrap estimate of bias (or its technical idealization here) is not going to be a
consistent estimate of the bias of the largest eigenvalue.

More generally and related to these arguments, it is clear from [24] or [11] and their main re-
sults recalled above that the bootstrap weight distribution affects the support of the limiting spectral
distributions, and thus the range of values the top eigenvalues can take. As we just did, looking care-
fully at the discrepancy in the support of the sample spectral distribution and the bootstrap weight
distribution gives strong theoretical intuition as to why the (bootstrap) bias in the bootstrapped
λ1(Σ̂∗) is unlikely to be the same as the bias of the sample estimate λ1(Σ̂).

The situation is however complicated by the fact that the largest eigenvalue of the sample co-
variance matrix does not always converge to the end point of its limiting spectral distribution [26]
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and that as we recalled rather subtle phase-transitions can occur for these statistics [4]. This is why
the mathematically motivated intuition given above applies only to situations where the extreme
eigenvalues of Σ are not well-separated from the bulk. In this case it has been shown in a variety of
situations [11, 19] that the sample extreme eigenvalues stay close to the edge of the limiting spectral
distribution, so that using support of the limiting spectral distribution as a proxy for the location
of the extreme eigenvalues provides a plausible explanation for the problems we observed with the
bootstrap estimate of bias.

We note however that the supremum of the support of the limiting spectral distribution provides
a lower bound on the top eigenvalue; hence using this proxy for the top eigenvalue would help when
showing that the bootstrap estimate of bias is positively biased.
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Figure S5: Top Eigenvalue: 95% CI Coverage, n = 1, 000 for additional distributions: Plotted
are the corresponding CI Coverage plots for when Xi follows an elliptical distribution with Normal
and Uniform weights. See Figure 3 for more details.
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Figure S8: Gap Statistic: 95% CI Coverage, n = 1, 000:
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Figure S9: Gap Statistic: Bootstrap distribution, Xi ∼ Normal, n=1,000: Plotted are the
estimated density of twenty simulations of the bootstrap distribution of (λ̂∗b1 − λ̂∗b2 ) − (λ̂1 − λ̂2),
with b = 1, . . . , 999. The solid black line line represents the distribution of (λ̂1 − λ̂2)− (λ1 − λ2)
over 1,000 simulations.

24



−0.4 0.0 0.2 0.4 0.6 0.8

0
1

2
3

4

(λ̂*
1−λ̂*

2)−(λ̂1 − λ̂2)

D
en

si
ty

(a) λ1 = 1
r=0.01

−15 −5 0 5 10 15

0.
00

0.
10

0.
20

0.
30

(λ̂*
1−λ̂*

2)−(λ̂1 − λ̂2)
D

en
si

ty

(b) λ1 = 1
r=0.3

−0.5 0.0 0.5 1.0

0
1

2
3

4

(λ̂*
1−λ̂*

2)−(λ̂1 − λ̂2)

D
en

si
ty

(c) λ1 = 1 + 3
√
r

r=0.01

−20 −10 0 10 20 30 40

0.
0

0.
1

0.
2

0.
3

(λ̂*
1−λ̂*

2)−(λ̂1 − λ̂2)

D
en

si
ty

(d) λ1 = 1 + 3
√
r

r=0.3

Figure S10: Gap Statistic: Bootstrap distribution, Xi ∼ Ellip Exp, n=1,000: Plotted are the
estimated density of twenty simulations of the bootstrap distribution of (λ̂∗b1 − λ̂∗b2 ) − (λ̂1 − λ̂2),
with b = 1, . . . , 999. The solid black line line represents the distribution of (λ̂1 − λ̂2)− (λ1 − λ2)
over 1,000 simulations.
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Figure S11: Gap Ratio Statistic: Bias of Bootstrap. Note that the Gap Ratio is not well defined
in the population for this simulation (since λ2 = λ3) so we can not scale the Gap Ratio by the true
value of the Gap Ratio as was done for other plots in the Supplementary Figures. Instead we plot
the actual bias, as in Figure 1. For this reason, we only show the smaller values of λ1 (otherwise,
without scaling, the plot is dominated by the bias of large values of λ1, even though the relative
value of the bias is small). Similarly, the true bias of the estimate λ̂1 − λ̂2 is not a well-defined
quantity and hence is not plotted.
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Figure S12: Gap Ratio Statistic: Ratio of Bootstrap Estimate of Variance to True Variance.
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Figure S13: Gap Ratio Statistic: Bootstrap distribution, Xi ∼ Ellip Exp, n=1,000: Plotted are
the estimated density of twenty simulations of the bootstrap distribution of (λ̂∗b1 − λ̂∗b2 )− (λ̂1− λ̂2),
with b = 1, . . . , 999. The solid black line line represents the distribution of (λ̂1 − λ̂2)− (λ1 − λ2)
over 1,000 simulations.
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λ1 = 1 λ1 = 1 + 3
√
r λ1 = 1 + 11

√
r λ1 = 1 + 50

√
r λ1 = 1 + 100

√
r

r = 0.01 0.08 0.04 0.02 0.01 0.01
r = 0.1 0.42 0.23 0.13 0.11 0.10
r = 0.3 1.04 0.60 0.37 0.31 0.31
r = 0.5 1.70 1.00 0.60 0.52 0.51

(a) Bootstrap Median Estimate of Bias

λ1 = 1 λ1 = 1 + 3
√
r λ1 = 1 + 11

√
r λ1 = 1 + 50

√
r λ1 = 1 + 100

√
r

r = 0.01 0.17 0.04 0.02 0.02 0.02
r = 0.1 0.70 0.20 0.12 0.12 0.12
r = 0.3 1.37 0.48 0.36 0.28 0.38
r = 0.5 1.88 0.73 0.55 0.48 0.45

(b) True Bias

Table S1: Top Eigenvalue: Median value of Bootstrap and True values of Bias, Z ∼ Normal
This tables give the median values of the boxplots plotted in Figure 1, as well as the true bias values
(*) in the plots. See figure caption for more details.

S5 Supplementary Tables
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λ1 = 1 λ1 = 1 + 3
√
r λ1 = 1 + 11

√
r λ1 = 1 + 50

√
r λ1 = 1 + 100

√
r

r = 0.01 0.23 0.22 0.12 0.06 0.05
r = 0.1 2.25 2.24 1.75 0.67 0.58
r = 0.3 6.70 6.78 6.35 2.37 1.88
r = 0.5 11.19 11.12 10.91 4.70 3.37

(a) Bootstrap Median Estimate of Bias

λ1 = 1 λ1 = 1 + 3
√
r λ1 = 1 + 11

√
r λ1 = 1 + 50

√
r λ1 = 1 + 100

√
r

r = 0.01 0.49 0.27 0.12 0.06 0.01
r = 0.1 3.34 2.39 1.10 0.54 0.75
r = 0.3 9.17 7.57 4.10 1.92 1.69
r = 0.5 14.93 12.76 8.08 3.69 3.45

(b) True Bias

Table S2: Top Eigenvalue: Median value of Bootstrap and True values of Bias, Z ∼ Ellip Exp
This tables give the median values of the boxplots plotted in Figure 1, as well as the true bias values
(*) in the plots. See figure caption for more details.

λ1 = 1 λ1 = 1 + 3
√
r λ1 = 1 + 11

√
r λ1 = 1 + 50

√
r λ1 = 1 + 100

√
r

r = 0.01 0.16 0.13 0.05 0.03 0.03
r = 0.1 1.38 1.33 0.55 0.32 0.30
r = 0.3 4.17 4.16 2.30 1.00 0.93
r = 0.5 6.95 6.96 4.80 1.72 1.57

(a) Bootstrap Median Estimate of Bias

λ1 = 1 λ1 = 1 + 3
√
r λ1 = 1 + 11

√
r λ1 = 1 + 50

√
r λ1 = 1 + 100

√
r

r = 0.01 0.32 0.13 0.05 0.04 0.07
r = 0.1 1.65 0.83 0.41 0.35 0.13
r = 0.3 4.14 2.52 1.20 0.78 0.92
r = 0.5 6.57 4.45 2.01 1.64 1.76

(b) True Bias

Table S3: Top Eigenvalue: Median value of Bootstrap and True values of Bias, Z ∼ Ellip Norm
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λ1 = 1 λ1 = 1 + 3
√
r λ1 = 1 + 11

√
r λ1 = 1 + 50

√
r λ1 = 1 + 100

√
r

r = 0.01 0.09 0.05 0.02 0.01 0.01
r = 0.1 0.55 0.34 0.17 0.14 0.13
r = 0.3 1.56 1.07 0.49 0.40 0.39
r = 0.5 2.64 1.96 0.82 0.67 0.65

(a) Bootstrap Median Estimate of Bias

λ1 = 1 λ1 = 1 + 3
√
r λ1 = 1 + 11

√
r λ1 = 1 + 50

√
r λ1 = 1 + 100

√
r

r = 0.01 0.20 0.05 0.02 0.00 0.02
r = 0.1 0.83 0.27 0.16 0.12 0.22
r = 0.3 1.66 0.62 0.45 0.45 0.28
r = 0.5 2.33 0.98 0.72 0.63 0.63

(b) True Bias

Table S4: Top Eigenvalue: Median value of Bootstrap and True values of Bias, Z ∼ Ellip
Uniform

λ1 = 1 λ1 = 1 + 3
√
r λ1 = 1 + 11

√
r λ1 = 1 + 50

√
r λ1 = 1 + 100

√
r

r = 0.01 1.69 1.03 1.04 0.98 1.03
r = 0.1 4.35 1.07 1.09 0.96 0.95
r = 0.3 19.88 1.48 1.12 1.03 1.06
r = 0.5 60.27 2.21 1.16 1.00 1.02

(a) Z ∼ Normal

λ1 = 1 λ1 = 1 + 3
√
r λ1 = 1 + 11

√
r λ1 = 1 + 50

√
r λ1 = 1 + 100

√
r

r = 0.01 1.67 1.64 1.05 0.72 0.74
r = 0.1 2.53 2.88 3.13 0.99 0.87
r = 0.3 3.25 3.29 4.22 1.34 0.87
r = 0.5 3.02 2.96 2.84 1.82 1.05

(b) Z ∼ Ellip Exp

λ1 = 1 λ1 = 1 + 3
√
r λ1 = 1 + 11

√
r λ1 = 1 + 50

√
r λ1 = 1 + 100

√
r

r = 0.01 2.07 1.51 0.98 0.98 0.92
r = 0.1 8.98 8.33 2.01 0.96 1.03
r = 0.3 10.27 11.37 6.63 1.12 0.95
r = 0.5 9.78 10.87 11.76 1.20 1.05

(c) Z ∼ Ellip Norm

λ1 = 1 λ1 = 1 + 3
√
r λ1 = 1 + 11

√
r λ1 = 1 + 50

√
r λ1 = 1 + 100

√
r

r = 0.01 1.76 1.05 1.00 0.97 0.92
r = 0.1 7.17 1.51 1.11 1.08 0.99
r = 0.3 35.38 4.66 1.21 0.94 1.07
r = 0.5 84.48 10.72 1.30 1.04 0.99

(d) Z ∼ Ellip Uniform

Table S5: Top Eigenvalue: Median value of ratio of bootstrap estimate of variance to true
variance for n = 1000 This tables give the median values of the boxplots plotted in Figure 1.
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Percentile Normal
λ1 = 1 λ1 = 3

√
r λ1 = 11

√
r λ1 = 50

√
r λ1 = 100

√
r λ1 = 1 λ1 = 3

√
r λ1 = 11

√
r λ1 = 50

√
r λ1 = 100

√
r

r = 0.01 0.00 0.71 0.94 0.94 0.95 0.36 0.92 0.95 0.94 0.95
r = 0.1 0.00 0.00 0.78 0.94 0.95 0.00 0.89 0.96 0.94 0.95
r = 0.3 0.00 0.00 0.39 0.94 0.96 0.04 0.84 0.96 0.95 0.96
r = 0.5 0.00 0.00 0.16 0.90 0.94 1.00 0.73 0.96 0.96 0.95

(a) Z ∼ Normal

Percentile Normal
λ1 = 1 λ1 = 3

√
r λ1 = 11

√
r λ1 = 50

√
r λ1 = 100

√
r λ1 = 1 λ1 = 3

√
r λ1 = 11

√
r λ1 = 50

√
r λ1 = 100

√
r

r = 0.01 0.00 0.30 0.94 0.92 0.92 0.99 0.99 0.95 0.91 0.90
r = 0.1 0.00 0.00 0.20 0.95 0.94 1.00 1.00 1.00 0.94 0.93
r = 0.3 0.00 0.00 0.00 0.90 0.94 1.00 1.00 1.00 0.95 0.94
r = 0.5 0.00 0.00 0.00 0.82 0.95 1.00 1.00 1.00 0.98 0.96

(b) Z ∼ Ellip Exp

Percentile Normal
λ1 = 1 λ1 = 3

√
r λ1 = 11

√
r λ1 = 50

√
r λ1 = 100

√
r λ1 = 1 λ1 = 3

√
r λ1 = 11

√
r λ1 = 50

√
r λ1 = 100

√
r

r = 0.01 0.00 0.39 0.93 0.95 0.94 0.88 0.96 0.94 0.95 0.95
r = 0.1 0.00 0.00 0.52 0.94 0.95 1.00 1.00 0.98 0.94 0.94
r = 0.3 0.00 0.00 0.01 0.93 0.94 1.00 1.00 1.00 0.95 0.95
r = 0.5 0.00 0.00 0.00 0.89 0.94 1.00 1.00 1.00 0.97 0.96

(c) Z ∼ Ellip Norm

Percentile Normal
λ1 = 1 λ1 = 3

√
r λ1 = 11

√
r λ1 = 50

√
r λ1 = 100

√
r λ1 = 1 λ1 = 3

√
r λ1 = 11

√
r λ1 = 50

√
r λ1 = 100

√
r

r = 0.01 0.00 0.62 0.94 0.94 0.94 0.53 0.92 0.95 0.94 0.93
r = 0.1 0.00 0.00 0.75 0.96 0.95 0.15 0.88 0.96 0.95 0.95
r = 0.3 0.00 0.00 0.33 0.92 0.95 1.00 0.73 0.97 0.94 0.94
r = 0.5 0.00 0.00 0.10 0.93 0.94 1.00 0.59 0.96 0.95 0.95

(d) Z ∼ Ellip Uniform

Table S6: Top Eigenvalue: Median value of 95% CI Coverage of true λ1 for n = 1000. This tables give the percentage of CI intervals (out of
1,000 simulations) that cover the true λ1 as plotted in Figure 3.
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Percentile Normal
λ1 = 1 λ1 = 3

√
r λ1 = 11

√
r λ1 = 50

√
r λ1 = 100

√
r λ1 = 1 λ1 = 3

√
r λ1 = 11

√
r λ1 = 50

√
r λ1 = 100

√
r

r = 0.01 0.00 0.00 0.00 0.00 0.00 0.36 0.00 0.00 0.00 0.00
r = 0.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
r = 0.3 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00
r = 0.5 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00

(a) Z ∼ Normal

Percentile Normal
λ1 = 1 λ1 = 3

√
r λ1 = 11

√
r λ1 = 50

√
r λ1 = 100

√
r λ1 = 1 λ1 = 3

√
r λ1 = 11

√
r λ1 = 50

√
r λ1 = 100

√
r

r = 0.01 0.00 0.00 0.00 0.00 0.00 0.99 0.92 0.04 0.00 0.00
r = 0.1 0.00 0.00 0.00 0.00 0.00 1.00 1.00 0.73 0.00 0.00
r = 0.3 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.01 0.00
r = 0.5 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.04 0.00

(b) Z ∼ Ellip Exp

Percentile Normal
λ1 = 1 λ1 = 3

√
r λ1 = 11

√
r λ1 = 50

√
r λ1 = 100

√
r λ1 = 1 λ1 = 3

√
r λ1 = 11

√
r λ1 = 50

√
r λ1 = 100

√
r

r = 0.01 0.00 0.00 0.00 0.00 0.00 0.88 0.47 0.00 0.00 0.00
r = 0.1 0.00 0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00
r = 0.3 0.00 0.00 0.00 0.00 0.00 1.00 1.00 0.21 0.00 0.00
r = 0.5 0.00 0.00 0.00 0.00 0.00 1.00 1.00 0.77 0.00 0.00

(c) Z ∼ Ellip Norm

Percentile Normal
λ1 = 1 λ1 = 3

√
r λ1 = 11

√
r λ1 = 50

√
r λ1 = 100

√
r λ1 = 1 λ1 = 3

√
r λ1 = 11

√
r λ1 = 50

√
r λ1 = 100

√
r

r = 0.01 0.00 0.00 0.00 0.00 0.00 0.53 0.01 0.00 0.00 0.00
r = 0.1 0.00 0.00 0.00 0.00 0.00 0.15 0.00 0.00 0.00 0.00
r = 0.3 0.00 0.00 0.00 0.00 0.00 1.00 0.01 0.00 0.00 0.00
r = 0.5 0.00 0.00 0.00 0.00 0.00 1.00 0.37 0.00 0.00 0.00

(d) Z ∼ Ellip Uniform

Table S7: Top Eigenvalue: Median value of 95% CI Coverage of null value 1 for n = 1000. This tables give the percentage of CI intervals (out
of 1,000 simulations) that cover the value λ1 = 1 for different values of the true λ1.
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λ1 = 1 λ1 = 1 + 3
√
r λ1 = 1 + 11

√
r λ1 = 1 + 50

√
r λ1 = 1 + 100

√
r

r = 0.01 0.03 -0.02 -0.05 -0.06 -0.06
r = 0.1 0.05 -0.17 -0.28 -0.30 -0.31
r = 0.3 0.10 -0.41 -0.67 -0.72 -0.73
r = 0.5 0.18 -0.61 -1.08 -1.17 -1.18

(a) Bootstrap Median Estimate of Bias

λ1 = 1 λ1 = 1 + 3
√
r λ1 = 1 + 11

√
r λ1 = 1 + 50

√
r λ1 = 1 + 100

√
r

r = 0.01 0.05 -0.12 -0.14 -0.14 -0.15
r = 0.1 0.04 -0.49 -0.58 -0.58 -0.58
r = 0.3 0.05 -0.88 -1.01 -1.08 -0.98
r = 0.5 0.05 -1.15 -1.33 -1.40 -1.43

(b) True Bias

Table S8: Gap Statistic: Median value of Bootstrap and True values of Bias, Z ∼ Normal

λ1 = 1 λ1 = 1 + 3
√
r λ1 = 1 + 11

√
r λ1 = 1 + 50

√
r λ1 = 1 + 100

√
r

r = 0.01 0.14 0.13 -0.04 -0.12 -0.14
r = 0.1 0.93 0.92 0.40 -1.33 -1.47
r = 0.3 2.74 2.76 2.54 -3.50 -4.27
r = 0.5 4.56 4.44 4.41 -4.82 -6.76

(a) Bootstrap Median Estimate of Bias

λ1 = 1 λ1 = 1 + 3
√
r λ1 = 1 + 11

√
r λ1 = 1 + 50

√
r λ1 = 1 + 100

√
r

r = 0.01 0.19 -0.07 -0.30 -0.37 -0.41
r = 0.1 0.85 -0.11 -1.88 -2.63 -2.41
r = 0.3 2.32 0.64 -3.51 -6.70 -7.02
r = 0.5 3.76 1.71 -3.74 -10.42 -11.33

(b) True Bias

Table S9: Gap Statistic: Median value of Bootstrap and True values of Bias, Z ∼ Ellip Exp
This tables give the median values of the boxplots plotted in Figure 1, as well as the true bias values
(*) in the plots. See figure caption for more details.
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λ1 = 1 λ1 = 1 + 3
√
r λ1 = 1 + 11

√
r λ1 = 1 + 50

√
r λ1 = 1 + 100

√
r

r = 0.01 0.08 0.05 -0.07 -0.10 -0.11
r = 0.1 0.44 0.42 -0.66 -0.99 -1.02
r = 0.3 1.28 1.29 -1.00 -2.99 -3.10
r = 0.5 2.10 2.11 -0.34 -4.94 -5.17

(a) Bootstrap Median Estimate of Bias

λ1 = 1 λ1 = 1 + 3
√
r λ1 = 1 + 11

√
r λ1 = 1 + 50

√
r λ1 = 1 + 100

√
r

r = 0.01 0.11 -0.13 -0.24 -0.25 -0.23
r = 0.1 0.21 -0.70 -1.22 -1.28 -1.51
r = 0.3 0.56 -1.11 -2.83 -3.25 -3.13
r = 0.5 0.95 -1.21 -4.35 -4.80 -4.70

(b) True Bias

Table S10: Gap Statistic: Median value of Bootstrap and True values of Bias, Z ∼ Ellip Norm

λ1 = 1 λ1 = 1 + 3
√
r λ1 = 1 + 11

√
r λ1 = 1 + 50

√
r λ1 = 1 + 100

√
r

r = 0.01 0.03 -0.02 -0.06 -0.07 -0.07
r = 0.1 0.08 -0.17 -0.37 -0.41 -0.41
r = 0.3 0.24 -0.30 -1.04 -1.14 -1.15
r = 0.5 0.43 -0.28 -1.77 -1.94 -1.96

(a) Bootstrap Median Estimate of Bias

λ1 = 1 λ1 = 1 + 3
√
r λ1 = 1 + 11

√
r λ1 = 1 + 50

√
r λ1 = 1 + 100

√
r

r = 0.01 0.06 -0.12 -0.16 -0.17 -0.17
r = 0.1 0.05 -0.55 -0.66 -0.70 -0.60
r = 0.3 0.06 -1.02 -1.20 -1.20 -1.37
r = 0.5 0.07 -1.34 -1.60 -1.70 -1.69

(b) True Bias

Table S11: Gap Statistic: Median value of Bootstrap and True values of Bias, Z ∼ Ellip
Uniform
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λ1 = 1 λ1 = 1 + 3
√
r λ1 = 1 + 11

√
r λ1 = 1 + 50

√
r λ1 = 1 + 100

√
r

r = 0.01 2.05 1.08 1.14 0.98 1.03
r = 0.1 4.23 1.23 1.15 0.96 0.96
r = 0.3 13.33 1.62 1.25 1.03 1.06
r = 0.5 40.50 1.72 1.42 1.02 1.02

(a) Z ∼ Normal

λ1 = 1 λ1 = 1 + 3
√
r λ1 = 1 + 11

√
r λ1 = 1 + 50

√
r λ1 = 1 + 100

√
r

r = 0.01 2.12 2.00 1.02 0.72 0.73
r = 0.1 2.73 3.11 2.77 1.11 0.89
r = 0.3 3.32 3.68 5.25 1.30 0.94
r = 0.5 3.24 3.09 2.91 1.52 1.13

(b) Z ∼ Ellip Exp

λ1 = 1 λ1 = 1 + 3
√
r λ1 = 1 + 11

√
r λ1 = 1 + 50

√
r λ1 = 1 + 100

√
r

r = 0.01 2.67 1.68 1.11 0.99 0.91
r = 0.1 12.22 10.60 1.92 1.01 1.02
r = 0.3 11.52 14.83 3.22 1.44 0.97
r = 0.5 11.07 12.41 5.36 1.67 1.15

(c) Z ∼ Ellip Norm

λ1 = 1 λ1 = 1 + 3
√
r λ1 = 1 + 11

√
r λ1 = 1 + 50

√
r λ1 = 1 + 100

√
r

r = 0.01 2.19 1.07 1.08 0.97 0.92
r = 0.1 8.14 1.31 1.23 1.08 0.99
r = 0.3 47.97 2.72 1.67 0.95 1.07
r = 0.5 111.75 6.25 2.22 1.09 0.99

(d) Z ∼ Ellip Uniform

Table S12: Gap Statistic: Median value of ratio of bootstrap estimate of variance to true
variance for n = 1000 This tables give the median values of the boxplots plotted in Supplemen-
taryFigure S8.
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Percentile Normal
λ1 = 1 λ1 = 3

√
r λ1 = 11

√
r λ1 = 50

√
r λ1 = 100

√
r λ1 = 1 λ1 = 3

√
r λ1 = 11

√
r λ1 = 50

√
r λ1 = 100

√
r

r = 0.01 0.00 0.44 0.53 0.87 0.93 0.90 0.61 0.85 0.91 0.93
r = 0.1 0.00 0.00 0.02 0.77 0.90 0.97 0.15 0.69 0.92 0.95
r = 0.3 0.00 0.00 0.00 0.71 0.89 1.00 0.14 0.84 0.93 0.96
r = 0.5 0.00 0.00 0.00 0.65 0.87 1.00 0.21 0.95 0.95 0.95

(a) Z ∼ Normal

Percentile Normal
λ1 = 1 λ1 = 3

√
r λ1 = 11

√
r λ1 = 50

√
r λ1 = 100

√
r λ1 = 1 λ1 = 3

√
r λ1 = 11

√
r λ1 = 50

√
r λ1 = 100

√
r

r = 0.01 0.00 1.00 0.75 0.81 0.85 1.00 0.79 0.76 0.86 0.87
r = 0.1 0.00 1.00 0.92 0.58 0.76 1.00 0.97 0.63 0.88 0.90
r = 0.3 0.00 1.00 1.00 0.47 0.62 1.00 1.00 0.75 0.86 0.90
r = 0.5 0.00 1.00 1.00 0.45 0.57 1.00 1.00 0.86 0.83 0.90

(b) Z ∼ Ellip Exp

Percentile Normal
λ1 = 1 λ1 = 3

√
r λ1 = 11

√
r λ1 = 50

√
r λ1 = 100

√
r λ1 = 1 λ1 = 3

√
r λ1 = 11

√
r λ1 = 50

√
r λ1 = 100

√
r

r = 0.01 0.00 1.00 0.64 0.86 0.91 0.96 0.59 0.83 0.91 0.93
r = 0.1 0.00 1.00 0.12 0.65 0.82 1.00 0.42 0.85 0.94 0.93
r = 0.3 0.00 1.00 0.45 0.42 0.72 1.00 0.83 0.81 0.97 0.95
r = 0.5 0.00 1.00 0.91 0.31 0.67 1.00 0.97 0.75 0.99 0.97

(c) Z ∼ Ellip Norm

Percentile Normal
λ1 = 1 λ1 = 3

√
r λ1 = 11

√
r λ1 = 50

√
r λ1 = 100

√
r λ1 = 1 λ1 = 3

√
r λ1 = 11

√
r λ1 = 50

√
r λ1 = 100

√
r

r = 0.01 0.00 0.57 0.53 0.87 0.92 0.92 0.61 0.83 0.92 0.93
r = 0.1 0.00 0.00 0.02 0.74 0.91 1.00 0.17 0.77 0.93 0.94
r = 0.3 0.00 0.00 0.00 0.65 0.87 1.00 0.10 0.98 0.94 0.94
r = 0.5 0.00 0.00 0.00 0.56 0.82 1.00 0.16 0.99 0.96 0.95

(d) Z ∼ Ellip Uniform

Table S13: Gap Statistic: Median value of 95% CI Coverage of true Gap for n = 1000. This tables give the percentage of CI intervals (out of
1,000 simulations) that cover the true λ1 − λ2 as plotted in Supplementary Figure S8.
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Percentile Normal
λ1 = 1 λ1 = 3

√
r λ1 = 11

√
r λ1 = 50

√
r λ1 = 100

√
r λ1 = 1 λ1 = 3

√
r λ1 = 11

√
r λ1 = 50

√
r λ1 = 100

√
r

r = 0.01 0.00 0.00 0.85 0.00 0.00 0.00 0.00 0.95 0.00 0.00
r = 0.1 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.00
r = 0.3 0.00 0.00 0.00 0.00 0.00 0.00 0.78 0.00 0.00 0.00
r = 0.5 0.00 0.01 0.00 0.00 0.00 0.00 0.12 0.00 0.00 0.00

(a) Z ∼ Normal

Percentile Normal
λ1 = 1 λ1 = 3

√
r λ1 = 11

√
r λ1 = 50

√
r λ1 = 100

√
r λ1 = 1 λ1 = 3

√
r λ1 = 11

√
r λ1 = 50

√
r λ1 = 100

√
r

r = 0.01 0.28 0.33 0.87 0.00 0.00 0.07 0.08 0.84 0.00 0.00
r = 0.1 1.00 1.00 1.00 0.00 0.00 0.95 0.95 0.96 0.01 0.00
r = 0.3 1.00 1.00 0.99 0.00 0.00 1.00 1.00 1.00 0.04 0.00
r = 0.5 0.97 0.97 0.92 0.00 0.00 1.00 1.00 1.00 0.10 0.01

(b) Z ∼ Ellip Exp

Percentile Normal
λ1 = 1 λ1 = 3

√
r λ1 = 11

√
r λ1 = 50

√
r λ1 = 100

√
r λ1 = 1 λ1 = 3

√
r λ1 = 11

√
r λ1 = 50

√
r λ1 = 100

√
r

r = 0.01 0.00 0.00 0.79 0.00 0.00 0.00 0.00 0.92 0.00 0.00
r = 0.1 1.00 1.00 0.96 0.00 0.00 0.27 0.35 0.07 0.00 0.00
r = 0.3 1.00 1.00 0.99 0.00 0.00 1.00 1.00 0.39 0.00 0.00
r = 0.5 1.00 1.00 1.00 0.00 0.00 1.00 1.00 0.78 0.00 0.00

(c) Z ∼ Ellip Norm

Percentile Normal
λ1 = 1 λ1 = 3

√
r λ1 = 11

√
r λ1 = 50

√
r λ1 = 100

√
r λ1 = 1 λ1 = 3

√
r λ1 = 11

√
r λ1 = 50

√
r λ1 = 100

√
r

r = 0.01 0.00 0.00 0.83 0.00 0.00 0.00 0.00 0.94 0.00 0.00
r = 0.1 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00
r = 0.3 0.07 0.03 0.00 0.00 0.00 0.00 0.90 0.00 0.00 0.00
r = 0.5 1.00 1.00 0.00 0.00 0.00 0.00 0.98 0.00 0.00 0.00

(d) Z ∼ Ellip Uniform

Table S14: Gap Statistic: Median value of 95% CI Coverage of null value 0 for n = 1000. This tables give the percentage of CI intervals (out of
1,000 simulations) that cover the value λ1 − λ2 = 0 for different values of the true λ1.
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