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1 Datasets with quantifiable comparisons

Fig. 1 and Fig. 2 give an example of the alignments and the
warps produced by our method on the quantifiable dataset,
see §4 in the paper. The detailed results of our experiments
on this dataset are provided in Table 1.

2 Motion capture dataset

In this experiment we use the full set of joint motions to align
a set of sports actions (see §4 for further information on the
motion capture dataset). In Fig. 3 we provide an illustration
of the power of using a generative model for alignment. New
locations in the manifold encode novel motion sequences that
are supported by the data. By allowing the model to align the
data, it greatly improves the generative power as the model
is capable of producing a wider range of plausible motions.

3 iPhone motion data

This dataset contains aerobic actions recorded using the
Inertial Measurement Unit (IMU) on a smartphone [3],
which contain high frequency variations. Unlike previous
methods [4], which require the data to be smoothed first,
our framework allows us to take into account the prior belief
about the dataset in a principled way. By replacing the
smooth RBF kernels for modeling the data with a Matérn
1/2 kernel and taking into account the periodic nature of the
actions by also including an additive periodic kernel, we are
able to model the data without the need for preprocessing.
Furthermore, by removing the smoothing prior from the
warping functions, we allow the warps to be more flexible
improving the alignment accuracy.

The alignment results for the iPhone motion data are shown
in Fig. 4. The IMU includes a 3D accelerometer, a gyroscope,
and a magnetometer, and records samples at 60 Hz. As in [4],
for our experiment we take the accelerometer data in the
x-direction for the jumping actions from subject 3, and, in
particular, we look at 5 sequences each of which contains 400
frames. A Matérn 1/2 kernel and a periodic kernel are used
to fit the sequences as they contain high frequency variations,

and we remove the smoothness constraint from the model
of the warping functions to allow them to be more flexible.

4 Shift task

A common task in functional data alignment is that of esti-
mating uniform translations of the time axis. One particular
problem described by Marron et al. is that of aligning
nuclear magnetic resonance (NMR) spectrum corresponding
to different chemical components (e.g. ethanol) for a set
of wines [2]. It is known that pH differences in wines
induce a shift in values of the components and impedes their
identification [1]. As shown by Marron et al. the alignment
may be achieved using uniform shifts and minimizing the
loss that requires sequences to be proportional to each other.
Such operation is included in our model allowing us to
perform the task of NMR spectrum alignment, and we are
able to demonstrate a separation in the phase between the
red wines and the white and rosé wines, see Fig. 5.
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Figure 1: Original inputs and aligned sequences estimated by DTW,
DDTW, IMW, CTW, GTW, SRVF, our approach and its three variants.

Figure 2: True warps and warps estimated by DTW, DDTW, IMW,
CTW, GTW, SRVF, our approach and its three variants.
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Dataset no 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Mean

J 13 10 10 7 13 6 6 12 3 10 13 8 6 10 7 5 5 14 8 3 8 11 7 6 9

T 258 157 107 246 169 131 92 144 138 298 146 240 204 213 157 230 247 196 248 277 141 153 83 285 178

PDTW 9.32 14.38 5.88 12.42 10.57 10.03 2.30 6.60 2.41 16.99 9.84 13.47 4.95 16.72 4.00 6.97 14.03 6.57 15.01 1.98 4.44 5.16 5.05 13.19 10.85 8.93

PDDTW 10.55 14.67 6.80 13.86 12.18 10.30 2.58 7.35 3.95 24.59 10.68 15.45 6.57 18.60 5.54 8.35 14.91 7.70 16.38 5.37 6.11 7.43 5.44 14.02 11.17 10.42

PIMW 26.61 19.27 13.36 24.59 21.16 14.75 6.48 22.14 5.36 38.54 18.06 26.72 16.77 28.39 9.54 22.31 21.23 22.35 27.54 11.13 12.05 18.45 9.06 30.40 16.54 19.31

PCTW 12.12 15.30 9.50 18.89 15.45 11.32 2.77 10.58 2.66 17.26 9.98 24.72 8.04 17.19 6.23 10.21 16.03 10.73 15.17 7.12 5.88 5.59 6.00 16.92 10.98 11.47

GTW 6.52 9.54 6.54 6.96 7.50 3.23 4.27 10.63 0.86 33.31 2.55 21.28 5.35 4.72 3.38 23.28 8.50 10.70 2.83 3.93 2.74 2.56 5.45 15.70 2.63 8.20

SRVF 6.74 3.41 4.73 8.06 6.94 4.14 2.14 3.34 3.10 8.65 5.13 5.33 3.57 7.37 5.78 7.02 4.87 4.71 5.54 5.12 3.82 4.55 2.22 4.53 7.04 5.11

energy+basis 9.91 5.08 4.69 6.12 6.89 3.06 2.10 5.33 0.98 14.45 6.64 6.57 2.10 10.38 2.74 3.83 5.13 7.94 5.67 1.37 4.42 5.79 2.12 5.00 4.88 5.33

gplvm+basis 5.85 3.09 2.98 5.29 3.65 2.24 1.31 3.53 0.87 1.85 3.67 3.68 1.49 5.58 1.58 3.55 3.69 2.13 3.12 1.22 3.20 3.59 1.35 1.72 1.90 2.88

energy+gplvm 6.80 2.45 3.29 6.35 5.31 2.58 1.39 3.23 0.97 4.54 2.97 4.34 2.79 3.37 3.16 3.22 4.12 3.48 2.64 2.07 3.94 2.69 2.20 2.18 2.65 3.31

ours 4.39 4.55 1.79 1.93 2.34 1.91 1.23 4.68 0.84 3.49 2.11 4.94 3.47 3.14 1.40 3.03 2.01 2.57 2.10 1.48 2.20 1.93 1.31 2.87 2.11 2.55

Table 1: Datasets used for our evaluation where J and T refer to the number of sequences and dimensionality. Results are presented as
MSE of warpings. The summary of the results presented in this table is given in Fig. 3 in the paper.

Figure 3: An advantage of our approach is that it not only aligns the data but is also a generative probabilistic model. Here we show novel
sequences generated at new locations in the manifold. The black dots indicate the embedded locations of the training sequences. We note
that, while we have only shown still images, each manifold location describes an entire time series. A video showing this is included with
the supplementary material.
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Figure 4: The top row shows the observed data and the fitted Gaussian Processes. The bottom row shows the corresponding warps (left)
and the aligned functions.

Figure 5: Alignment of NMR spectrum data [2]. The zoom of the warping functions show the separation of the white/rosé wines (shown
in blue) and red wines (shown in red).
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