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1 Definitions

Definition 1 (Informative metric). Given (X, d), a
clustering C∗ and a parameter λ. We say that the
metric d is (α, β)-informative w.r.t C∗ and λ if

P
(x,y)∼U2

[
d(x, y) > λ | C∗(x, y) = 1

]
≤ α (1)

P
(x,y)∼U2

[
C∗(x, y) = 1 | d(x, y) ≤ λ

]
≥ β (2)

Here U2 is the uniform distribution over X [2].

2 Hardness of PCC in the presence of
an oracle

Theorem 2. Given that the Exponential Time Hy-
pothesis (ETH) holds then any algorithm for the
Promise Correlation Clustering problem that runs in
polynomial time makes Ω(|X|) same-cluster queries for
all M ≥ 3 and for α = 0 and β = 1

2 .

The exponential time hypothesis says that any solver
for 3-SAT runs in 2o(m) time (where m is the number
of clauses in the 3-SAT formula). We use a reduction
from 3-SAT to 3DM to X3C to show that the exact
cover by 3-sets (X3C) problem also can’t be solved in
2o(m) time (if ETH holds). Then, using the reduction
from the previous section implies that PCC also can’t
be solved in 2o(n) time. Thus, any query based al-
gorithm for PCC needs to make atleast Ω(n) queries
where n = |X| is the number of vertices in the graph.

Definition 3 (3-SAT). .
Input: A boolean formulae φ in 3CNF with n literals
and m clauses. Each clause has exactly three literals.
Output: YES if φ is satisfiable, NO otherwise.

Exponential Time Hypothesis
There does not exist an algorithm which decides 3-SAT
and runs in 2o(m) time.

Definition 4 (3DM). .
Input: Sets W,X and Y and a set of matches M ⊆
W ×X × Y of size m.
Output: YES if there exists M ′ ⊆ M such that each
element of W,X, Y appears exactly once in M ′. NO
otherwise.

To prove that (X3C) is NP-Hard, the standard We
will reduce 3-SAT to 3-dimensional matching problem.
3DM is already known to be NP-Hard. However, the
standard reduction of 3-SAT to 3DM constructs a set
with |M | ∈ Θ(m2n2). Hence, using the standard re-
duction, the exponential time hypothesis would imply
there does not exist an algorithm for 3DM which runs
in Ω(m

1
4 ). Our reduction is based on the standard re-

duction. However, we make some clever optimizations
especially in the way we encode the clauses. This helps
us improve the lower bound to Ω(m).
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Figure 1: Part of graph G constructed for the literal
x1. The figure is an illustration for when x1 is part
of four different clauses. The triangles (or hyper-edge)
(ai, bi, ci) capture the case when x1 is true and the
other triangle (bi, c

′
i, ai+1) captures the case when x1

is false. Assuming that a clause Cj = {x1, x2, x3},
the hyper-edges containing tfi, tf

′
i and t1, t

′
1 capture

different settings. The hyper-edges containing t1, t
′
1

ensure that atleast one of the literals in the clause is
true. The other two ensure that two variables can take
either true or false values.

Our gadget is described in Fig. 1. For each literal xi,
let mi be the number of clauses in which the the literal
is present. We construct a “truth-setting” component
containing 2mi hyper-edges (or triangles). We add the
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following hyper-edges to M .

{(ak[i], bk[i], ck[i]) : 1 ≤ k ≤ mi}
∪ {(ak+1[i], bk[i], c′k[i]) : 1 ≤ k ≤ mi}

Note that one of (ak, bk, ck) or (ak+1, bk, c
′
k) have to

be selected in a matching M ′. If the former is selected
that corresponds to the variable xi being assigned true,
the latter corresponds to false. This part is the same
as the standard construction.

For every clause Cj = {x1, x2, x3} we add three types
of hyper-edges. The first type ensures that atleast one
of the literals is true.

{(ck[i], t1[j], t′1[j]) : x′i ∈ Cj}∪{(c′k[i], t1[j], t′1[j]) : xi ∈ Cj}

The other two types of hyper-edges (conected to the
tfi’s) say that two of the literals can be either true or
false. Hence, we connect them to both ck and c′k

{(ck[i], tf1[j], tf ′1[j]) : x′i or xi ∈ Cj}
∪ {(ck[i], tf2[j], tf ′2[j]) : xi or x′i ∈ Cj}
∪ {(c′k[i], tf1[j], tf ′1[j]) : x′i or xi ∈ Cj}
∪ {(c′k[i], tf2[j], tf ′2[j]) : xi or x′i ∈ Cj}

Note that in the construction k refers to the index of
the clause Cj in the truth-setting component corre-
sponding to the literal xi. Using the above construc-
tion, we get that

W = {ck[i], c′k[i]}
X = {ak[i]} ∪ {t1[j], tf1[j], tf2[j]}
Y = {bk[i]} ∪ {t′1[j], tf ′1[j], tf ′2[j]}

Hence, we see that |W | = 2
∑
imi = 6m. Now,

|X| = |Y | =
∑
imi + 3m = 6m. And, we have that

|M | = 2
∑
imi + 15m = 21m. Thus, we see that this

construction is linear in the number of clauses.

Now, if the 3-SAT formula φ is satisfiable then
there exists a matching M ′ for the 3DM problem.
If a variable xi = T in the assignment then add
(ck[i], ak[i], bk[i]) to M ′ else add (c′k[i], ak+1[i], bk[i]).
For every clause Cj , let xi (or x′i) be the variable which
is set to true in that clause. Add (c′k[i], t1[j], t′1[j])
(or (ck[i], t1[j], t′1[j])) to M ′. For the remaining two
clauses, add the hyper-edges containing tf1[j] and
tf2[j] depending upon their assignments. Clearly, M ′

is a matching.

Now, the proof for the other direction is similar. If
there exists a matching, then one of (ak, bk, ck) or
(ak+1, bk, c

′
k) have to be selected in a matching M ′.

This defines a truth assignment of the variables. Now,
the construction of the clause hyper-edges ensures that
every clause is satisfiable.

Theorem 5. If the exponential time hypothesis holds
then there does not exist an algorithm which decides
the three dimensional matching problem 3DM and runs
in time 2o(m).

Corollary 6. If the exponential time hypothesis holds
then there does not exist an algorithm which decides
exact cover by 3-sets problem (X3C) and runs in time
2o(m).

Hence, from the discussion in this section, we know
that X3C is not only NP-Hard but the running time is
lower bounded by Ω(2m). Now, using the same reduc-
tion of X3C to PCC as before, gives the same lower
bound on the running time of PCC. Using this, we
can now lower bound the number of queries required
by PCC.

For the sake of contradiction, let us assume that there
exists an algorithm which solves PCC in polynomial
time by making o(n) same-cluster queries (n is the
number of vertices). Then by simulating all possible
answers for the oracle, we get a non-query algorithm
which solves PCC in 2o(n). However, combining Cor.
6 with the reduction of X3C to PCC, we get that any
algorithm that solves PCC takes Ω(2n). Hence, no
such query algorithm exists.

3 Sampling positive pairs

Lemma 7. Given set (X, d), a C∗-oracle and param-
eter λ. Let d be (α, β)-informative w.r.t λ and C∗.
Then the sampling procedure P1 induces a distribution
T over X [2] such that for any labelling function h over
X [2] we have that∣∣∣ P
(x,y)∼P+

[
h(x, y) = 0]− P

(x,y)∼T

[
h(x, y) = 0]

∣∣∣ ≤ 2α.

Proof. Let K = {(x, y) : d(x, y) ≤ λ} and D be a dis-

tribution over K defined by D(x, y) := |Sx|∑
x′ |Sx′ |

. 1
|Sx| =

U2(x,y)
U2(K) . Let K+ = {(x, y) : d(x, y) ≤ λ and C∗(x, y) =

1}. Let T be the distribution induced by P1. It’s
easy to see that for (x, y) 6∈ K+, T (x, y) = 0. For
(x, y) ∈ K+, let D(x, y) = p and D(K+) = q. Then,

T (x, y) = p + (1 − q)p + . . . = p
q = D(x,y)

D(K+) = U2(x,y)
U2(K+) .

Using Defn. 1, we know that

1− α ≤ P
(x,y)∼U2

[d(x, y) ≤ λ | C∗(x, y) = 1]

=

P
(x,y)∼U2

[d(x, y) ≤ λ,C∗(x, y) = 1]

P
(x,y)∼U2

[C∗(x, y) = 1]
=

U2(K+)

U2(X [2]+)

(3)

Now, we will use the above inequality to prove our
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result.

P
(x,y)∼T

[
h(x, y) = 0] =

∑
(x,y)∈K+

T (x, y)1h(x,y)=0

=
∑

(x,y)∈K+

U2(x, y)

U2(K+)
1h(x,y)=0

≤ 1

1− α
∑

(x,y)∈K+

U2(x, y)

U2(X [2]+)
1h=0

≤ (1 + 2α)
∑

(x,y)∈X2
+

P+(x, y)1h(x,y)=0

= (1 + 2α) P
(x,y)∼P+

[
h(x, y) = 0]

Now, for the other direction, we have that

P
(x,y)∼P+

[
h(x, y) = 0] =

∑
(x,y):X[2]+

P+(x, y)1h(x,y)=0

=
∑

(x,y)∈K+

U2(x, y)

U2(X [2]+)
1h(x,y)=0

+
∑

(x,y)∈X2
+\K+

U2(x, y)

U2(X [2]+)
1h=0

≤
∑

(x,y)∈K+

U2(x, y)

U2(K+)
1h(x,y)=0

+
∑

(x,y)∈X[2]+\K+

U2(x, y)

U2(X [2]+)
1h=0

≤ P
(x,y)∼T

[
h(x, y) = 0] +

∑
(x,y)∈X[2]+\K+

U2(x, y)

U2(X [2]+)

≤ P
(x,y)∼T

[
h(x, y) = 0] + α

Hence, we have shown that both the directions hold
and this completes the proof of the lemma. Note
that this shows that our sampling procedure approx-
imates the distribution P+. It is easy to see that
pre-computing Sx for all x takes |X|2 time. Once the
pre-computation is done, the sampling can be done in
constant time.

4 Sample and query complexity of
RCC

Theorem 8. Given metric space (X, d), a class of
clusterings F and a threshold parameter λ. Given
ε, δ ∈ (0, 1) and a C∗-oracle. Let d be (α, β)-
informative and X be γ-skewed w.r.t λ and C∗. Let
A be the ERM-based approach as described in Alg. ??
and Ĉ be the output of A. If

m−,m+ ≥ a
VC-Dim(F) + log( 2

δ )

ε2
(4)

where a is a global constant then with probability atleast
1−δ (over the randomness in the sampling procedure),
we have that

LC∗(Ĉ) ≤ min
C∈F

LC∗(C) + 3α+ ε

Proof. Let T0 be the distribution induced by P0 and
T1 be the distribution induced by P1. Denote by
E(h) = P

(x,y)∼P+

[
h(x, y) = 0] and by G(h) =

P
(x,y)∼P−

[
h(x, y) = 1].

Using Thm. 16, we know that if m+ >

a
VC-Dim(F)+log( 1

δ )

ε2 then with probability atleast 1− δ,
we have that for all h

|Ê(h)− P
(x,y)∼T1

[h(x, y) = 0]| ≤ ε

=⇒ Ê(h) ≤ ε+ P
(x,y)∼T1

[h(x, y) = 0] ≤ ε+ 2α+ E(h) and

E(h)− 2α− ε ≤ Ê(h) (5)

Note that we obtain upper and lower bounds for
P

(x,y)∼T1

[h(x, y) = 0] using Lemma 7. Similarly, if

m− > a
VC-Dim(F)+log( 1

δ )

ε2 , then with probability atleast
1− δ, we have that for all h,

|Ĝ(h)− P
(x,y)∼T0

[h(x, y) = 1]| ≤ ε

=⇒ Ĝ(h) ≤ ε+G(h) and G(h)− ε ≤ Ĝ(h) (6)

Combining Eqns. 5 and 6, we get that with probability
atleast 1− 2δ, we have that for all C ∈ F

L̂(C) ≤ µ[ε+ E(h) + 2α] + (1− µ)(ε+G(h))

≤ L(h) + ε+ 2α

And L̂(C) ≥ µ(E(h)− ε− α) + (1− µ)(G(h)− ε)
≥ L(h)− ε− α

Now, let Ĉ be the output of A and let Ĉ∗ be
arg minC∈F L(C). Then, we have that with proba-
bility atleast 1− 2δ

L(Ĉ) ≤ L̂(Ĉ) + α+ ε ≤ L̂(Ĉ∗) + α+ ε ≤ L(Ĉ∗) + 2ε+ 3α

Choosing ε = ε
2 and δ = δ

2 throughout gives the result
of the theorem.

Theorem 9. [Query Complexity] Let the framework
be as in Thm. 8. With probability atleast 1 − exp

(
−

ν2m−
4 )−exp

(
− ν2m+

4

)
over the randomness in the sam-

pling procedure, the number of same-cluster queries q
made by A is

q ≤ (1 + ν)

(
m−

(1− γ)
+
m+

β

)
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Proof. Let q+ denote the number queries to sample
the set S+. We know that E[q+] ≤ 1

β . Given that the
expectation is bounded as above, using Thm. 17, we

get that q+ ≤ (1+ν)m+

β(1−ε) with probability atleast 1 −

exp(−ν
2m+

4 ). Similarly, we get that with probability

atleast 1− exp(−ν
2m−
4 ), q− ≤ (1+ν)m−

(1−γ) .

4.1 VC-dimension of common classes

Theorem 10. Given a finite set X and a finite class
F = {C1, . . . , Cs} of clusterings of X .

VC-Dim(lF ) ≤ g(s)

where g(s) is the smallest integer n such that B√n ≥ s
where Bi is the ith bell number [A000108, ].

Proof. Let n be as defined in the statement of the the-
orem. Let M2 ⊆ X 2 be a set of size > n. Define
M := {x : (x, y) ∈ M2 or (y, x) ∈ M2}. We know
that |M | >

√
n. The number of clusterings (parti-

tions) on n elements is given by the nth bell number.
Thus, for s ≤ B√n there exists a clustering C ′ 6∈ F
of the set X . Hence, lF can’t shatter any set of size
> n.

Lemma 11. Let X be a finite set, S ⊆ X be a set of n
points and T be any hierarchical clustering tree of X .
There exists a set C = {C1, . . . , Cs} where each Ci is
a clustering of S with the following properties

• |C| ≥ n!
bn/2c! 2bn/2c

• T contains atmost one clustering from C.

Proof. Consider clusterings Ci of S of the following
type. Each cluster in Ci contains exactly two points
(except possibly one cluster which contains one point
if n is odd). One such clustering along with a tree T is
shown in Fig. 2. Let C be the set of all such clusterings
Ci. The number of such clusterings |C| is

n!

2
n−1
2

n−1
2 !

n is odd

n!

2
n
2
n
2 !

n is even

=
n!

2b
n
2 c(bn2 c)!

For the sake of contradiction, assume that T is a hier-
archical clustering tree T of X which contains Ci and
Cj . Since Ci 6= Cj , there exists points s1, s2 and s3
such that the following happens. (i) s1, s2 are in the
same cluster in Ci. s2, s3 as well as s1, s3 are in differ-
ent clusters in Ci. (ii) s1, s3 are in the same cluster in
Cj . s2, s3 as well as s1, s2 are in different clusters in
Cj .

Ci

Figure 2: A hierarchical clustering tree of n = 9 points.
This tree contains the clustering Ci described in the
proof of Lemma 11.

Now, T contains Ci. Hence, there exists a node v such
that s1, s2 ∈ C(v) but s3 6∈ C(v). T also contains
Cj . Hence, there exists a node u such that s1, s3 ∈
C(u) and s2 6∈ C(u). Both u and v contain the point
s1. Hence, either u is a descendant of v or the other
way around. Observe that s2 ∈ C(v) but s2 6∈ C(u).
Hence, v is not a descendant of u. Similarly, s3 ∈ C(u)
and s3 6∈ C(v) so u is not a descendant of v. This leads
to a contradiction. Hence, no such tree T can exist.

Theorem 12. Given a finite set X and a finite class
F = {T1, . . . , Ts} where each Ti is a hierarchical clus-
tering over X . Then

VC-Dim(F) ≤ g(s)

where g(s) is the smallest integer n such that√
n!

b
√
n/2c! 2b

√
n/2c ≥ s

Proof. Let n be as defined in the statement of the the-
orem. Let M2 ⊆ X 2 be a set of size > n2. Define
M := {x : (x, y) ∈M2 or (y, x) ∈M2}. We know that
|M | > n. Using lemma 11, there exists a set of clus-
terings C = {C1, . . . , Cs′} of size s′ > n!

bn/2c! 2bn/2c
≥ s

such that each Ti ∈ F contains atmost one Cj ∈ C.
Thus, there exists a clustering Cj which is not cap-
tured by any Ti ∈ F . Hence, lF can’t shatter any set
of size > n2.
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A Technical lemmas and theorems

Theorem 13 (Multiplicative Chernoff bound
[Mitzenmacher and Upfal, 2005]). Let X1, . . . , Xn be
i.i.d random variables in {0, 1} such that µ = E[Xi].

Let X =
∑
Xi
n . Then for any 0 < ε < 1

P
[
X > (1 + ε)µ

]
≤ exp

(
−ε2µn

3

)
Theorem 14 (Multiplicative Chernoff bound
[Mitzenmacher and Upfal, 2005]). Let X1, . . . , Xn be
i.i.d random variables in {0, 1} such that µ = E[Xi].

Let X =
∑
Xi
n . Then for any 0 < ε < 1

P
[
X < (1− ε)µ

]
≤ exp

(
−ε2µn

2

)
Theorem 15 (Vapnik and Chervonenkis
[Vapnik and Chervonenkis, 2015]). Let X be a do-
main set and D a probability distribution over X. Let
H be a class of subsets of X of finite VC-dimension d.
Let ε, δ ∈ (0, 1). Let S ⊆ X be picked i.i.d according
to D of size m. If m > c

ε2 (d log d
ε + log 1

δ ), then with
probability 1 − δ over the choice of S, we have that
∀h ∈ H ∣∣∣∣ |h ∩ S||S|

− P (h)

∣∣∣∣ < ε

Theorem 16 (Fundamental theorem of learning
[Blumer et al., 1989]). Here, we state the theorem
as in the book [Shalev-Shwartz and Ben-David, 2014].
Let H be a class of functions h : X → {0, 1} of fi-
nite VC-Dimension, that is VC-Dim(H) = d < ∞.

Let D be a probability distribution over X and h∗ be
some unknown target function. Given ε, δ ∈ (0, 1).
Let errD be the {0, 1}-loss function err : H → [0, 1].
That is errD(h) = P

x∈D
[h(x) 6= h∗(x)]. Sample a set

S = {(x1, y1), . . . , (xm, ym)} according to the distri-

bution D. Define errS(h) =
∑m
i=1

1[h(xi)6=h∗(xi)]
m . If

m ≥ ad+log(1/δ)
ε2 , then with probability atleast 1 − δ

over the choice of S, we have that for all h ∈ H

|errD(h)− errS(h)| ≤ ε

where a is an absolute global constant.

Theorem 17 (Concentration inequality for sum of
geometric random variables [Brown, 2011]). Let X =
X1 + . . . + Xn be n geometrically distributed random
variables such that E[Xi] = µ. Then

P[X > (1 + ν)nµ] ≤ exp

(
−ν2µn

2(1 + ν)

)


