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“Efficient Linear Bandits through Matrix Sketching”

A Proofs

We start with the proof of a simple lemma that is used in the definition of OFUL (see Algorithm 2).

Lemma 5. For any positive definite d× d matrix A, for any w0,x ∈ Rd and c > 0, the solution of

max
w∈Rd

w>x

s.t. ‖w −w0‖A ≤ c

has value w>0 x+ c ‖x‖A−1 .

Proof. Let u = A
1
2 (w − w0) so that w = A−

1
2u + w0. Then the optimization problem can be equivalently

rewritten as

max
w∈Rd

u>A−
1
2x+w>0 x

s.t. ‖u‖ ≤ c

Then the solution is clearly u = cA−
1
2x
/
‖x‖A−1 , which achieves the claimed value.

Our regret analyses follow (Abbasi-Yadkori et al., 2011; Abeille and Lazaric, 2017) and related works. However,
due to the sketching of the correlation matrix, some key components of the proofs now depend on the spectral
error (8). In Section A.2, we present tools specific to the analysis of linear bandits with FD-sketching. These

tools are used to bound the instantaneous regret
(
x? − xt

)>
w? in terms of the norm ‖w? − w̃t‖Ṽ t−1

and the

ridge leverage scores
∑T
t=1 ‖xt‖2Ṽ −1

t−1

. Armed with these results, we then prove our regret bounds in Sections A.3

and A.4.

Next, we recall some standard tools from the analysis of linear bandits. All results in Section A.1 are from Abbasi-
Yadkori et al. (2011).

A.1 Tools from the analysis of linear contextual bandits

Recall that V t =
∑t
s=1 xsx

>
s + λI with λ > 0.

Lemma 6 (Determinant-trace inequality).

ln det (V t) ≤ d ln

(
λ+

tL2

d

)
.

Lemma 7 (Ridge leverage scores).

T∑
t=1

min
{

1, ‖xt‖2V −1
t−1

}
≤ 2 ln

(
det (V T )

λI

)
. (16)

For λ ≥ max
{

1, L2
}

, we also have that

T∑
t=1

‖xt‖2V −1
t−1

≤ 2d ln

(
1 +

TL2

λd

)
. (17)

Theorem 6 (Self-normalized bound for vector-valued martingales). Let

St =

t∑
s=1

ηsxs t ≥ 1
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where η1, η2, . . . is a conditionally R-subgaussian real-valued stochastic process and x1,x2, . . . is any Rd-valued
stochastic process such that xt is measurable with respect to the σ-algebra generated by η1, . . . , ηt−1. Then, for
any δ > 0, with probability at least 1− δ, ‖St‖2V −1

t
≤ Bt(δ) for all t ≥ 0, where

Bt(δ) = 2R2 ln

(
1

δ
det (V t)

1
2 det (λI)

− 1
2

)
. (18)

Theorem 6 is key to showing that w? lies within the confidence ellipsoid centered at the estimate w̃t at time step
t, this irrespective of the process that selected the xs used to build w̃t.

A.2 Linear algebra and sketching tools

We start by introducting a basic relationship between the correlation matrix of actions X>s Xs and its FD-sketched
estimate S>t St with sketch size m ≤ d. Recall that ρt is the smallest eigenvalue of S>t St for t = 1, . . . , T and

ρ̄t = ρ1 + · · ·+ ρt. Recall also that Ṽ = S>t St + λI.

Proposition 3. Let Ss be the matrix computed by FD-sketching at time step s = 1, . . . , t (where S0 = 0). Then
X>s Xs = S>s Ss + ρ̄sI .

Proof. By construction, S>s−1Ss−1 + xsx
>
s = U sΣsU

>
s where Ss = (Σs − ρsIm×m)

1
2 U s. Thus,

S>s Ss = U sΣsU
>
s − ρsI = S>s−1Ss−1 + xsx

>
s − ρsI

Summing both sides of the above over s = 1, . . . , t we get

S>t St =

t∑
s=1

xsx
>
s −

t∑
s=1

ρsI

which implies the desired result.

In the following lemma, we show a sketch-specific version of the determinant-trace inequality (Lemma 6). When
the spectral error is small, the right-hand side of the inequality depends on the sketch size m rather than the
ambient dimension d.

Lemma 8.

ln

(
det(V t)

det(λI)

)
≤ d ln

(
1 +

ρ̄

λ

)
+m ln

(
1 +

tL2

mλ

)
.

Proof. Let λ̃1, λ̃2, . . . , λ̃d ≥ 0 be the eigenvalues of S>t St. We start by looking at the ratio of determinants. Using
Proposition 3 we can write

det(V t)

det(λI)
=

det
(
S>s Ss + ρ̄sI + λI

)
det(λI)

=

d∏
i=1

(
λ̃i
λ

+ 1 +
ρ̄

λ

)

=
(

1 +
ρ̄

λ

)d−m m∏
i=1

(
λ̃i
λ

+ 1 +
ρ̄

λ

)
(19)

since λ̃m+1 = · · · = λ̃d = 0 because S>t St has rank at most m. We now use the AM-GM inequality, stating that

(
m∏
i=1

αi

) 1
m

≤ 1

m

m∑
i=1

αi ∀ α1, . . . , αm ≥ 0 .
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Using the AM-GM inequality, the product in (19) can be bounded as

m∏
i=1

(
λ̃i
λ

+ 1 +
ρ̄

λ

)
≤

(
1 +

ρ̄

λ
+

1

mλ

m∑
i=1

λ̃i

)m

=

(
1 +

ρ̄

λ
+

tr(S>t St)

mλ

)m

≤
(

1 +
ρ̄

λ
+
tL2

mλ

)m
(20)

where the last inequality holds because

tr(S>t St) = tr
(
Ṽ t − λI

)
≤ tr (V t − λI) (by Proposition 3)

=

t∑
s=1

tr(xsx
>
s ) (by definition of V t)

≤ tL2 .

Finally, substituting (20) into (19) and taking logs on both sides gives

ln

(
det(V t)

det(λI)

)
≤ (d−m) ln

(
1 +

ρ̄

λ

)
+m ln

(
1 +

ρ̄

λ
+
tL2

mλ

)
= d ln

(
1 +

ρ̄

λ

)
+m ln

(
1 +

tL2

mλ

1 + ρ̄
λ

)

≤ d ln
(

1 +
ρ̄

λ

)
+m ln

(
1 +

tL2

mλ

)
concluding the proof.

The next lemma is similar to (Abbasi-Yadkori et al., 2011, Lemma 11). However, now the statement depends on

the sketched matrix Ṽ t−1 instead of V t−1. Although we pay in terms of the spectral error εm, we also improve
the dependence on the dimension from d to m whenever εm is sufficiently small.

Lemma 9 (Sketched leverage scores).

T∑
t=1

min

{
1, ‖xt‖2

Ṽ
−1

t−1

}
≤ 2 (1 + εm)

(
d ln (1 + εm) +m ln

(
1 +

TL2

mλ

))
. (21)

Proof. Throughout the proof, unless stated explicitly, we drop the subscripts containing t. Therefore, V = V t−1,

Ṽ = Ṽ t−1, x = xt, and ρ̄ = ρ̄t−1. Now suppose that (λ̃i + λ, ũi) is an i-th eigenpair of Ṽ . Then, Proposition 3

implies that a corresponding eigenpair of V is (λ̃i + λ+ ρ̄, ũi). Using this fact we have that

‖x‖2V −1 = x>Ṽ Ṽ
−1
V −1x

= x>

(
d∑
i=1

ũiũ
>
i

1

λ̃i + λ

λ̃i + λ

λ̃i + λ+ ρ̄

)
x

≥ λ

λ+ ρ̄
x>

(
d∑
i=1

ũiũ
>
i

1

λ̃i + λ

)
x

=
λ

λ+ ρ̄
‖x‖2

Ṽ
−1 .
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Furthermore, this implies that

min

{
1,

λ

λ+ ρ̄
‖x‖2

Ṽ
−1

}
≤ min

{
1, ‖x‖2V −1

}
=⇒ min

{
1 +

ρ̄

λ
, ‖x‖2

Ṽ
−1

}
≤
(

1 +
ρ̄

λ

)
min

{
1, ‖x‖2V −1

}
(multiply both sides by 1 + ρ̄

λ )

=⇒ min
{

1, ‖x‖2
Ṽ
−1

}
≤
(

1 +
ρ̄

λ

)
min

{
1, ‖x‖2V −1

}
.

Finally, combining the above with Lemma 7, equation (17), and using the fact that ρ̄t−1 ≤ ρ̄T , we obtain

T∑
t=1

min

{
1, ‖xt‖2

Ṽ
−1

t−1

}
≤ 2

(
1 +

ρ̄T
λ

)
ln

(
det(V T )

det(λI)

)
≤ 2

(
1 +

ρ̄T
λ

)(
d ln

(
1 +

ρ̄T
λ

)
+m ln

(
1 +

TL2

mλ

))
(by Lemma 8)

≤ 2 (1 + εm)

(
d ln (1 + εm) +m ln

(
1 +

TL2

mλ

))
where the last inequality follows from Proposition 1.

Now we prove Theorem 2, characterizing the confidence ellipsoid generated by the sketched estimate.

Theorem 2 (Sketched confidence ellipsoid – restated). For any δ ∈ (0, 1), the optimal parameter w? belongs to
the set

C̃t ≡
{
w ∈ Rd : ‖w − w̃t‖Ṽ t

≤ β̃t(δ)
}

with probability at least 1− δ, where

β̃t(δ) = R

√
m ln

(
1 +

tL2

mλ

)
+ 2 ln

(
1

δ

)
+ d ln

(
1 +

ρ̄t
λ

)√
1 +

ρ̄t
λ

+ S
√
λ
(

1 +
ρ̄t
λ

)
Õ
= R

√
(m+ d ln(1 + εm)) (1 + εm) + S

√
λ (1 + εm) .

Proof. Throughout the proof we frequently use Proposition 3, implying X>t Xt = S>t St + ρ̄tI. For brevity, in the
following we drop subscripts containing t in matrices. Let ηt = (η1, η2 . . . , ηt), and by definition of the sketched
estimate we have that

w̃t =
(
S>t St + λI

)−1

X>t (Xtw
? + ηt)

=
(
S>t St + λI

)−1

X>t ηt +
(
S>t St + λI

)−1

X>t Xtw
?

=
(
S>t St + λI

)−1

X>t ηt

+
(
S>t St + λI

)−1 (
X>t Xt + (λ− ρ̄t)I

)
w? − (λ− ρ̄t)

(
S>t St + λI

)−1

w?

=
(
S>t St + λI

)−1

X>t ηt +w? − (λ− ρ̄t)
(
S>t St + λI

)−1

w?

= Ṽ
−1

t X
>
t ηt +w? − (λ− ρ̄t)Ṽ

−1

t w
? . (22)

Then, by (22), for any x ∈ Rd we have that

x>
(
w̃t −w?

)
= x>Ṽ t

−1
X>t ηt − (λ− ρ̄t)x>Ṽ t

−1
w? (23)

≤
∥∥x>Ṽ t

−1∥∥
V t
‖X>t ηt‖V −1

t
− (λ− ρ̄t) 〈x,w?〉

Ṽ t
−1 (by Cauchy-Schwartz)

≤
∥∥x>Ṽ t

−1∥∥
V t
‖X>t ηt‖V −1

t
+ |λ+ ρ̄t|

∣∣〈x,w?〉
Ṽ t
−1

∣∣ (by the triangle inequality.)
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We now choose x = Ṽ t(w̃t −w?) and proceed by bounding terms in the above. By the choice of x, we have that

x>
(
w̃t −w?

)
= ‖w̃t −w?‖2

Ṽ t
,
∥∥x>Ṽ t

−1∥∥
V t

= ‖w̃t −w?‖V t
and

〈x,w?〉
Ṽ t
−1 = (w̃t −w?)

>
w?

≤ ‖w̃t −w?‖2 ‖w?‖2 (by Cauchy-Schwartz)

≤ ‖w̃t −w?‖2 S .

Finally, by Theorem 6, for any δ > 0, with probability at least 1− δ,

‖X>ηt‖V −1
t
≤
√
Bt(δ) ∀t ≥ 0 .

The left-hand side of (23) can now upper bounded as

‖w̃t −w?‖2
Ṽ t
≤
√
Bt(δ)‖w̃t −w?‖V t

+ S(λ+ ρ̄t)‖w̃t −w?‖2

=⇒ ‖w̃t −w?‖Ṽ t
≤
√
Bt(δ)

‖w̃t −w?‖V t

‖w̃t −w?‖Ṽ t

+ S(λ+ ρ̄t)
‖w̃t −w?‖2
‖w̃t −w?‖Ṽ t

. (24)

Now we handle the ratios of norms in the right-hand side of (24). First,

‖w̃t −w?‖V t

‖w̃t −w?‖Ṽ t

=

√√√√‖w̃t −w?‖2
Ṽ t

+ ρ̄t‖w̃t −w?‖22
‖w̃t −w?‖2

Ṽ t

=

√
1 + ρ̄t

‖w̃t −w?‖22
‖w̃t −w?‖2

Ṽ t

≤
√

1 +
ρ̄t
λ

since ‖w̃t −w?‖2
Ṽ t
≥ λ‖w̃t −w?‖22 and, using the same reasoning,

‖w̃t −w?‖2
‖w̃t −w?‖Ṽ t

≤ 1√
λ
.

Substituting these into (24) gives

‖w̃t −w?‖Ṽ t
≤
√
Bt(δ)

(
1 +

ρ̄t
λ

)
+ S
√
λ
(

1 +
ρ̄t
λ

)
.

Now we provide a deterministic bound on Bt(δ). Using Lemma 8 we have

√
Bt(δ) = R

√
2 ln

(
1

δ
det (V t)

1
2 det (λI)

− 1
2

)

≤ R

√
d ln

(
1 +

ρ̄t
λ

)
+m ln

(
1 +

tL2

mλ

)
+ 2 ln

(
1

δ

)
.

This proves the first statement (10). Finally, (11) follows by Proposition 1, that is 1 + ρ̄t/λ ≤ 1 + εm.

We close this section by computing a closed form for Ṽ
− 1

2

t , the square root of the inverse of the sketched correlation
matrix. This is used by sketched linear TS for selecting actions. We make use of the following result —see. e.g.,
(Higham, 2008, Theorem 1.35).

Theorem 7 (Generalized Woodbury matrix identity). Let A ∈ Cd×m and B ∈ Cm×d, with d ≥ m, and assume
that BA is nonsingular. Let f be defined on the spectrum of αId×d +AB, and if d = m let f be defined at α.
Then f(αId×d +AB) = f(αId×d) +A(BA)−1 (f(αIm×m +BA)− f(αIm×m))B.
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This is used to prove the following.

Corollary 1. For λ > 0, let

S′t =

(
Σt +

(
λ

2
− ρt

)
Im×m

) 1
2

U t .

Then

Ṽ
− 1

2

t = S
′>
t

(
S′tS

′>
t

)−1
(
λ

2
I + S′tS

′>
t

)− 1
2

S′t .

Proof. We apply Theorem 7 with f(Ṽ ) = Ṽ
− 1

2

t . However, since StS
>
t is singular by design, we apply the theorem

with B set the non-singular proxy matrix S′t, A set to S
′>
t , and α set to λ/2. Thus Ṽ t = S

′>
t S

′
t + λ

2 Id×d and

(
S
′>
t S

′
t +

λ

2
Id×d

)− 1
2

=

√
2

λ
Im×m + S

′>
t

(
S′tS

′>
t

)−1
((

λ

2
Im×m + S′tS

′>
t

)− 1
2

−
√

2

λ
Im×m

)
S′t

= S
′>
t

(
S′tS

′>
t

)−1
(
λ

2
Im×m + S′tS

′>
t

)− 1
2

S′t (25)

where (25) follows since S
′>
t

(
S′tS

′>
t

)−1

S′t = Im×m.

A.3 Proof of the regret bound for SOFUL (Theorem 3)

We start with a preliminary lemma.

Lemma 10. For any δ > 0, the instantaneous regret of SOFUL satisfies

(x?t − xt)>w? ≤ 2β̃t−1(δ)‖xt‖Ṽ −1

t−1

t = 1, . . . , T .

Proof. Let w̃so
t−1 be the FD-sketched RLS estimate of OFUL (Algorithm 5). Recall that the optimal action at

time t is x?t = arg maxx∈Dt
x>w?, whereas

(
xt, w̃

so
t−1

)
= arg max

(x,w)∈Dt×C̃t−1

x>w .

We use these facts to bound the instantaneous regret,

(
x?t − xt

)>
w? ≤ x>t w̃

so
t−1 − x>t w?

= x>t
(
w̃so
t−1 −w?

)
= x>t

(
w̃so
t−1 − w̃t−1

)
+ x>t (w̃t−1 −w?)

≤ ‖xt‖Ṽ −1

t−1

(
‖w̃so

t−1 − w̃t−1‖Ṽ t−1
+ ‖w̃t−1 −w?‖Ṽ t−1

)
(by Cauchy-Schwartz)

≤ 2β̃t−1(δ)‖xt‖Ṽ −1

t−1

(by Theorem 2)

concluding the proof.

Now we are ready to prove the regret bound.
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Proof of Theorem 3. Bounding the regret using Lemma 10 gives

RT =

T∑
t=1

(x?t − xt)
>
w?

≤ 2

T∑
t=1

min
{
LS, β̃t−1(δ)‖xt‖Ṽ −1

t−1

}
(since max

t=1,...,T
max
x∈Dt

|x>w?| ≤ LS by Cauchy-Schwartz)

≤ 2

T∑
t=1

β̃t−1(δ) min

{
L√
λ
, ‖xt‖Ṽ −1

t−1

}
(since min

t=0,...,T−1
min
δ∈[0,1]

β̃t(δ) ≥ S
√
λ)

≤ 2

(
max

t=0,...,T−1
β̃t(δ)

) T∑
t=1

min

{
L√
λ
, ‖xt‖Ṽ −1

t−1

}

≤ 2 max

{
1,

L√
λ

}(
max

t=0,...,T−1
β̃t(δ)

) T∑
t=1

min
{

1, ‖xt‖Ṽ −1

t−1

}

≤ 2 max

{
1,

L√
λ

}(
max

t=0,...,T−1
β̃t(δ)

)√√√√T

T∑
t=1

min

{
1, ‖xt‖2

Ṽ
−1

t−1

}
. (by Cauchy-Schwartz)

Now we finish by further bounding the terms in the above. In particular, we bound β̃t(δ) by (11)

max
t=0,...,T−1

β̃t(δ)
Õ
= R

√(
m+ d ln(1 + εm)

)
(1 + εm) + S

√
λ (1 + εm)

while the bound on the summation term uses Lemma 9,

√√√√ T∑
t=1

min

{
1, ‖Xt‖2

Ṽ
−1

t−1

}
Õ
=
√

(1 + εm)
(
d ln (1 + εm) +m

)
.

Then, using Cλ = max
{

1, L√
λ

}
and m̃ = m+ d ln(1 + εm),

RT
Õ
= Cλ

√
T
(
R
√
m̃ (1 + εm) + S

√
λ (1 + εm)

)√
m̃ (1 + εm)

Õ
= Cλ

√
T
(
Rm̃ (1 + εm) + S

√
λ (1 + εm)

3
2

√
m̃
)

Õ
= Cλ (1 + εm)

3
2 m̃

(
R+ S

√
λ
)√

T

which completes the proof.

Proof of Theorem 4. Recall that

∆ ≤ min
t=1,...,T

(x?t − xt)
>
w? .

Similarly to the proof of Theorem 3, we use Lemma 10 to bound the instantaneous regret. However, we first use
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the gap assumption to bound the regret in terms of the sum of squared instantaneous regrets,

RT =

T∑
t=1

(x?t − xt)
>
w?

≤ 1

∆

T∑
t=1

(
(x?t − xt)

>
w?
)2

≤ 2

∆

T∑
t=1

min

{
2L2S2, β̃t−1(δ)2‖xt‖2

Ṽ
−1

t−1

}
(26)

≤ 2

∆

(
max

t=0,...,T−1
β̃t(δ)

2

) T∑
t=1

min

{
2L2

λ
, ‖xt‖2

Ṽ
−1

t−1

}
(27)

≤ 2

∆
max

{
1,

2L2

λ

}(
max

t=0,...,T−1
β̃t(δ)

2

) T∑
t=1

min

{
1, ‖xt‖2

Ṽ
−1

t−1

}
(28)

where (27) holds because mint minδ β̃t(δ)
2 ≥ S2λ. Inequality (26) holds because

(
(x?t − xt)

>
w?
)2

≤ 2(x?>t w?)2 + 2(x>t w
?)2

≤ 4L2S2 (by Cauchy-Schwartz)

and because of Lemma 10.

We now finish bounding the regret by further bounding the individual terms in (28). In particular, we use (11) to

bound β̃t(δ) as follows

max
t=0,...,T−1

β̃t(δ)
2 Õ= R2

(√(
m+ d ln(1 + εm)

)
(1 + εm) + S

√
λ (1 + εm)

)2

Õ
= R2

(
m+ d ln(1 + εm)

)
(1 + εm) + S2λ (1 + εm)

2
.

Lemma 9 gives

T∑
t=1

min

{
1, ‖Xt‖2

Ṽ
−1

t−1

}
Õ
= (1 + εm)

(
m ln(T ) + d ln (1 + εm)

)
.

Then, using again Cλ = max
{

1, L√
λ

}
and m̃ = m+ d ln(1 + εm),

RT
Õ
=
C2
λ

∆

(
R2m̃ (1 + εm) + S2λ (1 + εm)

2
)

(1 + εm) m̃

Õ
=
C2
λ

∆

(
m̃R2 + S2λ

)
(1 + εm)

3
m̃

Õ
=
C2
λ

∆

(
R2 + S2λ

)
(1 + εm)

3
m̃2

concluding the proof.



Efficient Linear Bandits through Matrix Sketching

A.4 Proof of the regret bound for Sketched Linear TS (Theorem 5)

Here w̃ts
t−1 is used to denote the FD-sketched RLS estimate of linear TS (Algorithm 6). As in (Abeille and

Lazaric, 2017), we split the regret as follows

RT =

T∑
t=1

(
x?t − xt

)>
w?

=

T∑
t=1

(
x?>t w? − x>t w̃

ts
t−1

)
+

T∑
t=1

(
x>t w̃

ts
t−1 − x>t w?

)
=

T∑
t=1

(
Jt(w

?)− Jt(w̃ts
t−1)

)
+

T∑
t=1

(
x>t w̃

ts
t−1 − x>t w?

)
(29)

where
Jt(w) = max

x∈Dt

x>w

is an “optimistic” reward function. Most of the proof is concerned with bounding the first term in (29). The
second term is instead obtained in way similar to the analysis of OFUL. Fix any δ ∈ (0, 1), let δ′ = δ

4T , and
introduce events

Ẽt ≡
{
‖w̃s −w?‖ ≤ β̃s(δ′), s = 1, . . . , t

}
Ẽts
t ≡

{
‖w̃ts

s − w̃s‖ ≤ γ̃s(δ′), s = 1, . . . , t
}

and Et ≡ Ẽt ∩ Ẽts
t . Observe that, by definition,

ẼT ⊂ · · · ⊂ Ẽ1 and Ẽts
T ⊂ · · · ⊂ Ẽts

1 (30)

We also use the following lower bound on the probability of ET .

Lemma 11. P (ET ) ≥ 1− δ

2
.

Proof. The proof is identical to the proof of (Abeille and Lazaric, 2017, Lemma 1), the only difference being that
we use the confidence ellipsoid defined in Theorem 2.

We study the regret when ET occurs,

I{ET }RT =

T∑
t=1

I{ET }
(
Jt(w

?)− Jt(w̃ts
t−1)

)
+

T∑
t=1

I{ET }
(
x>t w̃

ts
t−1 − x>t w?

)
≤

T∑
t=1

I{Et−1}
(
Jt(w

?)− Jt(w̃ts
t−1)

)
+

T∑
t=1

I{Et−1}
(
x>t w̃

ts
t−1 − x>t w?

)
(using (30))

=

T∑
t=1

rtst +

T∑
t=1

rrlst (31)

where we introduced the notation

rtst = I{Et−1}
(
Jt(w

?)− Jt(w̃ts
t−1)

)
and rrlst = I{Et−1}

(
x>t w̃

ts
t−1 − x>t w?

)
.

First we focus on rtst , and get that

rtst =
(
Jt(w

?)− Jt(w̃ts
t−1)

)
I{Et−1}

≤

(
Jt(w

?)− inf
w∈C̃ts

t−1

Jt(w)

)
I{Et−1} (because Et−1 implies w̃ts

t−1 ∈ C̃ts
t−1)

≤

(
Jt(w

?)− inf
w∈C̃ts

t−1

Jt(w)

)
I
{
Ẽt−1

}
. (using (30))
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Consider the following set of “optimistic” coefficients w such that Jt(w
?) ≤ Jt(w) and, moreover, w belongs to

the sketched TS confidence ellipsoid,

W opt-ts
t ≡

{
w ∈ Rd : Jt(w

?) ≤ Jt(w)
}
∩ C̃ts

t .

Then, for w̃ts ∈W opt-ts
t−1

rtst ≤

(
Jt(w̃

ts)− inf
w∈C̃ts

t−1

Jt(w)

)
I
{
Ẽt−1

}
. (32)

We now use (Abeille and Lazaric, 2017, Proposition 3 and Lemma 2) (restated below here for convenience) to
argue about the convexity of J and relate its gradient to the chosen action.

Proposition 4. For any finite set D of actions x such that ‖x‖ ≤ 1, maxx∈D x
>w is convex on Rd. Moreover,

it is continuous with continuous first derivatives (except for a zero-measure set w.r.t. the Lebesgue measure).

Lemma 12. For any w ∈ Rd, we have

∇
(

max
x∈D

x>w
)

= arg max
x∈D

x>w

(except for a zero-measure w.r.t. the Lebesgue measure).

Relying on the two results above, we can proceed as follows. Introduce J
/L
t (w) = Jt(w)/L = maxx∈Dt

(x/L)>w.

Then by Proposition 4, J
/L
t (w) is convex for w ∈ Rd since ‖x/L‖ ≤ 1. Then, by letting x?(w̃ts) = ∇Jt(w̃ts),

for any w̃ts ∈W opt-ts
t−1 we have

Jt(w̃
ts)− inf

w∈C̃ts
t−1

Jt(w) = L

(
J
/L
t (w̃ts)− inf

w∈C̃ts
t−1

J
/L
t (w)

)
≤ L sup

w∈C̃ts
t−1

{
∇J/Lt (w̃ts)>

(
w̃ts −w

)}

= L sup
w∈C̃ts

t−1

{(
x?(w̃ts)

L

)> (
w̃ts −w

)}
≤ ‖x?(w̃ts)‖

Ṽ
−1

t−1

sup
w∈C̃ts

t−1

‖w̃ts −w‖Ṽ t−1
(by Cauchy-Schwartz)

≤ 2γ̃t−1(δ′)‖x?(w̃ts)‖
Ṽ
−1

t−1

where the last inequality holds for all w̃ts ∈ C̃ts
t−1 and by the triangle inequality. Substituting this into (32), and

taking expectation with respect to w̃ts yields

rtst ≤ 2γ̃t−1(δ′)E
[
‖x?(w̃ts)‖

Ṽ
−1

t−1

I
{
Ẽt−1

} ∣∣∣ w̃ts ∈W opt-ts
t−1 , Ft−1

]
. (33)

where we use Ft to denote the σ-algebra generated by the random variables η1,Z1, . . . , ηt−1,Zt−1. Now we
further upper bound rtst while bounding the probability of event w̃ts ∈W opt-ts

t−1 occurring in (33). This is done in
the following lemma, whose proof (omitted here) is identical to the proof of (Abeille and Lazaric, 2017, Lemma 3),
where ellipsoids are replaced by their sketched counterparts.

Lemma 13. Assume that Dts is a TS-sampling distribution with anti-concentration parameter p. Then, for
Z ∼ Dts we have that

P
(
w̃ts ∈W opt-ts

t−1

∣∣∣ Ẽt−1,Ft−1

)
≥ p

2
t = 1, . . . , T .

We now proceed with the main argument of the proof. Using g(w̃ts) = ‖x?(w̃ts)‖
Ṽ
−1

t−1

,

E
[
g(w̃ts)

∣∣∣ Ẽt−1,Ft−1

]
≥ E

[
g(w̃ts)I

{
w̃ts ∈W opt-ts

t−1

} ∣∣∣ Ẽt−1,Ft−1

]
= E

[
g(w̃ts)

∣∣∣ w̃ts ∈W opt-ts
t−1 , Ẽt−1,Ft−1

]
P
(
w̃ts ∈W opt-ts

t−1

∣∣∣ Ẽt−1,Ft−1

)
≥ E

[
g(w̃ts)

∣∣∣ w̃ts ∈W opt-ts
t−1 , Ẽt−1,Ft−1

] p
2

(by Lemma 13.)
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The above combined with (33) implies that

rtst ≤ 2γ̃t−1(δ′)E
[
g(w̃ts)I

{
Ẽt−1

} ∣∣∣ w̃ts ∈W opt-ts
t−1 ,Ft−1

]
= 2γ̃t−1(δ′)E

[
g(w̃ts)

∣∣∣ w̃ts ∈W opt-ts
t−1 , Ẽt−1,Ft−1

]
P
(
Ẽt−1

)
≤ 4

p
γ̃t−1(δ′)E

[
g(w̃ts)

∣∣∣ Ẽt−1,Ft−1

]
. (34)

Finally, summing (34) over time we get

T∑
t=1

rtst ≤
4

p

(
max

t=0,...,T
{γ̃t(δ′)}

) T∑
t=1

E
[
‖x?(w̃ts)‖

Ṽ
−1

t−1

∣∣∣ Ft−1

]
.

Note that we can already bound γ̃t using (12). However, we cannot bound the expectation right away, so we
rewrite the above as follows

T∑
t=1

rtst ≤
4

p

(
max

t=0,...,T
{γ̃t(δ′)}

)( T∑
t=1

‖Xt‖Ṽ −1

t−1

+MT

)
(35)

where we introduce the martingale

MT =

T∑
t=1

(
E
[
‖x?(w̃ts)‖

Ṽ
−1

t−1

∣∣∣ Ft−1

]
− ‖Xt‖Ṽ −1

t−1

)
.

Next, we use the Azuma-Hoeffding inequality to upper-bound MT .

Theorem 8 (Azuma-Hoeffding inequality). If a supermartingale Yt corresponding to a filtration Ft satisfies
|Yt − Yt−1| ≤ ct for some constant ct for t = 1, 2, . . ., then for any α,

P (YT − Y0 ≥ α) ≤ exp

(
− α2

2
∑T
t=1 c

2
t

)
.

Now verify that for any t = 1, . . . , T ,

Mt −Mt−1 = E
[
‖x?(w̃ts)‖

Ṽ
−1

t−1

∣∣∣ Ft−1

]
− ‖Xt‖Ṽ −1

t−1

≤ 2L√
λ
.

Thus, by the Azuma-Hoeffding inequality, with probability at least 1− δ/2 we have

MT ≤

√
4LT

λ
ln

(
4

δ

)
. (36)

Now we focus our attention on the remaining term:

T∑
t=1

‖Xt‖Ṽ −1

t−1

≤
T∑
t=1

min

{
L√
λ
, ‖Xt‖Ṽ −1

t−1

}

≤ max

{
1,

L√
λ

} T∑
t=1

min
{

1, ‖Xt‖Ṽ −1

t−1

}

≤ max

{
1,

L√
λ

}√√√√T

T∑
t=1

min

{
1, ‖Xt‖2

Ṽ
−1

t−1

}
(by Cauchy-Schwartz)

Õ
= max

{
1,

1√
λ

}√
(1 + εm) (d ln(1 + εm) +m)T (37)

where the last step is due to Lemma 9.
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For brevity denote m̃ = m+ d ln(1 + εm). Now, we substitute into (35) the bound (36) on MT , the bound (37),
and the bound (12) on γ̃t. This gives

T∑
t=1

rtst
Õ
=
√
d
(
R
√
m̃ (1 + εm) + S

√
λ · (1 + εm)

)(
max

{
1,

1√
λ

}√
(1 + εm)m̃T +

√
T

λ

)
Õ
= max

{
1,

1√
λ

}
m̃ (1 + εm)

3
2

(
R+ S

√
λ
)√

dT (38)

which holds with high probability (due to Azuma-Hoeffding inequality).

Now we bound the remaining RLS term of the regret. In particular,

T∑
t=1

rrlst =

T∑
t=1

I{Et−1}
(
X>t w̃

ts
t−1 −X>t w?

)
=

T∑
t=1

I{Et−1}
(
X>t w̃

ts
t−1 −X>t w̃t−1

)
+

T∑
t=1

I{Et−1}
(
X>t w̃t−1 −X>t w?

)
≤

T∑
t=1

I{Et−1} ‖Xt‖Ṽ t−1
‖w̃ts

t−1 − w̃t−1‖Ṽ −1

t−1

+

T∑
t=1

I{Et−1} ‖Xt‖Ṽ t−1
‖w̃t−1 −w?‖

Ṽ
−1

t−1

(by Cauchy-Schwartz)

≤
T∑
t=1

‖Xt‖Ṽ t−1
γ̃t−1(δ′) (by definition of event Ẽts

t−1)

+

T∑
t=1

‖Xt‖Ṽ t−1
β̃t−1(δ′) (by definition of event Ẽt−1)

Õ
= max

{
1,

1√
λ

}√
m̃(1 + εm)T (using (37))

· d
(
R
√
m̃ (1 + εm) + S

√
λ · (1 + εm)

)
(using Theorem 2 to bound β̃ and (12) to bound γ̃)

Õ
= max

{
1,

1√
λ

}(
Rm̃ (1 + εm) + S

√
λ
√
m̃ (1 + εm)

3
2

)√
dT

Õ
= max

{
1,

1√
λ

}
m̃ (1 + εm)

3
2

(
R+ S

√
λ
)√

dT . (39)

Hence, combining (31), (38), and (39) gives, with high probability,

I{ET }RT =

T∑
t=1

rtst +

T∑
t=1

rrlst
Õ
= max

{
1,

1√
λ

}
m̃ (1 + εm)

3
2

(
R+ S

√
λ
)√

dT

The proof is concluded by observing that Lemma 11 proves that ET also holds with high probability.

B Experiments

In this section we present experiments on six publicly available classification datasets.

Setup. The idea of our experimental setup is similar to the one described by Cesa-Bianchi et al. (2013). Namely,
we convert a K-class classification problem into a contextual bandit problem as follows: given a dataset of labeled
instances (x, y) ∈ Rd × {1, . . . ,K}, we partition it into K subsets according to the class labels. Then we create
K sequences by drawing a random permutation of each subset. At each step t the decision set Dt is obtained by
picking the t-th instance from each one of these K sequences. Finally, rewards are determined by choosing a
class y ∈ {1, . . . ,K} and then consistently assigning reward 1 to all instances labeled with y and reward 0 to all
remaining instances.
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Figure 3: Comparison of SOFUL to OFUL on six real-world datasets and for different sketch sizes. Note that, in
some cases, a sketch size equal to 80% and even 60% of the context space dimension does not significantly affect
the perfomance.

Datasets. We perform experiments on six publicly available datasets for multiclass classification from the
openml repository (Vanschoren et al., 2013) —dataset IDs 1461, 23, 32, 182, 22, and 44, see the table below here
for details.

Dataset Examples Features Classes
Bank 45k 17 2
SatImage 6k 37 6
Spam 4k 58 2
Pendigits 11k 17 10
MFeat 2k 48 10
CMC 1.4k 10 3

Baselines. The hyperparameters β (confidence ellipsoid radius) and λ (RLS regularization parameter) are
selected on a validation set of size 100 via grid search on (β, λ) ∈

{
1, 102, 103, 104

}
×
{

10−2, 10−1, 1
}

for OFUL,

and
{

1, 102, 103
}
×
{

10−2, 10−1, 1, 102
}

for linear TS.

Results We observe that on three datasets, Figure 3, sketched algorithms indeed do not suffer a substantial
drop in performance when compared to the non-sketched ones, even when the sketch size amounts to 60% of the
context space dimension. This demonstrates that sketching successfully captures relevant subspace information
relatively to the goal of maximizing reward.

Because the FD-sketching procedure considered in this paper is essentially performing online PCA, it is natural
to ask how our sketched algorithms would compare to their non-sketched version run on the best m-dimensional
subspace (computed by running PCA on the entire dataset). In Figure 4, we compare SOFUL and sketched linear
TS to their non-sketched versions. In particular, we keep 60%, 40%, and 20% of the top principal components,
and notice that, like in Figure 3, there are cases with little or no loss in performance.
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Figure 3: Comparison of sketched linear TS to linear TS on six real-world datasets and for different sketch sizes.
Note that, in some cases, a sketch size equal to 80% and even 60% of the context space dimension does not
significantly affect the perfomance.
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Figure 4: Comparison of OFUL run on the best m-dimensional subspace against SOFUL run with sketch size m.
Rows show m as a fraction of the context space dimension: 60%, 40%, 20% (for the first three datasets), while
columns correspond to different datasets. Note that, in some cases (with sketch size m of size at least 60%),
SOFUL performs as well as if the best m-dimensional subspace had been known in hindsight.
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Figure 5: Comparison of linear TS run on the best m-dimensional subspace against sketched linear TS run with
sketch size m. Rows show m as a fraction of the context space dimension: 60%, 40%, 20% (for the first three
datasets), while rows correspond to different datasets. Note that, in some cases (with sketch size m of size at least
60%), sketched linear TS performs as well as if the best m-dimensional subspace had been known in hindsight.


